mirror of
https://github.com/edk2-porting/edk2-rk3588.git
synced 2025-12-17 11:04:41 +08:00
The hardware boot order on all platforms is: FSPI->EMMC->SD->USB. U-Boot SPL (our chainloader), however, is told by its DTB to boot in this order: SD->EMMC->FSPI. It then populates `RkAtagTypeBootDev` with the device it decided to boot from. We use this information to determine the drive we belong to, in order to write the variable store there. While this behavior is useful for testing, it should generally be avoided because it bypasses the SPL version we intended to ship with UEFI, which could lead to all sorts of issues. One such issue is that some SPL builds (namely Orange Pi's) flashed to SPI will happily boot from SD card while setting the ATAG to EMMC instead. Obviously, this leads UEFI to use the wrong device (or none at all if EMMC is missing) for writing variables. Since SPL only reads the variable store into memory from the actual boot device (SD card), settings will not persist. To address this, we'll no longer rely on that ATAG unless it indicates FSPI boot, in which case it would most likely be correct due to FSPI having priority in hardware - well, assuming there no further broken SPLs in the wild that might set it to FSPI while booting from SD :P. Instead, we'll look through the SD->EMMC devices (same order as SPL) to find a FIT image matching our own, indicating that's likely the boot device. Signed-off-by: Mario Bălănică <mariobalanica02@gmail.com>
1272 lines
36 KiB
C
1272 lines
36 KiB
C
/** @file
|
|
Implementation for PlatformBootManagerLib library class interfaces.
|
|
|
|
Copyright (c) 2023-2024, Mario Bălănică <mariobalanica02@gmail.com>
|
|
Copyright (C) 2015-2016, Red Hat, Inc.
|
|
Copyright (c) 2014 - 2021, ARM Ltd. All rights reserved.<BR>
|
|
Copyright (c) 2004 - 2018, Intel Corporation. All rights reserved.<BR>
|
|
Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
|
|
Copyright (c) 2021, Semihalf All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include <IndustryStandard/Pci22.h>
|
|
#include <Library/BootLogoLib.h>
|
|
#include <Library/CapsuleLib.h>
|
|
#include <Library/DevicePathLib.h>
|
|
#include <Library/HobLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/UefiBootManagerLib.h>
|
|
#include <Library/UefiLib.h>
|
|
#include <Library/UefiRuntimeServicesTableLib.h>
|
|
#include <Protocol/BootManagerPolicy.h>
|
|
#include <Protocol/DevicePath.h>
|
|
#include <Protocol/EsrtManagement.h>
|
|
#include <Protocol/GraphicsOutput.h>
|
|
#include <Protocol/LoadedImage.h>
|
|
#include <Protocol/NonDiscoverableDevice.h>
|
|
#include <Protocol/PciIo.h>
|
|
#include <Protocol/PciRootBridgeIo.h>
|
|
#include <Protocol/PlatformBootManager.h>
|
|
#include <Guid/BootDiscoveryPolicy.h>
|
|
#include <Guid/EventGroup.h>
|
|
#include <Guid/NonDiscoverableDevice.h>
|
|
#include <Guid/TtyTerm.h>
|
|
#include <Guid/SerialPortLibVendor.h>
|
|
#include <Protocol/FirmwareVolume2.h>
|
|
|
|
#include "PlatformBm.h"
|
|
|
|
#define BOOT_PROMPT L"Setup (ESC/F2) Shell (F1) Reset to MaskROM (F4) Continue (Enter)"
|
|
|
|
#define DP_NODE_LEN(Type) { (UINT8)sizeof (Type), (UINT8)(sizeof (Type) >> 8) }
|
|
|
|
#pragma pack (1)
|
|
typedef struct {
|
|
VENDOR_DEVICE_PATH SerialDxe;
|
|
UART_DEVICE_PATH Uart;
|
|
VENDOR_DEFINED_DEVICE_PATH TermType;
|
|
EFI_DEVICE_PATH_PROTOCOL End;
|
|
} PLATFORM_SERIAL_CONSOLE;
|
|
#pragma pack ()
|
|
|
|
STATIC PLATFORM_SERIAL_CONSOLE mSerialConsole = {
|
|
//
|
|
// VENDOR_DEVICE_PATH SerialDxe
|
|
//
|
|
{
|
|
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, DP_NODE_LEN (VENDOR_DEVICE_PATH) },
|
|
EDKII_SERIAL_PORT_LIB_VENDOR_GUID
|
|
},
|
|
|
|
//
|
|
// UART_DEVICE_PATH Uart
|
|
//
|
|
{
|
|
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, DP_NODE_LEN (UART_DEVICE_PATH) },
|
|
0, // Reserved
|
|
0, // BaudRate
|
|
0, // DataBits
|
|
0, // Parity
|
|
0, // StopBits
|
|
},
|
|
|
|
//
|
|
// VENDOR_DEFINED_DEVICE_PATH TermType
|
|
//
|
|
{
|
|
{
|
|
MESSAGING_DEVICE_PATH, MSG_VENDOR_DP,
|
|
DP_NODE_LEN (VENDOR_DEFINED_DEVICE_PATH)
|
|
}
|
|
//
|
|
// Guid to be filled in dynamically
|
|
//
|
|
},
|
|
|
|
//
|
|
// EFI_DEVICE_PATH_PROTOCOL End
|
|
//
|
|
{
|
|
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
|
|
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
|
|
}
|
|
};
|
|
|
|
#pragma pack (1)
|
|
typedef struct {
|
|
USB_CLASS_DEVICE_PATH Keyboard;
|
|
EFI_DEVICE_PATH_PROTOCOL End;
|
|
} PLATFORM_USB_KEYBOARD;
|
|
#pragma pack ()
|
|
|
|
STATIC PLATFORM_USB_KEYBOARD mUsbKeyboard = {
|
|
//
|
|
// USB_CLASS_DEVICE_PATH Keyboard
|
|
//
|
|
{
|
|
{
|
|
MESSAGING_DEVICE_PATH, MSG_USB_CLASS_DP,
|
|
DP_NODE_LEN (USB_CLASS_DEVICE_PATH)
|
|
},
|
|
0xFFFF, // VendorId: any
|
|
0xFFFF, // ProductId: any
|
|
3, // DeviceClass: HID
|
|
1, // DeviceSubClass: boot
|
|
1 // DeviceProtocol: keyboard
|
|
},
|
|
|
|
//
|
|
// EFI_DEVICE_PATH_PROTOCOL End
|
|
//
|
|
{
|
|
END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE,
|
|
DP_NODE_LEN (EFI_DEVICE_PATH_PROTOCOL)
|
|
}
|
|
};
|
|
|
|
/**
|
|
Check if the handle satisfies a particular condition.
|
|
|
|
@param[in] Handle The handle to check.
|
|
@param[in] ReportText A caller-allocated string passed in for reporting
|
|
purposes. It must never be NULL.
|
|
|
|
@retval TRUE The condition is satisfied.
|
|
@retval FALSE Otherwise. This includes the case when the condition could not
|
|
be fully evaluated due to an error.
|
|
**/
|
|
typedef
|
|
BOOLEAN
|
|
(EFIAPI *FILTER_FUNCTION)(
|
|
IN EFI_HANDLE Handle,
|
|
IN CONST CHAR16 *ReportText
|
|
);
|
|
|
|
/**
|
|
Process a handle.
|
|
|
|
@param[in] Handle The handle to process.
|
|
@param[in] ReportText A caller-allocated string passed in for reporting
|
|
purposes. It must never be NULL.
|
|
**/
|
|
typedef
|
|
VOID
|
|
(EFIAPI *CALLBACK_FUNCTION)(
|
|
IN EFI_HANDLE Handle,
|
|
IN CONST CHAR16 *ReportText
|
|
);
|
|
|
|
/**
|
|
Locate all handles that carry the specified protocol, filter them with a
|
|
callback function, and pass each handle that passes the filter to another
|
|
callback.
|
|
|
|
@param[in] ProtocolGuid The protocol to look for.
|
|
|
|
@param[in] Filter The filter function to pass each handle to. If this
|
|
parameter is NULL, then all handles are processed.
|
|
|
|
@param[in] Process The callback function to pass each handle to that
|
|
clears the filter.
|
|
**/
|
|
STATIC
|
|
VOID
|
|
FilterAndProcess (
|
|
IN EFI_GUID *ProtocolGuid,
|
|
IN FILTER_FUNCTION Filter OPTIONAL,
|
|
IN CALLBACK_FUNCTION Process
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE *Handles;
|
|
UINTN NoHandles;
|
|
UINTN Idx;
|
|
|
|
Status = gBS->LocateHandleBuffer (
|
|
ByProtocol,
|
|
ProtocolGuid,
|
|
NULL /* SearchKey */,
|
|
&NoHandles,
|
|
&Handles
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// This is not an error, just an informative condition.
|
|
//
|
|
DEBUG ((
|
|
DEBUG_VERBOSE,
|
|
"%a: %g: %r\n",
|
|
__FUNCTION__,
|
|
ProtocolGuid,
|
|
Status
|
|
));
|
|
return;
|
|
}
|
|
|
|
ASSERT (NoHandles > 0);
|
|
for (Idx = 0; Idx < NoHandles; ++Idx) {
|
|
CHAR16 *DevicePathText;
|
|
STATIC CHAR16 Fallback[] = L"<device path unavailable>";
|
|
|
|
//
|
|
// The ConvertDevicePathToText() function handles NULL input transparently.
|
|
//
|
|
DevicePathText = ConvertDevicePathToText (
|
|
DevicePathFromHandle (Handles[Idx]),
|
|
FALSE, // DisplayOnly
|
|
FALSE // AllowShortcuts
|
|
);
|
|
if (DevicePathText == NULL) {
|
|
DevicePathText = Fallback;
|
|
}
|
|
|
|
if ((Filter == NULL) || Filter (Handles[Idx], DevicePathText)) {
|
|
Process (Handles[Idx], DevicePathText);
|
|
}
|
|
|
|
if (DevicePathText != Fallback) {
|
|
FreePool (DevicePathText);
|
|
}
|
|
}
|
|
|
|
gBS->FreePool (Handles);
|
|
}
|
|
|
|
/**
|
|
This FILTER_FUNCTION checks if a handle corresponds to a PCI display device.
|
|
**/
|
|
STATIC
|
|
BOOLEAN
|
|
EFIAPI
|
|
IsPciDisplay (
|
|
IN EFI_HANDLE Handle,
|
|
IN CONST CHAR16 *ReportText
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
PCI_TYPE00 Pci;
|
|
|
|
Status = gBS->HandleProtocol (
|
|
Handle,
|
|
&gEfiPciIoProtocolGuid,
|
|
(VOID **)&PciIo
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// This is not an error worth reporting.
|
|
//
|
|
return FALSE;
|
|
}
|
|
|
|
Status = PciIo->Pci.Read (
|
|
PciIo,
|
|
EfiPciIoWidthUint32,
|
|
0 /* Offset */,
|
|
sizeof Pci / sizeof (UINT32),
|
|
&Pci
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "%a: %s: %r\n", __FUNCTION__, ReportText, Status));
|
|
return FALSE;
|
|
}
|
|
|
|
return IS_PCI_DISPLAY (&Pci);
|
|
}
|
|
|
|
/**
|
|
This FILTER_FUNCTION checks if a handle corresponds to a non-discoverable
|
|
USB host controller.
|
|
**/
|
|
STATIC
|
|
BOOLEAN
|
|
EFIAPI
|
|
IsUsbHost (
|
|
IN EFI_HANDLE Handle,
|
|
IN CONST CHAR16 *ReportText
|
|
)
|
|
{
|
|
NON_DISCOVERABLE_DEVICE *Device;
|
|
EFI_STATUS Status;
|
|
|
|
Status = gBS->HandleProtocol (
|
|
Handle,
|
|
&gEdkiiNonDiscoverableDeviceProtocolGuid,
|
|
(VOID **)&Device
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (CompareGuid (Device->Type, &gEdkiiNonDiscoverableUhciDeviceGuid) ||
|
|
CompareGuid (Device->Type, &gEdkiiNonDiscoverableEhciDeviceGuid) ||
|
|
CompareGuid (Device->Type, &gEdkiiNonDiscoverableXhciDeviceGuid))
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
This CALLBACK_FUNCTION attempts to connect a handle non-recursively, asking
|
|
the matching driver to produce all first-level child handles.
|
|
**/
|
|
STATIC
|
|
VOID
|
|
EFIAPI
|
|
Connect (
|
|
IN EFI_HANDLE Handle,
|
|
IN CONST CHAR16 *ReportText
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
Status = gBS->ConnectController (
|
|
Handle, // ControllerHandle
|
|
NULL, // DriverImageHandle
|
|
NULL, // RemainingDevicePath -- produce all children
|
|
FALSE // Recursive
|
|
);
|
|
DEBUG ((
|
|
EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE,
|
|
"%a: %s: %r\n",
|
|
__FUNCTION__,
|
|
ReportText,
|
|
Status
|
|
));
|
|
}
|
|
|
|
/**
|
|
This CALLBACK_FUNCTION retrieves the EFI_DEVICE_PATH_PROTOCOL from the
|
|
handle, and adds it to ConOut and ErrOut.
|
|
**/
|
|
STATIC
|
|
VOID
|
|
EFIAPI
|
|
AddOutput (
|
|
IN EFI_HANDLE Handle,
|
|
IN CONST CHAR16 *ReportText
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
|
|
|
|
DevicePath = DevicePathFromHandle (Handle);
|
|
if (DevicePath == NULL) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: %s: handle %p: device path not found\n",
|
|
__FUNCTION__,
|
|
ReportText,
|
|
Handle
|
|
));
|
|
return;
|
|
}
|
|
|
|
Status = EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: %s: adding to ConOut: %r\n",
|
|
__FUNCTION__,
|
|
ReportText,
|
|
Status
|
|
));
|
|
return;
|
|
}
|
|
|
|
Status = EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: %s: adding to ErrOut: %r\n",
|
|
__FUNCTION__,
|
|
ReportText,
|
|
Status
|
|
));
|
|
return;
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_VERBOSE,
|
|
"%a: %s: added to ConOut and ErrOut\n",
|
|
__FUNCTION__,
|
|
ReportText
|
|
));
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
PlatformRegisterFvBootOption (
|
|
CONST EFI_GUID *FileGuid,
|
|
CHAR16 *Description,
|
|
UINT32 Attributes,
|
|
EFI_INPUT_KEY *Key
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
INTN OptionIndex;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION NewOption;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
|
|
UINTN BootOptionCount;
|
|
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode;
|
|
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
|
|
|
|
Status = gBS->HandleProtocol (
|
|
gImageHandle,
|
|
&gEfiLoadedImageProtocolGuid,
|
|
(VOID **)&LoadedImage
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid);
|
|
DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle);
|
|
ASSERT (DevicePath != NULL);
|
|
DevicePath = AppendDevicePathNode (
|
|
DevicePath,
|
|
(EFI_DEVICE_PATH_PROTOCOL *)&FileNode
|
|
);
|
|
ASSERT (DevicePath != NULL);
|
|
|
|
Status = EfiBootManagerInitializeLoadOption (
|
|
&NewOption,
|
|
LoadOptionNumberUnassigned,
|
|
LoadOptionTypeBoot,
|
|
Attributes,
|
|
Description,
|
|
DevicePath,
|
|
NULL,
|
|
0
|
|
);
|
|
ASSERT_EFI_ERROR (Status);
|
|
FreePool (DevicePath);
|
|
|
|
BootOptions = EfiBootManagerGetLoadOptions (
|
|
&BootOptionCount,
|
|
LoadOptionTypeBoot
|
|
);
|
|
|
|
OptionIndex = EfiBootManagerFindLoadOption (
|
|
&NewOption,
|
|
BootOptions,
|
|
BootOptionCount
|
|
);
|
|
|
|
if (OptionIndex == -1) {
|
|
Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN);
|
|
ASSERT_EFI_ERROR (Status);
|
|
Status = EfiBootManagerAddKeyOptionVariable (
|
|
NULL,
|
|
(UINT16)NewOption.OptionNumber,
|
|
0,
|
|
Key,
|
|
NULL
|
|
);
|
|
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
|
|
}
|
|
|
|
EfiBootManagerFreeLoadOption (&NewOption);
|
|
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
GetPlatformOptions (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION *CurrentBootOptions;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
|
|
EFI_INPUT_KEY *BootKeys;
|
|
PLATFORM_BOOT_MANAGER_PROTOCOL *PlatformBootManager;
|
|
UINTN CurrentBootOptionCount;
|
|
UINTN Index;
|
|
UINTN BootCount;
|
|
|
|
Status = gBS->LocateProtocol (
|
|
&gPlatformBootManagerProtocolGuid,
|
|
NULL,
|
|
(VOID **)&PlatformBootManager
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return;
|
|
}
|
|
|
|
Status = PlatformBootManager->GetPlatformBootOptionsAndKeys (
|
|
&BootCount,
|
|
&BootOptions,
|
|
&BootKeys
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Fetch the existent boot options. If there are none, CurrentBootCount
|
|
// will be zeroed.
|
|
//
|
|
CurrentBootOptions = EfiBootManagerGetLoadOptions (
|
|
&CurrentBootOptionCount,
|
|
LoadOptionTypeBoot
|
|
);
|
|
//
|
|
// Process the platform boot options.
|
|
//
|
|
for (Index = 0; Index < BootCount; Index++) {
|
|
INTN Match;
|
|
UINTN BootOptionNumber;
|
|
|
|
//
|
|
// If there are any preexistent boot options, and the subject platform boot
|
|
// option is already among them, then don't try to add it. Just get its
|
|
// assigned boot option number so we can associate a hotkey with it. Note
|
|
// that EfiBootManagerFindLoadOption() deals fine with (CurrentBootOptions
|
|
// == NULL) if (CurrentBootCount == 0).
|
|
//
|
|
Match = EfiBootManagerFindLoadOption (
|
|
&BootOptions[Index],
|
|
CurrentBootOptions,
|
|
CurrentBootOptionCount
|
|
);
|
|
if (Match >= 0) {
|
|
BootOptionNumber = CurrentBootOptions[Match].OptionNumber;
|
|
} else {
|
|
//
|
|
// Add the platform boot options as a new one, at the end of the boot
|
|
// order. Note that if the platform provided this boot option with an
|
|
// unassigned option number, then the below function call will assign a
|
|
// number.
|
|
//
|
|
Status = EfiBootManagerAddLoadOptionVariable (
|
|
&BootOptions[Index],
|
|
MAX_UINTN
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: failed to register \"%s\": %r\n",
|
|
__FUNCTION__,
|
|
BootOptions[Index].Description,
|
|
Status
|
|
));
|
|
continue;
|
|
}
|
|
|
|
BootOptionNumber = BootOptions[Index].OptionNumber;
|
|
}
|
|
|
|
//
|
|
// Register a hotkey with the boot option, if requested.
|
|
//
|
|
if (BootKeys[Index].UnicodeChar == L'\0') {
|
|
continue;
|
|
}
|
|
|
|
Status = EfiBootManagerAddKeyOptionVariable (
|
|
NULL,
|
|
BootOptionNumber,
|
|
0,
|
|
&BootKeys[Index],
|
|
NULL
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: failed to register hotkey for \"%s\": %r\n",
|
|
__FUNCTION__,
|
|
BootOptions[Index].Description,
|
|
Status
|
|
));
|
|
}
|
|
}
|
|
|
|
EfiBootManagerFreeLoadOptions (CurrentBootOptions, CurrentBootOptionCount);
|
|
EfiBootManagerFreeLoadOptions (BootOptions, BootCount);
|
|
FreePool (BootKeys);
|
|
}
|
|
|
|
/**
|
|
Remove all MemoryMapped(...)/FvFile(...) and Fv(...)/FvFile(...) boot options
|
|
whose device paths do not resolve exactly to an FvFile in the system.
|
|
|
|
This removes any boot options that point to binaries built into the firmware
|
|
and have become stale due to any of the following:
|
|
- DXEFV's base address or size changed (historical),
|
|
- DXEFV's FvNameGuid changed,
|
|
- the FILE_GUID of the pointed-to binary changed,
|
|
- the referenced binary is no longer built into the firmware.
|
|
|
|
EfiBootManagerFindLoadOption() used in PlatformRegisterFvBootOption() only
|
|
avoids exact duplicates.
|
|
**/
|
|
VOID
|
|
RemoveStaleFvFileOptions (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
|
|
UINTN BootOptionCount;
|
|
UINTN Index;
|
|
|
|
BootOptions = EfiBootManagerGetLoadOptions (&BootOptionCount,
|
|
LoadOptionTypeBoot);
|
|
|
|
for (Index = 0; Index < BootOptionCount; ++Index) {
|
|
EFI_DEVICE_PATH_PROTOCOL *Node1, *Node2, *SearchNode;
|
|
EFI_STATUS Status;
|
|
EFI_HANDLE FvHandle;
|
|
|
|
//
|
|
// If the device path starts with neither MemoryMapped(...) nor Fv(...),
|
|
// then keep the boot option.
|
|
//
|
|
Node1 = BootOptions[Index].FilePath;
|
|
if (!(DevicePathType (Node1) == HARDWARE_DEVICE_PATH &&
|
|
DevicePathSubType (Node1) == HW_MEMMAP_DP) &&
|
|
!(DevicePathType (Node1) == MEDIA_DEVICE_PATH &&
|
|
DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP)) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// If the second device path node is not FvFile(...), then keep the boot
|
|
// option.
|
|
//
|
|
Node2 = NextDevicePathNode (Node1);
|
|
if (DevicePathType (Node2) != MEDIA_DEVICE_PATH ||
|
|
DevicePathSubType (Node2) != MEDIA_PIWG_FW_FILE_DP) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Locate the Firmware Volume2 protocol instance that is denoted by the
|
|
// boot option. If this lookup fails (i.e., the boot option references a
|
|
// firmware volume that doesn't exist), then we'll proceed to delete the
|
|
// boot option.
|
|
//
|
|
SearchNode = Node1;
|
|
Status = gBS->LocateDevicePath (&gEfiFirmwareVolume2ProtocolGuid,
|
|
&SearchNode, &FvHandle);
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// The firmware volume was found; now let's see if it contains the FvFile
|
|
// identified by GUID.
|
|
//
|
|
EFI_FIRMWARE_VOLUME2_PROTOCOL *FvProtocol;
|
|
MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FvFileNode;
|
|
UINTN BufferSize;
|
|
EFI_FV_FILETYPE FoundType;
|
|
EFI_FV_FILE_ATTRIBUTES FileAttributes;
|
|
UINT32 AuthenticationStatus;
|
|
|
|
Status = gBS->HandleProtocol (FvHandle, &gEfiFirmwareVolume2ProtocolGuid,
|
|
(VOID **)&FvProtocol);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
FvFileNode = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)Node2;
|
|
//
|
|
// Buffer==NULL means we request metadata only: BufferSize, FoundType,
|
|
// FileAttributes.
|
|
//
|
|
Status = FvProtocol->ReadFile (
|
|
FvProtocol,
|
|
&FvFileNode->FvFileName, // NameGuid
|
|
NULL, // Buffer
|
|
&BufferSize,
|
|
&FoundType,
|
|
&FileAttributes,
|
|
&AuthenticationStatus
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// The FvFile was found. Keep the boot option.
|
|
//
|
|
continue;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Delete the boot option.
|
|
//
|
|
Status = EfiBootManagerDeleteLoadOptionVariable (
|
|
BootOptions[Index].OptionNumber, LoadOptionTypeBoot);
|
|
DEBUG_CODE (
|
|
CHAR16 *DevicePathString;
|
|
|
|
DevicePathString = ConvertDevicePathToText(BootOptions[Index].FilePath,
|
|
FALSE, FALSE);
|
|
DEBUG ((
|
|
EFI_ERROR (Status) ? DEBUG_WARN : DEBUG_VERBOSE,
|
|
"%a: removing stale Boot#%04x %s: %r\n",
|
|
__FUNCTION__,
|
|
(UINT32)BootOptions[Index].OptionNumber,
|
|
DevicePathString == NULL ? L"<unavailable>" : DevicePathString,
|
|
Status
|
|
));
|
|
if (DevicePathString != NULL) {
|
|
FreePool (DevicePathString);
|
|
}
|
|
);
|
|
}
|
|
|
|
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
PlatformRegisterOptionsAndKeys (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_INPUT_KEY Enter;
|
|
EFI_INPUT_KEY F2;
|
|
EFI_INPUT_KEY Esc;
|
|
EFI_INPUT_KEY F1;
|
|
EFI_INPUT_KEY F4;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION BootOption;
|
|
|
|
GetPlatformOptions ();
|
|
|
|
//
|
|
// Register ENTER as CONTINUE key
|
|
//
|
|
Enter.ScanCode = SCAN_NULL;
|
|
Enter.UnicodeChar = CHAR_CARRIAGE_RETURN;
|
|
Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
//
|
|
// Map F2 and ESC to Boot Manager Menu
|
|
//
|
|
F2.ScanCode = SCAN_F2;
|
|
F2.UnicodeChar = CHAR_NULL;
|
|
Esc.ScanCode = SCAN_ESC;
|
|
Esc.UnicodeChar = CHAR_NULL;
|
|
Status = EfiBootManagerGetBootManagerMenu (&BootOption);
|
|
ASSERT_EFI_ERROR (Status);
|
|
Status = EfiBootManagerAddKeyOptionVariable (
|
|
NULL,
|
|
(UINT16)BootOption.OptionNumber,
|
|
0,
|
|
&F2,
|
|
NULL
|
|
);
|
|
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
|
|
Status = EfiBootManagerAddKeyOptionVariable (
|
|
NULL,
|
|
(UINT16)BootOption.OptionNumber,
|
|
0,
|
|
&Esc,
|
|
NULL
|
|
);
|
|
ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED);
|
|
|
|
//
|
|
// Register UEFI Shell
|
|
//
|
|
F1.ScanCode = SCAN_F1;
|
|
F1.UnicodeChar = CHAR_NULL;
|
|
PlatformRegisterFvBootOption (&gUefiShellFileGuid, L"UEFI Shell", 0, &F1);
|
|
|
|
//
|
|
// Register Maskrom Reset
|
|
//
|
|
F4.ScanCode = SCAN_F4;
|
|
F4.UnicodeChar = CHAR_NULL;
|
|
PlatformRegisterFvBootOption (&gRockchipMaskromResetFileGuid, L"Reset to MaskROM", 0, &F4);
|
|
|
|
RemoveStaleFvFileOptions ();
|
|
}
|
|
|
|
//
|
|
// BDS Platform Functions
|
|
//
|
|
|
|
/**
|
|
Do the platform init, can be customized by OEM/IBV
|
|
Possible things that can be done in PlatformBootManagerBeforeConsole:
|
|
> Update console variable: 1. include hot-plug devices;
|
|
> 2. Clear ConIn and add SOL for AMT
|
|
> Register new Driver#### or Boot####
|
|
> Register new Key####: e.g.: F12
|
|
> Signal ReadyToLock event
|
|
> Authentication action: 1. connect Auth devices;
|
|
> 2. Identify auto logon user.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
PlatformBootManagerBeforeConsole (
|
|
VOID
|
|
)
|
|
{
|
|
//
|
|
// Signal EndOfDxe PI Event
|
|
//
|
|
EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid);
|
|
|
|
//
|
|
// Dispatch deferred images after EndOfDxe event.
|
|
//
|
|
EfiBootManagerDispatchDeferredImages ();
|
|
|
|
//
|
|
// Add the hardcoded short-form USB keyboard device path to ConIn.
|
|
// This must be done prior to connecting any USB bus controllers, because
|
|
// when a keyboard gets installed, ConPlatformDxe will immediately check
|
|
// that its device path exists in the ConIn variable before enabling input
|
|
// from it. Since this variable is not initially populated at first boot,
|
|
// we would otherwise end up with no keyboard input during BDS countdown.
|
|
//
|
|
EfiBootManagerUpdateConsoleVariable (
|
|
ConIn,
|
|
(EFI_DEVICE_PATH_PROTOCOL *)&mUsbKeyboard,
|
|
NULL
|
|
);
|
|
|
|
//
|
|
// Locate the PCI root bridges and make the PCI bus driver connect each,
|
|
// non-recursively. This will produce a number of child handles with PciIo on
|
|
// them.
|
|
//
|
|
FilterAndProcess (&gEfiPciRootBridgeIoProtocolGuid, NULL, Connect);
|
|
|
|
//
|
|
// Find all display class PCI devices (using the handles from the previous
|
|
// step), and connect them non-recursively. This should produce a number of
|
|
// child handles with GOPs on them.
|
|
//
|
|
FilterAndProcess (&gEfiPciIoProtocolGuid, IsPciDisplay, Connect);
|
|
|
|
//
|
|
// Now add the device path of all handles with GOP on them to ConOut and
|
|
// ErrOut.
|
|
//
|
|
FilterAndProcess (&gEfiGraphicsOutputProtocolGuid, NULL, AddOutput);
|
|
|
|
//
|
|
// The core BDS code connects short-form USB device paths by explicitly
|
|
// looking for handles with PCI I/O installed, and checking the PCI class
|
|
// code whether it matches the one for a USB host controller. This means
|
|
// non-discoverable USB host controllers need to have the non-discoverable
|
|
// PCI driver attached first.
|
|
//
|
|
FilterAndProcess (&gEdkiiNonDiscoverableDeviceProtocolGuid, IsUsbHost, Connect);
|
|
|
|
//
|
|
// Connect USB OHCI controller(s)
|
|
//
|
|
FilterAndProcess (&gOhciDeviceProtocolGuid, NULL, Connect);
|
|
|
|
//
|
|
// Add the hardcoded serial console device path to ConIn, ConOut, ErrOut.
|
|
//
|
|
STATIC_ASSERT (
|
|
FixedPcdGet8 (PcdDefaultTerminalType) == 4,
|
|
"PcdDefaultTerminalType must be TTYTERM"
|
|
);
|
|
STATIC_ASSERT (
|
|
FixedPcdGet8 (PcdUartDefaultParity) != 0,
|
|
"PcdUartDefaultParity must be set to an actual value, not 'default'"
|
|
);
|
|
STATIC_ASSERT (
|
|
FixedPcdGet8 (PcdUartDefaultStopBits) != 0,
|
|
"PcdUartDefaultStopBits must be set to an actual value, not 'default'"
|
|
);
|
|
|
|
mSerialConsole.Uart.BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
|
|
mSerialConsole.Uart.DataBits = PcdGet8 (PcdUartDefaultDataBits);
|
|
mSerialConsole.Uart.Parity = PcdGet8 (PcdUartDefaultParity);
|
|
mSerialConsole.Uart.StopBits = PcdGet8 (PcdUartDefaultStopBits);
|
|
|
|
CopyGuid (&mSerialConsole.TermType.Guid, &gEfiTtyTermGuid);
|
|
|
|
EfiBootManagerUpdateConsoleVariable (
|
|
ConIn,
|
|
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole,
|
|
NULL
|
|
);
|
|
EfiBootManagerUpdateConsoleVariable (
|
|
ConOut,
|
|
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole,
|
|
NULL
|
|
);
|
|
EfiBootManagerUpdateConsoleVariable (
|
|
ErrOut,
|
|
(EFI_DEVICE_PATH_PROTOCOL *)&mSerialConsole,
|
|
NULL
|
|
);
|
|
|
|
//
|
|
// Register platform-specific boot options and keyboard shortcuts.
|
|
//
|
|
PlatformRegisterOptionsAndKeys ();
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
HandleCapsules (
|
|
VOID
|
|
)
|
|
{
|
|
ESRT_MANAGEMENT_PROTOCOL *EsrtManagement;
|
|
EFI_PEI_HOB_POINTERS HobPointer;
|
|
EFI_CAPSULE_HEADER *CapsuleHeader;
|
|
BOOLEAN NeedReset;
|
|
EFI_STATUS Status;
|
|
|
|
DEBUG ((DEBUG_INFO, "%a: processing capsules ...\n", __FUNCTION__));
|
|
|
|
Status = gBS->LocateProtocol (
|
|
&gEsrtManagementProtocolGuid,
|
|
NULL,
|
|
(VOID **)&EsrtManagement
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
EsrtManagement->SyncEsrtFmp ();
|
|
}
|
|
|
|
//
|
|
// Find all capsule images from hob
|
|
//
|
|
HobPointer.Raw = GetHobList ();
|
|
NeedReset = FALSE;
|
|
while ((HobPointer.Raw = GetNextHob (
|
|
EFI_HOB_TYPE_UEFI_CAPSULE,
|
|
HobPointer.Raw
|
|
)) != NULL)
|
|
{
|
|
CapsuleHeader = (VOID *)(UINTN)HobPointer.Capsule->BaseAddress;
|
|
|
|
Status = ProcessCapsuleImage (CapsuleHeader);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: failed to process capsule %p - %r\n",
|
|
__FUNCTION__,
|
|
CapsuleHeader,
|
|
Status
|
|
));
|
|
return;
|
|
}
|
|
|
|
NeedReset = TRUE;
|
|
HobPointer.Raw = GET_NEXT_HOB (HobPointer);
|
|
}
|
|
|
|
if (NeedReset) {
|
|
DEBUG ((
|
|
DEBUG_WARN,
|
|
"%a: capsule update successful, resetting ...\n",
|
|
__FUNCTION__
|
|
));
|
|
|
|
gRT->ResetSystem (EfiResetCold, EFI_SUCCESS, 0, NULL);
|
|
CpuDeadLoop ();
|
|
}
|
|
}
|
|
|
|
#define VERSION_STRING_PREFIX L"Tianocore/EDK2 firmware version "
|
|
|
|
/**
|
|
This functions checks the value of BootDiscoverPolicy variable and
|
|
connect devices of class specified by that variable. Then it refreshes
|
|
Boot order for newly discovered boot device.
|
|
|
|
@retval EFI_SUCCESS Devices connected successfully or connection
|
|
not required.
|
|
@retval others Return values from GetVariable(), LocateProtocol()
|
|
and ConnectDeviceClass().
|
|
**/
|
|
STATIC
|
|
EFI_STATUS
|
|
BootDiscoveryPolicyHandler (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 DiscoveryPolicy;
|
|
UINT32 DiscoveryPolicyOld;
|
|
UINTN Size;
|
|
EFI_BOOT_MANAGER_POLICY_PROTOCOL *BMPolicy;
|
|
EFI_GUID *Class;
|
|
|
|
Size = sizeof (DiscoveryPolicy);
|
|
Status = gRT->GetVariable (
|
|
BOOT_DISCOVERY_POLICY_VAR,
|
|
&gBootDiscoveryPolicyMgrFormsetGuid,
|
|
NULL,
|
|
&Size,
|
|
&DiscoveryPolicy
|
|
);
|
|
if (Status == EFI_NOT_FOUND) {
|
|
DiscoveryPolicy = PcdGet32 (PcdBootDiscoveryPolicy);
|
|
Status = PcdSet32S (PcdBootDiscoveryPolicy, DiscoveryPolicy);
|
|
if (Status == EFI_NOT_FOUND) {
|
|
return EFI_SUCCESS;
|
|
} else if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
} else if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
if (DiscoveryPolicy == BDP_CONNECT_MINIMAL) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
switch (DiscoveryPolicy) {
|
|
case BDP_CONNECT_NET:
|
|
Class = &gEfiBootManagerPolicyNetworkGuid;
|
|
break;
|
|
case BDP_CONNECT_ALL:
|
|
Class = &gEfiBootManagerPolicyConnectAllGuid;
|
|
break;
|
|
default:
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a - Unexpected DiscoveryPolicy (0x%x). Run Minimal Discovery Policy\n",
|
|
__FUNCTION__,
|
|
DiscoveryPolicy
|
|
));
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
Status = gBS->LocateProtocol (
|
|
&gEfiBootManagerPolicyProtocolGuid,
|
|
NULL,
|
|
(VOID **)&BMPolicy
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a - Failed to locate gEfiBootManagerPolicyProtocolGuid."
|
|
"Driver connect will be skipped.\n",
|
|
__FUNCTION__
|
|
));
|
|
return Status;
|
|
}
|
|
|
|
Status = BMPolicy->ConnectDeviceClass (BMPolicy, Class);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "%a - ConnectDeviceClass returns - %r\n", __FUNCTION__, Status));
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Refresh Boot Options if Boot Discovery Policy has been changed
|
|
//
|
|
Size = sizeof (DiscoveryPolicyOld);
|
|
Status = gRT->GetVariable (
|
|
BOOT_DISCOVERY_POLICY_OLD_VAR,
|
|
&gBootDiscoveryPolicyMgrFormsetGuid,
|
|
NULL,
|
|
&Size,
|
|
&DiscoveryPolicyOld
|
|
);
|
|
if ((Status == EFI_NOT_FOUND) || (DiscoveryPolicyOld != DiscoveryPolicy)) {
|
|
EfiBootManagerRefreshAllBootOption ();
|
|
|
|
Status = gRT->SetVariable (
|
|
BOOT_DISCOVERY_POLICY_OLD_VAR,
|
|
&gBootDiscoveryPolicyMgrFormsetGuid,
|
|
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS,
|
|
sizeof (DiscoveryPolicyOld),
|
|
&DiscoveryPolicy
|
|
);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Do the platform specific action after the console is ready
|
|
Possible things that can be done in PlatformBootManagerAfterConsole:
|
|
> Console post action:
|
|
> Dynamically switch output mode from 100x31 to 80x25 for certain scenario
|
|
> Signal console ready platform customized event
|
|
> Run diagnostics like memory testing
|
|
> Connect certain devices
|
|
> Dispatch additional option roms
|
|
> Special boot: e.g.: USB boot, enter UI
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
PlatformBootManagerAfterConsole (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_GRAPHICS_OUTPUT_PROTOCOL *GraphicsOutput;
|
|
UINTN FirmwareVerLength;
|
|
UINTN PosX;
|
|
UINTN PosY;
|
|
|
|
EfiEventGroupSignal (&gRockchipEventPlatformBmAfterConsoleGuid);
|
|
|
|
FirmwareVerLength = StrLen (PcdGetPtr (PcdFirmwareVersionString));
|
|
|
|
//
|
|
// Show the splash screen.
|
|
//
|
|
Status = BootLogoEnableLogo ();
|
|
if (EFI_ERROR (Status)) {
|
|
if (FirmwareVerLength > 0) {
|
|
Print (
|
|
VERSION_STRING_PREFIX L"%s\n",
|
|
PcdGetPtr (PcdFirmwareVersionString)
|
|
);
|
|
}
|
|
Print (BOOT_PROMPT);
|
|
} else if (FirmwareVerLength > 0) {
|
|
Status = gBS->HandleProtocol (
|
|
gST->ConsoleOutHandle,
|
|
&gEfiGraphicsOutputProtocolGuid,
|
|
(VOID **)&GraphicsOutput
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
PosX = (GraphicsOutput->Mode->Info->HorizontalResolution -
|
|
(StrLen (VERSION_STRING_PREFIX) + FirmwareVerLength) *
|
|
EFI_GLYPH_WIDTH) / 2;
|
|
PosY = 0;
|
|
|
|
PrintXY (
|
|
PosX,
|
|
PosY,
|
|
NULL,
|
|
NULL,
|
|
VERSION_STRING_PREFIX L"%s",
|
|
PcdGetPtr (PcdFirmwareVersionString)
|
|
);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Connect device specified by BootDiscoverPolicy variable and
|
|
// refresh Boot order for newly discovered boot devices
|
|
//
|
|
BootDiscoveryPolicyHandler ();
|
|
|
|
//
|
|
// On ARM, there is currently no reason to use the phased capsule
|
|
// update approach where some capsules are dispatched before EndOfDxe
|
|
// and some are dispatched after. So just handle all capsules here,
|
|
// when the console is up and we can actually give the user some
|
|
// feedback about what is going on.
|
|
//
|
|
HandleCapsules ();
|
|
}
|
|
|
|
/**
|
|
This function is called each second during the boot manager waits the
|
|
timeout.
|
|
|
|
@param TimeoutRemain The remaining timeout.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
PlatformBootManagerWaitCallback (
|
|
UINT16 TimeoutRemain
|
|
)
|
|
{
|
|
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black;
|
|
EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White;
|
|
UINT16 Timeout;
|
|
EFI_STATUS Status;
|
|
|
|
Timeout = PcdGet16 (PcdPlatformBootTimeOut);
|
|
|
|
Black.Raw = 0x00000000;
|
|
White.Raw = 0x00FFFFFF;
|
|
|
|
Status = BootLogoUpdateProgress (
|
|
White.Pixel,
|
|
Black.Pixel,
|
|
BOOT_PROMPT,
|
|
White.Pixel,
|
|
(Timeout - TimeoutRemain) * 100 / Timeout,
|
|
0
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
Print (L".");
|
|
}
|
|
}
|
|
|
|
/**
|
|
The function is called when no boot option could be launched,
|
|
including platform recovery options and options pointing to applications
|
|
built into firmware volumes.
|
|
|
|
If this function returns, BDS attempts to enter an infinite loop.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
PlatformBootManagerUnableToBoot (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu;
|
|
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
|
|
UINTN OldBootOptionCount;
|
|
UINTN NewBootOptionCount;
|
|
|
|
//
|
|
// Record the total number of boot configured boot options
|
|
//
|
|
BootOptions = EfiBootManagerGetLoadOptions (
|
|
&OldBootOptionCount,
|
|
LoadOptionTypeBoot
|
|
);
|
|
EfiBootManagerFreeLoadOptions (BootOptions, OldBootOptionCount);
|
|
|
|
//
|
|
// Connect all devices, and regenerate all boot options
|
|
//
|
|
EfiBootManagerConnectAll ();
|
|
EfiBootManagerRefreshAllBootOption ();
|
|
|
|
//
|
|
// Record the updated number of boot configured boot options
|
|
//
|
|
BootOptions = EfiBootManagerGetLoadOptions (
|
|
&NewBootOptionCount,
|
|
LoadOptionTypeBoot
|
|
);
|
|
EfiBootManagerFreeLoadOptions (BootOptions, NewBootOptionCount);
|
|
|
|
//
|
|
// If the number of configured boot options has changed, reboot
|
|
// the system so the new boot options will be taken into account
|
|
// while executing the ordinary BDS bootflow sequence.
|
|
// *Unless* persistent varstore is being emulated, since we would
|
|
// then end up in an endless reboot loop.
|
|
//
|
|
if (!PcdGetBool (PcdEmuVariableNvModeEnable)) {
|
|
if (NewBootOptionCount != OldBootOptionCount) {
|
|
DEBUG ((
|
|
DEBUG_WARN,
|
|
"%a: rebooting after refreshing all boot options\n",
|
|
__FUNCTION__
|
|
));
|
|
gRT->ResetSystem (EfiResetCold, EFI_SUCCESS, 0, NULL);
|
|
}
|
|
}
|
|
|
|
Status = EfiBootManagerGetBootManagerMenu (&BootManagerMenu);
|
|
if (EFI_ERROR (Status)) {
|
|
return;
|
|
}
|
|
|
|
for ( ; ;) {
|
|
EfiBootManagerBoot (&BootManagerMenu);
|
|
}
|
|
}
|