Files
edk2-rk3588/edk2-rockchip/Silicon/Rockchip/Drivers/RkFvbDxe/RkFvbDxe.c

1613 lines
52 KiB
C
Raw Normal View History

/** @file
*
* Firmware Volume Block driver for non-volatile data storage on
* SPI NOR (persistent at runtime) or SD/eMMC (persistent only at boot time).
*
* Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.
* Copyright (c) 2017 Marvell International Ltd.
* Copyright (c) 2021-2022 Rockchip Electronics Co., Ltd.
* Copyright (c) 2023, Jared McNeill <jmcneill@invisible.ca>
* Copyright (c) 2023-2024, Mario Bălănică <mariobalanica02@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/HobLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Library/UefiRuntimeLib.h>
#include <Library/DevicePathLib.h>
#include <Library/RkAtagsLib.h>
#include <Protocol/DiskIo.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/NonDiscoverableDevice.h>
#include <Protocol/ResetNotification.h>
#include <Guid/NvVarStoreFormatted.h>
#include <Guid/SystemNvDataGuid.h>
#include <Guid/VariableFormat.h>
#include <Guid/EventGroup.h>
#include <libfdt.h>
#include "RkFvbDxe.h"
STATIC RKATAG_BOOTDEV_TYPE mBootDeviceType;
// This matches the expected SPL boot order.
STATIC FVB_RK_BOOT_DEVICE mFvbSecondaryRkBootDevices[] = {
{ RkAtagBootDevTypeSd0, FixedPcdGet32 (PcdRkSdmmcBaseAddress) },
{ RkAtagBootDevTypeEmmc, FixedPcdGet32 (PcdDwcSdhciBaseAddress) },
};
STATIC EFI_EVENT mFvbVirtualAddrChangeEvent;
STATIC FVB_DEVICE *mFvbDevice;
STATIC CONST FVB_DEVICE mRkFvbFlashInstanceTemplate = {
NULL, // SpiFlashProtocol ... NEED TO BE FILLED
FALSE, // IsSpiFlashAvailable ... NEED TO BE FILLED
FALSE, // IsFvbHeaderValid ... NEED TO BE FILLED
NULL, // DiskDevice ... NEED TO BE FILLED
0, // DiskMediaId ... NEED TO BE FILLED
FALSE, // DiskDataInvalidated ... NEED TO BE FILLED
NULL, // Handle ... NEED TO BE FILLED
FVB_FLASH_SIGNATURE, // Signature
0, // DeviceBaseAddress ... NEED TO BE FILLED
0, // RegionBaseAddress ... NEED TO BE FILLED
SIZE_256KB, // Size
0, // FvbOffset ... NEED TO BE FILLED
0, // FvbSize ... NEED TO BE FILLED
0, // StartLba
{
0, // MediaId ... NEED TO BE FILLED
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching;
0, // BlockSize ... NEED TO BE FILLED
4, // IoAlign
0, // LastBlock ... NEED TO BE FILLED
0, // LowestAlignedLba
1, // LogicalBlocksPerPhysicalBlock
}, //Media;
{
FvbGetAttributes, // GetAttributes
FvbSetAttributes, // SetAttributes
FvbGetPhysicalAddress, // GetPhysicalAddress
FvbGetBlockSize, // GetBlockSize
FvbRead, // Read
FvbWrite, // Write
FvbEraseBlocks, // EraseBlocks
NULL, // ParentHandle
}, // FvbProtocol;
{
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8)sizeof (VENDOR_DEVICE_PATH),
(UINT8)((sizeof (VENDOR_DEVICE_PATH)) >> 8)
}
},
{ 0xfc0cb972, 0x21df, 0x44d2, { 0x92, 0xa5, 0x78, 0x98, 0x99, 0xcb, 0xf6, 0x61 } }
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{ sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
} // DevicePath
};
//
// The Firmware Volume Block Protocol is the low-level interface
// to a firmware volume. File-level access to a firmware volume
// should not be done using the Firmware Volume Block Protocol.
// Normal access to a firmware volume must use the Firmware
// Volume Protocol. Typically, only the file system driver that
// produces the Firmware Volume Protocol will bind to the
// Firmware Volume Block Protocol.
//
/**
Initialises the FV Header and Variable Store Header
to support variable operations.
@param[in] Ptr - Location to initialise the headers
**/
STATIC
EFI_STATUS
FvbInitFvAndVariableStoreHeaders (
IN FVB_DEVICE *FlashInstance
)
{
EFI_FIRMWARE_VOLUME_HEADER *FirmwareVolumeHeader;
VARIABLE_STORE_HEADER *VariableStoreHeader;
EFI_STATUS Status;
VOID* Headers;
UINTN HeadersLength;
UINTN BlockSize;
HeadersLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER) +
sizeof (EFI_FV_BLOCK_MAP_ENTRY) +
sizeof (VARIABLE_STORE_HEADER);
Headers = AllocateZeroPool (HeadersLength);
BlockSize = FlashInstance->Media.BlockSize;
//
// FirmwareVolumeHeader->FvLength is declared to have the Variable area
// AND the FTW working area AND the FTW Spare contiguous.
//
ASSERT (PcdGet64 (PcdFlashNvStorageVariableBase64) +
PcdGet32 (PcdFlashNvStorageVariableSize) ==
PcdGet64 (PcdFlashNvStorageFtwWorkingBase64));
ASSERT (PcdGet64 (PcdFlashNvStorageFtwWorkingBase64) +
PcdGet32 (PcdFlashNvStorageFtwWorkingSize) ==
PcdGet64 (PcdFlashNvStorageFtwSpareBase64));
// Check if the size of the area is at least one block size
ASSERT ((PcdGet32 (PcdFlashNvStorageVariableSize) > 0) &&
(PcdGet32 (PcdFlashNvStorageVariableSize) / BlockSize > 0));
ASSERT ((PcdGet32 (PcdFlashNvStorageFtwWorkingSize) > 0) &&
(PcdGet32 (PcdFlashNvStorageFtwWorkingSize) / BlockSize > 0));
ASSERT ((PcdGet32 (PcdFlashNvStorageFtwSpareSize) > 0) &&
(PcdGet32 (PcdFlashNvStorageFtwSpareSize) / BlockSize > 0));
// Ensure the Variable areas are aligned on block size boundaries
//ASSERT ((PcdGet64 (PcdFlashNvStorageVariableBase64) % BlockSize) == 0);
ASSERT ((PcdGet64 (PcdFlashNvStorageFtwWorkingBase64) % BlockSize) == 0);
ASSERT ((PcdGet64 (PcdFlashNvStorageFtwSpareBase64) % BlockSize) == 0);
//
// EFI_FIRMWARE_VOLUME_HEADER
//
FirmwareVolumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)Headers;
CopyGuid (&FirmwareVolumeHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid);
FirmwareVolumeHeader->FvLength = FlashInstance->FvbSize;
FirmwareVolumeHeader->Signature = EFI_FVH_SIGNATURE;
FirmwareVolumeHeader->Attributes = EFI_FVB2_READ_ENABLED_CAP |
EFI_FVB2_READ_STATUS |
EFI_FVB2_STICKY_WRITE |
EFI_FVB2_ERASE_POLARITY |
EFI_FVB2_WRITE_STATUS |
EFI_FVB2_WRITE_ENABLED_CAP |
EFI_FVB2_MEMORY_MAPPED;
FirmwareVolumeHeader->HeaderLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER) +
sizeof (EFI_FV_BLOCK_MAP_ENTRY);
FirmwareVolumeHeader->Revision = EFI_FVH_REVISION;
FirmwareVolumeHeader->BlockMap[0].NumBlocks = FlashInstance->Media.LastBlock + 1;
FirmwareVolumeHeader->BlockMap[0].Length = FlashInstance->Media.BlockSize;
FirmwareVolumeHeader->BlockMap[1].NumBlocks = 0;
FirmwareVolumeHeader->BlockMap[1].Length = 0;
FirmwareVolumeHeader->Checksum = CalculateCheckSum16 (
(UINT16 *)FirmwareVolumeHeader,
FirmwareVolumeHeader->HeaderLength);
//
// VARIABLE_STORE_HEADER
//
VariableStoreHeader = (VOID *)((UINTN)Headers +
FirmwareVolumeHeader->HeaderLength);
CopyGuid (&VariableStoreHeader->Signature, &gEfiAuthenticatedVariableGuid);
VariableStoreHeader->Size = PcdGet32(PcdFlashNvStorageVariableSize) -
FirmwareVolumeHeader->HeaderLength;
VariableStoreHeader->Format = VARIABLE_STORE_FORMATTED;
VariableStoreHeader->State = VARIABLE_STORE_HEALTHY;
// Install the combined super-header in the flash device
Status = FvbWrite (&FlashInstance->FvbProtocol, 0, 0, &HeadersLength, Headers);
FreePool (Headers);
return Status;
}
/**
Check the integrity of firmware volume header.
@param[in] FwVolHeader - A pointer to a firmware volume header
@retval EFI_SUCCESS - The firmware volume is consistent
@retval EFI_NOT_FOUND - The firmware volume has been corrupted.
**/
STATIC
EFI_STATUS
FvbValidateFvHeader (
IN FVB_DEVICE *FlashInstance
)
{
UINT16 Checksum;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINTN VariableStoreLength;
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)FlashInstance->RegionBaseAddress;
// Verify the header revision, header signature, length
if ((FwVolHeader->Revision != EFI_FVH_REVISION) ||
(FwVolHeader->Signature != EFI_FVH_SIGNATURE) ||
(FwVolHeader->FvLength != FlashInstance->FvbSize)) {
DEBUG ((DEBUG_ERROR,
"%a: No Firmware Volume header present\n",
__FUNCTION__));
return EFI_NOT_FOUND;
}
// Check the Firmware Volume Guid
if (!CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid)) {
DEBUG ((DEBUG_ERROR,
"%a: Firmware Volume Guid non-compatible\n",
__FUNCTION__));
return EFI_NOT_FOUND;
}
// Verify the header checksum
Checksum = CalculateSum16 ((UINT16 *)FwVolHeader, FwVolHeader->HeaderLength);
if (Checksum != 0) {
DEBUG ((DEBUG_ERROR,
"%a: FV checksum is invalid (Checksum:0x%x)\n",
__FUNCTION__,
Checksum));
return EFI_NOT_FOUND;
}
VariableStoreHeader = (VOID *)((UINTN)FwVolHeader + FwVolHeader->HeaderLength);
// Check the Variable Store Guid
if (!CompareGuid (&VariableStoreHeader->Signature, &gEfiVariableGuid) &&
!CompareGuid (&VariableStoreHeader->Signature,
&gEfiAuthenticatedVariableGuid)) {
DEBUG ((DEBUG_ERROR,
"%a: Variable Store Guid non-compatible\n",
__FUNCTION__));
return EFI_NOT_FOUND;
}
VariableStoreLength = PcdGet32 (PcdFlashNvStorageVariableSize) -
FwVolHeader->HeaderLength;
if (VariableStoreHeader->Size != VariableStoreLength) {
DEBUG ((DEBUG_ERROR,
"%a: Variable Store Length does not match\n",
__FUNCTION__));
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
/**
The GetAttributes() function retrieves the attributes and
current settings of the block.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and
current settings are returned.
Type EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
**/
EFI_STATUS
EFIAPI
FvbGetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
EFI_FVB_ATTRIBUTES_2 *FlashFvbAttributes;
FVB_DEVICE *FlashInstance;
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)FlashInstance->RegionBaseAddress;
FlashFvbAttributes = (EFI_FVB_ATTRIBUTES_2 *)&(FwVolHeader->Attributes);
*Attributes = *FlashFvbAttributes;
return EFI_SUCCESS;
}
/**
The SetAttributes() function sets configurable firmware volume attributes
and returns the new settings of the firmware volume.
@param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes On input, Attributes is a pointer to
EFI_FVB_ATTRIBUTES_2 that contains the desired
firmware volume settings.
On successful return, it contains the new
settings of the firmware volume.
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in conflict with
the capabilities as declared in the firmware
volume header.
**/
EFI_STATUS
EFIAPI
FvbSetAttributes (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
)
{
EFI_FVB_ATTRIBUTES_2 OldAttributes;
EFI_FVB_ATTRIBUTES_2 FlashFvbAttributes;
EFI_FVB_ATTRIBUTES_2 UnchangedAttributes;
FVB_DEVICE *FlashInstance;
UINT32 Capabilities;
UINT32 OldStatus;
UINT32 NewStatus;
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
//
// Obtain attributes from FVB header
//
FvbGetAttributes (This, &FlashFvbAttributes);
OldAttributes = FlashFvbAttributes;
Capabilities = OldAttributes & EFI_FVB2_CAPABILITIES;
OldStatus = OldAttributes & EFI_FVB2_STATUS;
NewStatus = *Attributes & EFI_FVB2_STATUS;
UnchangedAttributes = EFI_FVB2_READ_DISABLED_CAP | \
EFI_FVB2_READ_ENABLED_CAP | \
EFI_FVB2_WRITE_DISABLED_CAP | \
EFI_FVB2_WRITE_ENABLED_CAP | \
EFI_FVB2_LOCK_CAP | \
EFI_FVB2_STICKY_WRITE | \
EFI_FVB2_ERASE_POLARITY | \
EFI_FVB2_READ_LOCK_CAP | \
EFI_FVB2_WRITE_LOCK_CAP | \
EFI_FVB2_ALIGNMENT | \
EFI_FVB2_MEMORY_MAPPED;
//
// Some attributes of FV is read only can *not* be set
//
if ((OldAttributes & UnchangedAttributes) ^
(*Attributes & UnchangedAttributes)) {
return EFI_INVALID_PARAMETER;
}
//
// If firmware volume is locked, no status bit can be updated
//
if (OldAttributes & EFI_FVB2_LOCK_STATUS) {
if (OldStatus ^ NewStatus) {
return EFI_ACCESS_DENIED;
}
}
//
// Test read disable
//
if ((Capabilities & EFI_FVB2_READ_DISABLED_CAP) == 0) {
if ((NewStatus & EFI_FVB2_READ_STATUS) == 0) {
return EFI_INVALID_PARAMETER;
}
}
//
// Test read enable
//
if ((Capabilities & EFI_FVB2_READ_ENABLED_CAP) == 0) {
if (NewStatus & EFI_FVB2_READ_STATUS) {
return EFI_INVALID_PARAMETER;
}
}
//
// Test write disable
//
if ((Capabilities & EFI_FVB2_WRITE_DISABLED_CAP) == 0) {
if ((NewStatus & EFI_FVB2_WRITE_STATUS) == 0) {
return EFI_INVALID_PARAMETER;
}
}
//
// Test write enable
//
if ((Capabilities & EFI_FVB2_WRITE_ENABLED_CAP) == 0) {
if (NewStatus & EFI_FVB2_WRITE_STATUS) {
return EFI_INVALID_PARAMETER;
}
}
//
// Test lock
//
if ((Capabilities & EFI_FVB2_LOCK_CAP) == 0) {
if (NewStatus & EFI_FVB2_LOCK_STATUS) {
return EFI_INVALID_PARAMETER;
}
}
FlashFvbAttributes = FlashFvbAttributes & (0xFFFFFFFF & (~EFI_FVB2_STATUS));
FlashFvbAttributes = FlashFvbAttributes | NewStatus;
*Attributes = FlashFvbAttributes;
return EFI_SUCCESS;
}
/**
The GetPhysicalAddress() function retrieves the base address of
a memory-mapped firmware volume. This function should be called
only for memory-mapped firmware volumes.
@param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Address Pointer to a caller-allocated
EFI_PHYSICAL_ADDRESS that, on successful
return from GetPhysicalAddress(), contains the
base address of the firmware volume.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped.
**/
EFI_STATUS
EFIAPI
FvbGetPhysicalAddress (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
)
{
FVB_DEVICE *FlashInstance;
ASSERT (Address != NULL);
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
*Address = FlashInstance->RegionBaseAddress;
return EFI_SUCCESS;
}
/**
The GetBlockSize() function retrieves the size of the requested
block. It also returns the number of additional blocks with
the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).
@param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba Indicates the block whose size to return
@param BlockSize Pointer to a caller-allocated UINTN in which
the size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in
which the number of consecutive blocks,
starting with Lba, is returned. All
blocks in this range have a size of
BlockSize.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
EFI_STATUS
EFIAPI
FvbGetBlockSize (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumberOfBlocks
)
{
FVB_DEVICE *FlashInstance;
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
if (Lba > FlashInstance->Media.LastBlock) {
DEBUG ((DEBUG_ERROR,
"%a: Error: Requested LBA %ld is beyond the last available LBA (%ld).\n",
__FUNCTION__,
Lba,
FlashInstance->Media.LastBlock));
return EFI_INVALID_PARAMETER;
} else {
// Assume equal sized blocks in all flash devices
*BlockSize = (UINTN)FlashInstance->Media.BlockSize;
*NumberOfBlocks = (UINTN)(FlashInstance->Media.LastBlock - Lba + 1);
return EFI_SUCCESS;
}
}
/**
Reads the specified number of bytes into a buffer from the specified block.
The Read() function reads the requested number of bytes from the
requested block and stores them in the provided buffer.
Implementations should be mindful that the firmware volume
might be in the ReadDisabled state. If it is in this state,
the Read() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the
buffer. The Read() function must also prevent spanning block
boundaries. If a read is requested that would span a block
boundary, the read must read up to the boundary but not
beyond. The output parameter NumBytes must be set to correctly
indicate the number of bytes actually read. The caller must be
aware that a read may be partially completed.
@param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index from which to read
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINTN.
At entry, *NumBytes contains the total size of the
buffer.
At exit, *NumBytes contains the total number of
bytes read.
@param Buffer Pointer to a caller-allocated buffer that will be
used to hold the data that is read.
@retval EFI_SUCCESS The firmware volume was read successfully, and
contents are in Buffer.
@retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary.
On output, NumBytes contains the total number of
bytes returned in Buffer.
@retval EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly and
could not be read.
**/
EFI_STATUS
EFIAPI
FvbRead (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
)
{
FVB_DEVICE *FlashInstance;
UINTN BlockSize;
UINTN DataOffset;
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = FlashInstance->Media.BlockSize;
//
// The read must not span block boundaries.
// We need to check each variable individually because adding two large
// values together overflows.
//
if (Offset >= BlockSize ||
*NumBytes > BlockSize ||
(Offset + *NumBytes) > BlockSize) {
DEBUG ((DEBUG_ERROR,
"%a: Wrong buffer size: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n",
__FUNCTION__,
Offset,
*NumBytes,
BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// No bytes to read
if (*NumBytes == 0) {
return EFI_SUCCESS;
}
DataOffset = GET_DATA_OFFSET (FlashInstance->RegionBaseAddress + Offset,
FlashInstance->StartLba + Lba,
FlashInstance->Media.BlockSize);
// Read the memory-mapped data
CopyMem (Buffer, (UINTN *)DataOffset, *NumBytes);
return EFI_SUCCESS;
}
/**
Writes the specified number of bytes from the input buffer to the block.
The Write() function writes the specified number of bytes from
the provided buffer to the specified block and offset. If the
firmware volume is sticky write, the caller must ensure that
all the bits of the specified range to write are in the
EFI_FVB_ERASE_POLARITY state before calling the Write()
function, or else the result will be unpredictable. This
unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY
state but cannot flip it back again. Before calling the
Write() function, it is recommended for the caller to first call
the EraseBlocks() function to erase the specified block to
write. A block erase cycle will transition bits from the
(NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state. Implementations should be
mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must
return the status code EFI_ACCESS_DENIED without modifying the
contents of the firmware volume. The Write() function must
also prevent spanning block boundaries. If a write is
requested that spans a block boundary, the write must store up
to the boundary but not beyond. The output parameter NumBytes
must be set to correctly indicate the number of bytes actually
written. The caller must be aware that a write may be
partially completed. All writes, partial or otherwise, must be
fully flushed to the hardware before the Write() service
returns.
@param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes The pointer to a UINTN.
At entry, *NumBytes contains the total size of the
buffer.
At exit, *NumBytes contains the total number of
bytes actually written.
@param Buffer The pointer to a caller-allocated buffer that
contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary.
On output, NumBytes contains the total number of
bytes actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning and could not be
written.
**/
EFI_STATUS
EFIAPI
FvbWrite (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
EFI_STATUS Status;
FVB_DEVICE *FlashInstance;
UINTN DataOffset;
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
DataOffset = GET_DATA_OFFSET (FlashInstance->FvbOffset + Offset,
FlashInstance->StartLba + Lba,
FlashInstance->Media.BlockSize);
if (FlashInstance->IsSpiFlashAvailable) {
Status = FlashInstance->SpiFlashProtocol->Write (FlashInstance->SpiFlashProtocol,
DataOffset,
Buffer,
*NumBytes);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: Failed to write to Spi device\n", __FUNCTION__));
return Status;
}
}
// Update shadow buffer
DataOffset = GET_DATA_OFFSET (FlashInstance->RegionBaseAddress + Offset,
FlashInstance->StartLba + Lba,
FlashInstance->Media.BlockSize);
CopyMem ((UINTN *)DataOffset, Buffer, *NumBytes);
// Must sync the data if it's on a disk
FlashInstance->DiskDataInvalidated = TRUE;
return EFI_SUCCESS;
}
/**
Erases and initialises a firmware volume block.
The EraseBlocks() function erases one or more blocks as denoted
by the variable argument list. The entire parameter list of
blocks must be verified before erasing any blocks. If a block is
requested that does not exist within the associated firmware
volume (it has a larger index than the last block of the
firmware volume), the EraseBlocks() function must return the
status code EFI_INVALID_PARAMETER without modifying the contents
of the firmware volume. Implementations should be mindful that
the firmware volume might be in the WriteDisabled state. If it
is in this state, the EraseBlocks() function must return the
status code EFI_ACCESS_DENIED without modifying the contents of
the firmware volume. All calls to EraseBlocks() must be fully
flushed to the hardware before the EraseBlocks() service
returns.
@param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
instance.
@param ... The variable argument list is a list of tuples.
Each tuple describes a range of LBAs to erase
and consists of the following:
- An EFI_LBA that indicates the starting LBA
- A UINTN that indicates the number of blocks
to erase.
The list is terminated with an
EFI_LBA_LIST_TERMINATOR.
@retval EFI_SUCCESS The erase request successfully completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled
state.
@retval EFI_DEVICE_ERROR The block device is not functioning correctly
and could not be written.
The firmware device may have been partially
erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable
argument list do not exist in the firmware
volume.
**/
EFI_STATUS
EFIAPI
FvbEraseBlocks (
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
...
)
{
EFI_FVB_ATTRIBUTES_2 FlashFvbAttributes;
FVB_DEVICE *FlashInstance;
EFI_STATUS Status;
VA_LIST Args;
UINTN BlockAddress; // Physical address of Lba to erase
EFI_LBA StartingLba; // Lba from which we start erasing
UINTN NumOfLba; // Number of Lba blocks to erase
FlashInstance = INSTANCE_FROM_FVB_THIS (This);
Status = EFI_SUCCESS;
if(FlashInstance->IsFvbHeaderValid == TRUE) {
// Detect WriteDisabled state
FvbGetAttributes (This, &FlashFvbAttributes);
if ((FlashFvbAttributes & EFI_FVB2_WRITE_STATUS) == 0) {
DEBUG ((DEBUG_ERROR,
"%a: Device is in WriteDisabled state.\n",
__FUNCTION__));
return EFI_ACCESS_DENIED;
}
}
//
// Before erasing, check the entire list of parameters to ensure
// all specified blocks are valid.
//
VA_START (Args, This);
do {
// Get the Lba from which we start erasing
StartingLba = VA_ARG (Args, EFI_LBA);
// Have we reached the end of the list?
if (StartingLba == EFI_LBA_LIST_TERMINATOR) {
//Exit the while loop
break;
}
// How many Lba blocks are we requested to erase?
NumOfLba = VA_ARG (Args, UINT32);
// All blocks must be within range
if (NumOfLba == 0 ||
(FlashInstance->StartLba + StartingLba + NumOfLba - 1) >
FlashInstance->Media.LastBlock) {
DEBUG ((DEBUG_ERROR,
"%a: Error: Requested LBA are beyond the last available LBA (%ld).\n",
__FUNCTION__,
FlashInstance->Media.LastBlock));
VA_END (Args);
return EFI_INVALID_PARAMETER;
}
} while (TRUE);
VA_END (Args);
//
// Start erasing
//
VA_START (Args, This);
do {
// Get the Lba from which we start erasing
StartingLba = VA_ARG (Args, EFI_LBA);
// Have we reached the end of the list?
if (StartingLba == EFI_LBA_LIST_TERMINATOR) {
// Exit the while loop
break;
}
// How many Lba blocks are we requested to erase?
NumOfLba = VA_ARG (Args, UINT32);
// Go through each one and erase it
while (NumOfLba > 0) {
// Get the physical address of Lba to erase
BlockAddress = GET_DATA_OFFSET (FlashInstance->FvbOffset,
FlashInstance->StartLba + StartingLba,
FlashInstance->Media.BlockSize);
// Erase single block
if (FlashInstance->IsSpiFlashAvailable) {
Status = FlashInstance->SpiFlashProtocol->Erase (FlashInstance->SpiFlashProtocol,
BlockAddress,
FlashInstance->Media.BlockSize);
if (EFI_ERROR (Status)) {
VA_END (Args);
return EFI_DEVICE_ERROR;
}
}
// Update shadow buffer
BlockAddress = GET_DATA_OFFSET (FlashInstance->RegionBaseAddress,
FlashInstance->StartLba + StartingLba,
FlashInstance->Media.BlockSize);
SetMem ((UINTN *)BlockAddress, FlashInstance->Media.BlockSize, 0xFF);
// Must sync the data if it's on a disk
FlashInstance->DiskDataInvalidated = TRUE;
// Move to the next Lba
StartingLba++;
NumOfLba--;
}
} while (TRUE);
VA_END (Args);
return EFI_SUCCESS;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
STATIC
VOID
EFIAPI
FvbVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
// Convert SPI memory mapped region
EfiConvertPointer (0x0, (VOID**)&mFvbDevice->RegionBaseAddress);
// Convert SPI device description
//EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiDevice.Info);
//EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiDevice.HostRegisterBaseAddress);
//EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiDevice);
// Convert SpiFlashProtocol
EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol->Erase);
EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol->Write);
EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol->Read);
EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol->GetSize);
EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol);
return;
}
STATIC
EFI_STATUS
FvbPrepareFvHeader (
IN FVB_DEVICE *FlashInstance
)
{
EFI_BOOT_MODE BootMode;
EFI_STATUS Status;
// Check if it is required to use default environment
BootMode = GetBootModeHob ();
if (BootMode == BOOT_WITH_DEFAULT_SETTINGS) {
Status = EFI_INVALID_PARAMETER;
} else {
// Validate header at the beginning of FV region
Status = FvbValidateFvHeader (FlashInstance);
}
// Install the default FVB header if required
if (EFI_ERROR (Status)) {
// There is no valid header, so time to install one.
DEBUG ((DEBUG_ERROR, "%a: The FVB Header is not valid.\n", __FUNCTION__));
DEBUG ((DEBUG_ERROR,
"%a: Installing a correct one for this volume.\n",
__FUNCTION__));
FlashInstance->IsFvbHeaderValid = FALSE;
// Erase entire region that is reserved for variable storage
Status = FvbEraseBlocks (&FlashInstance->FvbProtocol,
(EFI_LBA) 0,
FlashInstance->FvbSize / FlashInstance->Media.BlockSize,
EFI_LBA_LIST_TERMINATOR);
if (EFI_ERROR (Status)) {
return Status;
}
// Install all appropriate headers
Status = FvbInitFvAndVariableStoreHeaders (FlashInstance);
if (EFI_ERROR (Status)) {
return Status;
}
} else {
FlashInstance->IsFvbHeaderValid = TRUE;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
FvbConfigureFlashInstance (
IN OUT FVB_DEVICE *FlashInstance
)
{
EFI_STATUS Status;
UINTN DataOffset;
UINTN VariableSize, FtwWorkingSize, FtwSpareSize, MemorySize;
// Locate SPI protocols
Status = gBS->LocateProtocol (&gUniNorFlashProtocolGuid,
NULL,
(VOID **)&FlashInstance->SpiFlashProtocol);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "%a: Cannot locate SpiFlash protocol\n", __FUNCTION__));
} else {
// Probe the SPI flash
if (FlashInstance->SpiFlashProtocol->GetSize(FlashInstance->SpiFlashProtocol)) {
FlashInstance->IsSpiFlashAvailable = TRUE;
} else {
DEBUG ((DEBUG_WARN, "%a: SPI flash not present.\n", __FUNCTION__));
}
}
// Fill remaining flash description
VariableSize = PcdGet32 (PcdFlashNvStorageVariableSize);
FtwWorkingSize = PcdGet32 (PcdFlashNvStorageFtwWorkingSize);
FtwSpareSize = PcdGet32 (PcdFlashNvStorageFtwSpareSize);
FlashInstance->FvbSize = VariableSize + FtwWorkingSize + FtwSpareSize;
FlashInstance->FvbOffset = PcdGet64 (PcdFlashNvStorageVariableBase64);
FlashInstance->Media.MediaId = 0;
FlashInstance->Media.BlockSize = SIZE_4KB;//FlashInstance->SpiDevice.Info->SectorSize;
FlashInstance->Media.LastBlock = FlashInstance->Size /
FlashInstance->Media.BlockSize - 1;
// U-Boot maps NV data into memory at the same address as in flash.
FlashInstance->RegionBaseAddress = FlashInstance->FvbOffset;
if (FlashInstance->IsSpiFlashAvailable
&& mBootDeviceType != RkAtagBootDevTypeSpiNor
&& mBootDeviceType != RkAtagBootDevTypeMtdBlkSpiNor) {
//
// SPI flash is available but UEFI was booted from another storage,
// check if user still prefers the NV data to be on the flash.
//
if (FixedPcdGetBool (PcdNvStoragePreferSpiFlash)) {
//
// Ignore the memory mapped NV data from the boot device and
// read it directly from SPI flash.
//
DataOffset = GET_DATA_OFFSET (FlashInstance->FvbOffset,
FlashInstance->StartLba,
FlashInstance->Media.BlockSize);
Status = FlashInstance->SpiFlashProtocol->Read (FlashInstance->SpiFlashProtocol,
DataOffset,
(VOID *)FlashInstance->RegionBaseAddress,
FlashInstance->FvbSize);
if (EFI_ERROR (Status)) {
return Status;
}
} else {
//
// Mark SPI flash as being unavailable, we'll dump the NV data on
// the boot device if possible.
//
FlashInstance->IsSpiFlashAvailable = FALSE;
}
}
Status = gBS->InstallMultipleProtocolInterfaces (&FlashInstance->Handle,
&gEfiDevicePathProtocolGuid, &FlashInstance->DevicePath,
&gEfiFirmwareVolumeBlockProtocolGuid, &FlashInstance->FvbProtocol,
NULL);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FvbPrepareFvHeader (FlashInstance);
if (EFI_ERROR (Status)) {
gBS->UninstallMultipleProtocolInterfaces (&FlashInstance->Handle,
&gEfiDevicePathProtocolGuid,
&gEfiFirmwareVolumeBlockProtocolGuid,
NULL);
}
return Status;
}
STATIC
EFI_STATUS
FvbDiskDumpNvData (
IN EFI_DEVICE_PATH_PROTOCOL *Device,
IN UINT32 MediaId
)
{
EFI_STATUS Status;
EFI_DISK_IO_PROTOCOL *DiskIo = NULL;
EFI_HANDLE Handle;
UINTN DataOffset;
Status = gBS->LocateDevicePath (&gEfiDiskIoProtocolGuid, &Device, &Handle);
if (EFI_ERROR (Status)) {
return Status;
}
Status = gBS->HandleProtocol (Handle, &gEfiDiskIoProtocolGuid, (VOID **) &DiskIo);
if (EFI_ERROR (Status)) {
return Status;
}
DataOffset = GET_DATA_OFFSET (mFvbDevice->FvbOffset,
mFvbDevice->StartLba,
mFvbDevice->Media.BlockSize);
Status = DiskIo->WriteDisk (DiskIo,
MediaId,
DataOffset,
mFvbDevice->FvbSize,
(VOID *) mFvbDevice->FvbOffset);
return Status;
}
STATIC
VOID
FvbDiskNvDumpHandler (
VOID
)
{
EFI_STATUS Status;
if (mFvbDevice->DiskDevice == NULL) {
DEBUG ((DEBUG_WARN, "%a: NV disk device not found (yet?)\n", __FUNCTION__));
return;
}
if (!mFvbDevice->DiskDataInvalidated) {
return;
}
Status = FvbDiskDumpNvData (mFvbDevice->DiskDevice, mFvbDevice->DiskMediaId);
if (EFI_ERROR (Status)) {
CHAR16* DevicePathText = ConvertDevicePathToText (mFvbDevice->DiskDevice, FALSE, FALSE);
DEBUG ((DEBUG_ERROR, "%a: Couldn't dump NV data to disk [%s]\n",
__FUNCTION__, DevicePathText));
if (DevicePathText != NULL) {
gBS->FreePool (DevicePathText);
}
ASSERT_EFI_ERROR (Status);
return;
}
DEBUG ((DEBUG_INFO, "NV data dumped!\n"));
mFvbDevice->DiskDataInvalidated = FALSE;
}
STATIC
VOID
EFIAPI
FvbDiskNvDumpEventHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
FvbDiskNvDumpHandler ();
}
STATIC
VOID
EFIAPI
FvbDiskNvDumpResetHandler (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
)
{
FvbDiskNvDumpHandler ();
}
STATIC
VOID
FvbReadyToBootEventHandler (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_EVENT ImageInstallEvent;
VOID *ImageRegistration;
Status = gBS->CreateEvent (EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
FvbDiskNvDumpEventHandler,
NULL,
&ImageInstallEvent);
ASSERT_EFI_ERROR (Status);
Status = gBS->RegisterProtocolNotify (&gEfiLoadedImageProtocolGuid,
ImageInstallEvent,
&ImageRegistration);
ASSERT_EFI_ERROR (Status);
FvbDiskNvDumpEventHandler (NULL, NULL);
Status = gBS->CloseEvent (Event);
ASSERT_EFI_ERROR (Status);
}
STATIC
BOOLEAN
FvbCheckRkBootDeviceSupported (
IN EFI_HANDLE Handle,
IN FVB_RK_BOOT_DEVICE *BootDevice
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_HANDLE DeviceHandle;
NON_DISCOVERABLE_DEVICE *Device;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
DevicePath = DevicePathFromHandle (Handle);
if (DevicePath == NULL
|| DevicePath->Type != HARDWARE_DEVICE_PATH
|| DevicePath->SubType != HW_VENDOR_DP) {
return FALSE;
}
Status = gBS->LocateDevicePath (&gEdkiiNonDiscoverableDeviceProtocolGuid,
&DevicePath, &DeviceHandle);
if (EFI_ERROR (Status)) {
return FALSE;
}
Status = gBS->HandleProtocol (DeviceHandle,
&gEdkiiNonDiscoverableDeviceProtocolGuid, (VOID **) &Device);
if (EFI_ERROR (Status)) {
return FALSE;
}
Descriptor = &Device->Resources[0];
if (Descriptor->Desc != ACPI_ADDRESS_SPACE_DESCRIPTOR ||
Descriptor->ResType != ACPI_ADDRESS_SPACE_TYPE_MEM) {
return FALSE;
}
return Descriptor->AddrRangeMin == BootDevice->ControllerBaseAddress;
}
STATIC
BOOLEAN
FvbCheckBootDiskDeviceHasFirmware (
IN EFI_HANDLE Handle,
IN UINT32 MediaId,
IN CHAR16 *DevicePathText
)
{
EFI_STATUS Status;
EFI_DISK_IO_PROTOCOL *DiskIo;
UINT64 Offset;
UINTN Size;
struct fdt_header FdtHeader;
VOID *Fdt = NULL;
INT32 Ret;
INT32 Node;
BOOLEAN Found = FALSE;
Status = gBS->HandleProtocol (Handle, &gEfiDiskIoProtocolGuid, (VOID **)&DiskIo);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
goto Exit;
}
Offset = FixedPcdGet64 (PcdFitImageFlashAddress);
Size = sizeof (FdtHeader);
Status = DiskIo->ReadDisk (DiskIo, MediaId, Offset, Size, &FdtHeader);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: [%s] Failed to read %u bytes at 0x%lx. Status=%r\n",
__FUNCTION__, DevicePathText, Size, Offset, Status));
goto Exit;
}
Ret = fdt_check_header (&FdtHeader);
if (Ret) {
DEBUG ((DEBUG_ERROR, "%a: [%s] FIT has an invalid header! Ret=%a\n",
__FUNCTION__, DevicePathText, fdt_strerror (Ret)));
goto Exit;
}
Size = fdt_totalsize (&FdtHeader);
Fdt = AllocatePool (Size);
Status = DiskIo->ReadDisk (DiskIo, MediaId, Offset, Size, Fdt);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: [%s] Failed to read %u bytes at 0x%lx. Status=%r\n",
__FUNCTION__, DevicePathText, Size, Offset, Status));
goto Exit;
}
Node = fdt_path_offset (Fdt, "/images/edk2");
if (Node < 0) {
DEBUG ((DEBUG_ERROR, "%a: [%s] FIT: Couldn't locate '/images/edk2' node! Ret=%a\n",
__FUNCTION__, DevicePathText, fdt_strerror (Node)));
goto Exit;
}
Found = TRUE;
Exit:
if (Fdt != NULL) {
FreePool (Fdt);
}
return Found;
}
STATIC
VOID
FvbProcessBootDiskDeviceHandle (
IN EFI_HANDLE Handle,
IN FVB_RK_BOOT_DEVICE *BootDevice
)
{
EFI_STATUS Status;
EFI_BLOCK_IO_PROTOCOL *BlkIo;
EFI_DEVICE_PATH_PROTOCOL *Device = NULL;
CHAR16 *DevicePathText = NULL;
if (!FvbCheckRkBootDeviceSupported (Handle, BootDevice)) {
return;
}
Status = gBS->HandleProtocol (Handle, &gEfiBlockIoProtocolGuid, (VOID **)&BlkIo);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
return;
}
Device = DuplicateDevicePath (DevicePathFromHandle (Handle));
if (Device == NULL) {
ASSERT (FALSE);
return;
}
DevicePathText = ConvertDevicePathToText (Device, FALSE, FALSE);
if (!BlkIo->Media->MediaPresent) {
DEBUG ((DEBUG_ERROR, "%a: [%s] Media not present!\n", __FUNCTION__, DevicePathText));
goto Exit;
}
if (BlkIo->Media->ReadOnly) {
DEBUG ((DEBUG_ERROR, "%a: [%s] Media is read-only!\n", __FUNCTION__, DevicePathText));
goto Exit;
}
Status = gBS->ConnectController (Handle, NULL, NULL, FALSE);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: [%s] ConnectController failed. Status=%r\n", __FUNCTION__, DevicePathText, Status));
goto Exit;
}
if (!FvbCheckBootDiskDeviceHasFirmware (Handle, BlkIo->Media->MediaId, DevicePathText)) {
DEBUG ((DEBUG_INFO, "%a: [%s] No compatible firmware found. Skipping.\n", __FUNCTION__, DevicePathText));
goto Exit;
}
Status = FvbDiskDumpNvData (Device, BlkIo->Media->MediaId);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: [%s] Couldn't update NV data!\n", __FUNCTION__, DevicePathText));
ASSERT_EFI_ERROR (Status);
goto Exit;
}
DEBUG ((DEBUG_INFO, "%a: [%s] Found boot disk for NV storage!\n", __FUNCTION__, DevicePathText));
mFvbDevice->DiskDevice = Device;
mFvbDevice->DiskMediaId = BlkIo->Media->MediaId;
Exit:
if ((Device != NULL) && (mFvbDevice->DiskDevice != Device)) {
FreePool (Device);
}
if (DevicePathText != NULL) {
FreePool (DevicePathText);
}
}
STATIC
VOID
FvbFindBootDiskDevice (
VOID
)
{
EFI_STATUS Status;
EFI_HANDLE *Handles = NULL;
UINTN NoHandles;
UINTN DevIndex;
UINTN HandleIndex;
EFI_HANDLE Handle;
FVB_RK_BOOT_DEVICE *RkBootDevice;
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiBlockIoProtocolGuid,
NULL,
&NoHandles,
&Handles
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,"%a: Failed to locate block devices. Status=%r\n", __FUNCTION__, Status));
goto Fail;
}
ASSERT (NoHandles > 0);
for (DevIndex = 0; DevIndex < ARRAY_SIZE (mFvbSecondaryRkBootDevices); DevIndex++) {
RkBootDevice = &mFvbSecondaryRkBootDevices[DevIndex];
for (HandleIndex = 0; HandleIndex < NoHandles; HandleIndex++) {
Handle = Handles[HandleIndex];
FvbProcessBootDiskDeviceHandle (Handle, RkBootDevice);
if (mFvbDevice->DiskDevice != NULL) {
if ((mBootDeviceType != RkAtagBootDevTypeUnknown) &&
(mBootDeviceType != RkBootDevice->AtagBootDevType))
{
DEBUG ((DEBUG_WARN, "%a: WARNING: Found boot device type (0x%x) does not match SPL (0x%x)!\n",
__FUNCTION__, RkBootDevice->AtagBootDevType, mBootDeviceType));
DEBUG ((DEBUG_WARN, "%a: WARNING: Variable store might be using the wrong device!\n", __FUNCTION__));
DEBUG ((DEBUG_WARN, "%a: WARNING: Consider erasing any firmware present on other devices (SPI/EMMC/SD)!\n",
__FUNCTION__));
}
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gRockchipFirmwareBootDeviceProtocolGuid,
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
goto Done;
}
}
}
Fail:
DEBUG ((DEBUG_WARN, "%a: WARNING: Boot disk device not found!\n", __FUNCTION__));
DEBUG ((DEBUG_WARN, "%a: WARNING: Variable store changes will NOT persist!\n", __FUNCTION__));
Done:
if (Handles != NULL) {
gBS->FreePool (Handles);
}
}
STATIC
VOID
EFIAPI
NotifyEndOfDxeEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
FvbFindBootDiskDevice ();
}
STATIC
VOID
FvbInstallDiskNvDumpEventHandlers (
VOID
)
{
EFI_STATUS Status;
EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify;
EFI_EVENT ReadyToBootEvent;
Status = gBS->LocateProtocol (
&gEfiResetNotificationProtocolGuid,
NULL,
(VOID **)&ResetNotify
);
ASSERT_EFI_ERROR (Status);
if (!EFI_ERROR (Status)) {
Status = ResetNotify->RegisterResetNotify (
ResetNotify,
FvbDiskNvDumpResetHandler
);
ASSERT_EFI_ERROR (Status);
}
Status = gBS->CreateEventEx (EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
FvbReadyToBootEventHandler,
NULL,
&gEfiEventReadyToBootGuid,
&ReadyToBootEvent);
ASSERT_EFI_ERROR (Status);
}
STATIC
VOID
FvbInstallDiskNotifyHandler (
VOID
)
{
EFI_STATUS Status;
EFI_EVENT Event;
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL, // Type
TPL_CALLBACK, // NotifyTpl
NotifyEndOfDxeEvent, // NotifyFunction
NULL, // NotifyContext
&gEfiEndOfDxeEventGroupGuid, // EventGroup
&Event // Event
);
ASSERT_EFI_ERROR (Status);
}
EFI_STATUS
EFIAPI
RkFvbEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status = 0;
RKATAG_BOOTDEV *BootDevice;
BootDevice = RkAtagsGetBootDev ();
if (BootDevice != NULL) {
mBootDeviceType = BootDevice->DevType;
DEBUG ((DEBUG_INFO, "%a: BootDevice->DevType = 0x%x\n", __FUNCTION__, mBootDeviceType));
} else {
DEBUG ((DEBUG_ERROR, "%a: Couldn't identify boot device.\n", __FUNCTION__));
mBootDeviceType = RkAtagBootDevTypeUnknown;
}
//
// Create FVB flash device
//
mFvbDevice = AllocateRuntimeCopyPool (sizeof (mRkFvbFlashInstanceTemplate),
&mRkFvbFlashInstanceTemplate);
if (mFvbDevice == NULL) {
DEBUG ((DEBUG_ERROR, "%a: Cannot allocate memory\n", __FUNCTION__));
return EFI_OUT_OF_RESOURCES;
}
//
// Detect and configure flash device
//
Status = FvbConfigureFlashInstance (mFvbDevice);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: Fail to configure Fvb device\n", __FUNCTION__));
goto ErrorConfigureFlash;
}
//
// The driver implementing the variable read service can now be dispatched;
// the varstore headers are in place.
//
Status = gBS->InstallProtocolInterface (&gImageHandle,
&gEdkiiNvVarStoreFormattedGuid,
EFI_NATIVE_INTERFACE,
NULL);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,
"%a: Failed to install gEdkiiNvVarStoreFormattedGuid\n",
__FUNCTION__));
goto ErrorInstallNvVarStoreFormatted;
}
//
// Register for the virtual address change event
//
Status = gBS->CreateEventEx (EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
FvbVirtualNotifyEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&mFvbVirtualAddrChangeEvent);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: Failed to register VA change event\n", __FUNCTION__));
goto ErrorSetMemAttr;
}
//
// If SPI flash isn't available (or preferred), attempt to identify
// and set up persistent NV storage on the boot device.
//
if (!mFvbDevice->IsSpiFlashAvailable) {
FvbInstallDiskNotifyHandler ();
FvbInstallDiskNvDumpEventHandlers ();
}
return Status;
ErrorSetMemAttr:
gBS->UninstallProtocolInterface (gImageHandle,
&gEdkiiNvVarStoreFormattedGuid,
NULL);
ErrorInstallNvVarStoreFormatted:
gBS->UninstallMultipleProtocolInterfaces (&mFvbDevice->Handle,
&gEfiDevicePathProtocolGuid,
&gEfiFirmwareVolumeBlockProtocolGuid,
NULL);
ErrorConfigureFlash:
FreePool (mFvbDevice);
return Status;
}