compute-runtime/shared/source/execution_environment/execution_environment.cpp

438 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2018-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/built_ins/sip.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/direct_submission/direct_submission_controller.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/affinity_mask.h"
#include "shared/source/helpers/bindless_heaps_helper.h"
#include "shared/source/helpers/driver_model_type.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/string_helpers.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/os_agnostic_memory_manager.h"
#include "shared/source/memory_manager/unified_memory_reuse_cleaner.h"
#include "shared/source/os_interface/debug_env_reader.h"
#include "shared/source/os_interface/driver_info.h"
#include "shared/source/os_interface/os_environment.h"
#include "shared/source/os_interface/os_interface.h"
#include "shared/source/os_interface/product_helper.h"
#include "shared/source/utilities/wait_util.h"
namespace NEO {
ExecutionEnvironment::ExecutionEnvironment() {
WaitUtils::init();
this->configureNeoEnvironment();
}
void ExecutionEnvironment::releaseRootDeviceEnvironmentResources(RootDeviceEnvironment *rootDeviceEnvironment) {
if (rootDeviceEnvironment == nullptr) {
return;
}
SipKernel::freeSipKernels(rootDeviceEnvironment, memoryManager.get());
if (rootDeviceEnvironment->builtins.get()) {
rootDeviceEnvironment->builtins->freeSipKernels(memoryManager.get());
rootDeviceEnvironment->builtins.reset();
}
rootDeviceEnvironment->releaseDummyAllocation();
rootDeviceEnvironment->bindlessHeapsHelper.reset();
}
ExecutionEnvironment::~ExecutionEnvironment() {
if (directSubmissionController) {
directSubmissionController->stopThread();
}
if (unifiedMemoryReuseCleaner) {
unifiedMemoryReuseCleaner->stopThread();
}
if (memoryManager) {
memoryManager->commonCleanup();
for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) {
releaseRootDeviceEnvironmentResources(rootDeviceEnvironment.get());
}
}
rootDeviceEnvironments.clear();
mapOfSubDeviceIndices.clear();
this->restoreCcsMode();
}
bool ExecutionEnvironment::initializeMemoryManager() {
if (this->memoryManager) {
return memoryManager->isInitialized();
}
auto csrType = obtainCsrTypeFromIntegerValue(debugManager.flags.SetCommandStreamReceiver.get(), CommandStreamReceiverType::hardware);
switch (csrType) {
case CommandStreamReceiverType::tbx:
case CommandStreamReceiverType::tbxWithAub:
case CommandStreamReceiverType::aub:
case CommandStreamReceiverType::nullAub:
memoryManager = std::make_unique<OsAgnosticMemoryManager>(*this);
break;
case CommandStreamReceiverType::hardware:
case CommandStreamReceiverType::hardwareWithAub:
default: {
auto driverModelType = DriverModelType::unknown;
if (this->rootDeviceEnvironments[0]->osInterface && this->rootDeviceEnvironments[0]->osInterface->getDriverModel()) {
driverModelType = this->rootDeviceEnvironments[0]->osInterface->getDriverModel()->getDriverModelType();
}
memoryManager = MemoryManager::createMemoryManager(*this, driverModelType);
} break;
}
return memoryManager->isInitialized();
}
void ExecutionEnvironment::calculateMaxOsContextCount() {
MemoryManager::maxOsContextCount = 0u;
for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) {
auto hwInfo = rootDeviceEnvironment->getHardwareInfo();
auto &gfxCoreHelper = rootDeviceEnvironment->getHelper<GfxCoreHelper>();
auto &engineInstances = gfxCoreHelper.getGpgpuEngineInstances(*rootDeviceEnvironment);
auto osContextCount = static_cast<uint32_t>(engineInstances.size());
auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo);
bool hasRootCsr = subDevicesCount > 1;
uint32_t numRegularEngines = 0;
uint32_t numHpEngines = 0;
for (const auto &engine : engineInstances) {
if (engine.second == EngineUsage::regular) {
numRegularEngines++;
} else if (engine.second == EngineUsage::highPriority) {
numHpEngines++;
}
}
uint32_t numRootContexts = hasRootCsr ? 1 : 0;
uint32_t numSecondaryContexts = 0;
if (gfxCoreHelper.areSecondaryContextsSupported()) {
numSecondaryContexts += numRegularEngines * gfxCoreHelper.getContextGroupContextsCount();
numSecondaryContexts += numHpEngines * gfxCoreHelper.getContextGroupContextsCount();
osContextCount -= (numRegularEngines + numHpEngines);
numRootContexts *= gfxCoreHelper.getContextGroupContextsCount();
}
MemoryManager::maxOsContextCount += (numSecondaryContexts + osContextCount) * subDevicesCount + numRootContexts;
}
}
DirectSubmissionController *ExecutionEnvironment::initializeDirectSubmissionController() {
std::lock_guard<std::mutex> lockForInit(initializeDirectSubmissionControllerMutex);
auto initializeDirectSubmissionController = DirectSubmissionController::isSupported();
if (debugManager.flags.SetCommandStreamReceiver.get() > 0) {
initializeDirectSubmissionController = false;
}
if (debugManager.flags.EnableDirectSubmissionController.get() != -1) {
initializeDirectSubmissionController = debugManager.flags.EnableDirectSubmissionController.get();
}
if (initializeDirectSubmissionController && this->directSubmissionController == nullptr) {
this->directSubmissionController = std::make_unique<DirectSubmissionController>();
this->directSubmissionController->startThread();
}
return directSubmissionController.get();
}
void ExecutionEnvironment::initializeUnifiedMemoryReuseCleaner() {
std::lock_guard<std::mutex> lock(initializeUnifiedMemoryReuseCleanerMutex);
auto initializeUnifiedMemoryReuseCleaner = UnifiedMemoryReuseCleaner::isSupported();
if (debugManager.flags.ExperimentalUSMAllocationReuseCleaner.get() != -1) {
initializeUnifiedMemoryReuseCleaner = debugManager.flags.ExperimentalUSMAllocationReuseCleaner.get() == 1;
}
if (initializeUnifiedMemoryReuseCleaner && nullptr == this->unifiedMemoryReuseCleaner) {
this->unifiedMemoryReuseCleaner = std::make_unique<UnifiedMemoryReuseCleaner>();
this->unifiedMemoryReuseCleaner->startThread();
}
}
void ExecutionEnvironment::prepareRootDeviceEnvironments(uint32_t numRootDevices) {
if (rootDeviceEnvironments.size() < numRootDevices) {
rootDeviceEnvironments.resize(numRootDevices);
}
for (auto rootDeviceIndex = 0u; rootDeviceIndex < numRootDevices; rootDeviceIndex++) {
if (!rootDeviceEnvironments[rootDeviceIndex]) {
rootDeviceEnvironments[rootDeviceIndex] = std::make_unique<RootDeviceEnvironment>(*this);
}
}
}
void ExecutionEnvironment::prepareForCleanup() const {
for (auto &rootDeviceEnvironment : rootDeviceEnvironments) {
if (rootDeviceEnvironment) {
rootDeviceEnvironment->prepareForCleanup();
}
}
}
void ExecutionEnvironment::prepareRootDeviceEnvironment(const uint32_t rootDeviceIndexForReInit) {
rootDeviceEnvironments[rootDeviceIndexForReInit] = std::make_unique<RootDeviceEnvironment>(*this);
}
int ExecutionEnvironment::setErrorDescription(const std::string &str) {
auto threadId = std::this_thread::get_id();
{
std::lock_guard<std::mutex> errorDescsLock(errorDescsMutex);
if (errorDescs.find(threadId) == errorDescs.end()) {
errorDescs[threadId] = str;
} else {
errorDescs[threadId].clear();
errorDescs[threadId] = str;
}
}
return static_cast<int>(str.size());
}
void ExecutionEnvironment::getErrorDescription(const char **ppString) {
auto threadId = std::this_thread::get_id();
{
std::lock_guard<std::mutex> errorDescsLock(errorDescsMutex);
if (errorDescs.find(threadId) == errorDescs.end()) {
errorDescs[threadId] = std::string();
}
}
*ppString = errorDescs[threadId].c_str();
}
int ExecutionEnvironment::clearErrorDescription() {
auto threadId = std::this_thread::get_id();
{
std::lock_guard<std::mutex> errorDescsLock(errorDescsMutex);
if (errorDescs.find(threadId) != errorDescs.end()) {
errorDescs[threadId].clear();
}
}
return 0;
}
bool ExecutionEnvironment::getSubDeviceHierarchy(uint32_t index, std::tuple<uint32_t, uint32_t, uint32_t> *subDeviceMap) {
if (mapOfSubDeviceIndices.find(index) != mapOfSubDeviceIndices.end()) {
*subDeviceMap = mapOfSubDeviceIndices.at(index);
return true;
} else {
return false;
}
}
void ExecutionEnvironment::parseAffinityMask() {
const auto &affinityMaskString = debugManager.flags.ZE_AFFINITY_MASK.get();
if (affinityMaskString.compare("default") == 0 ||
affinityMaskString.empty()) {
return;
}
// If the user has requested FLAT or COMBINED device hierarchy models, then report all the sub devices as devices.
bool exposeSubDevices = this->deviceHierarchyMode != DeviceHierarchyMode::composite;
// Reserve at least for a size equal to rootDeviceEnvironments.size() times four,
// which is enough for typical configurations
uint32_t numRootDevices = static_cast<uint32_t>(rootDeviceEnvironments.size());
uint32_t numDevices = numRootDevices;
size_t reservedSizeForIndices = numRootDevices * 4;
RootDeviceIndicesMap mapOfIndices;
mapOfIndices.reserve(reservedSizeForIndices);
uint32_t hwSubDevicesCount = 0u;
if (exposeSubDevices) {
for (uint32_t currentRootDevice = 0u; currentRootDevice < numRootDevices; currentRootDevice++) {
auto hwInfo = rootDeviceEnvironments[currentRootDevice]->getHardwareInfo();
hwSubDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo);
uint32_t currentSubDevice = 0;
mapOfIndices.push_back(std::make_tuple(currentRootDevice, currentSubDevice));
for (currentSubDevice = 1; currentSubDevice < hwSubDevicesCount; currentSubDevice++) {
mapOfIndices.push_back(std::make_tuple(currentRootDevice, currentSubDevice));
}
}
numDevices = static_cast<uint32_t>(mapOfIndices.size());
}
std::vector<AffinityMaskHelper> affinityMaskHelper(numRootDevices);
auto affinityMaskEntries = StringHelpers::split(affinityMaskString, ",");
// Index of the Device to be returned to the user, not the physcial device index.
uint32_t deviceIndex = 0;
for (const auto &entry : affinityMaskEntries) {
auto subEntries = StringHelpers::split(entry, ".");
uint32_t entryIndex = StringHelpers::toUint32t(subEntries[0]);
if (entryIndex >= numDevices) {
continue;
} else if (exposeSubDevices) {
// tiles as devices
// so ignore X.Y
if (subEntries.size() > 1) {
continue;
}
std::tuple<uint32_t, uint32_t> indexKey = mapOfIndices[entryIndex];
auto hwDeviceIndex = std::get<0>(indexKey);
auto tileIndex = std::get<1>(indexKey);
affinityMaskHelper[hwDeviceIndex].enableGenericSubDevice(tileIndex);
// Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user.
mapOfSubDeviceIndices[deviceIndex++] = std::make_tuple(hwDeviceIndex, tileIndex, hwSubDevicesCount);
} else {
// cards as devices
auto hwInfo = rootDeviceEnvironments[entryIndex]->getHardwareInfo();
auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo);
if (subEntries.size() > 1) {
uint32_t subDeviceIndex = StringHelpers::toUint32t(subEntries[1]);
if (subDeviceIndex < subDevicesCount) {
if (subEntries.size() == 2) {
// Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user.
mapOfSubDeviceIndices[entryIndex] = std::make_tuple(entryIndex, subDeviceIndex, subDevicesCount);
affinityMaskHelper[entryIndex].enableGenericSubDevice(subDeviceIndex); // Mask: X.Y
} else {
UNRECOVERABLE_IF(subEntries.size() != 3);
}
}
} else {
affinityMaskHelper[entryIndex].enableAllGenericSubDevices(subDevicesCount); // Mask: X
}
}
}
std::vector<std::unique_ptr<RootDeviceEnvironment>> filteredEnvironments;
for (uint32_t i = 0u; i < numRootDevices; i++) {
if (!affinityMaskHelper[i].isDeviceEnabled()) {
continue;
}
rootDeviceEnvironments[i]->deviceAffinityMask = affinityMaskHelper[i];
filteredEnvironments.emplace_back(rootDeviceEnvironments[i].release());
}
rootDeviceEnvironments.swap(filteredEnvironments);
}
void ExecutionEnvironment::sortNeoDevices() {
std::sort(rootDeviceEnvironments.begin(), rootDeviceEnvironments.end(), comparePciIdBusNumber);
}
void ExecutionEnvironment::setDeviceHierarchyMode(const GfxCoreHelper &gfxCoreHelper) {
NEO::EnvironmentVariableReader envReader;
std::string deviceHierarchyMode = envReader.getSetting("ZE_FLAT_DEVICE_HIERARCHY", std::string(""));
if (strcmp(deviceHierarchyMode.c_str(), "COMPOSITE") == 0) {
this->deviceHierarchyMode = DeviceHierarchyMode::composite;
} else if (strcmp(deviceHierarchyMode.c_str(), "FLAT") == 0) {
this->deviceHierarchyMode = DeviceHierarchyMode::flat;
} else if (strcmp(deviceHierarchyMode.c_str(), "COMBINED") == 0) {
this->deviceHierarchyMode = DeviceHierarchyMode::combined;
} else {
this->deviceHierarchyMode = gfxCoreHelper.getDefaultDeviceHierarchy();
}
}
void ExecutionEnvironment::adjustCcsCountImpl(RootDeviceEnvironment *rootDeviceEnvironment) const {
auto hwInfo = rootDeviceEnvironment->getMutableHardwareInfo();
auto &productHelper = rootDeviceEnvironment->getHelper<ProductHelper>();
productHelper.adjustNumberOfCcs(*hwInfo);
}
void ExecutionEnvironment::adjustCcsCount() {
parseCcsCountLimitations();
for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceEnvironments.size(); rootDeviceIndex++) {
auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex];
UNRECOVERABLE_IF(!rootDeviceEnvironment);
if (!rootDeviceEnvironment->isNumberOfCcsLimited()) {
adjustCcsCountImpl(rootDeviceEnvironment.get());
}
}
}
void ExecutionEnvironment::adjustCcsCount(const uint32_t rootDeviceIndex) const {
auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex];
UNRECOVERABLE_IF(!rootDeviceEnvironment);
if (rootDeviceNumCcsMap.find(rootDeviceIndex) != rootDeviceNumCcsMap.end()) {
rootDeviceEnvironment->limitNumberOfCcs(rootDeviceNumCcsMap.at(rootDeviceIndex));
} else {
adjustCcsCountImpl(rootDeviceEnvironment.get());
}
}
void ExecutionEnvironment::parseCcsCountLimitations() {
const auto &numberOfCcsString = debugManager.flags.ZEX_NUMBER_OF_CCS.get();
if (numberOfCcsString.compare("default") == 0 ||
numberOfCcsString.empty()) {
return;
}
const uint32_t numRootDevices = static_cast<uint32_t>(rootDeviceEnvironments.size());
auto numberOfCcsEntries = StringHelpers::split(numberOfCcsString, ",");
for (const auto &entry : numberOfCcsEntries) {
auto subEntries = StringHelpers::split(entry, ":");
uint32_t rootDeviceIndex = StringHelpers::toUint32t(subEntries[0]);
if (rootDeviceIndex < numRootDevices) {
if (subEntries.size() > 1) {
uint32_t maxCcsCount = StringHelpers::toUint32t(subEntries[1]);
rootDeviceNumCcsMap.insert({rootDeviceIndex, maxCcsCount});
rootDeviceEnvironments[rootDeviceIndex]->limitNumberOfCcs(maxCcsCount);
}
}
}
}
void ExecutionEnvironment::configureNeoEnvironment() {
if (debugManager.flags.NEO_CAL_ENABLED.get()) {
debugManager.flags.UseKmdMigration.setIfDefault(0);
debugManager.flags.SplitBcsSize.setIfDefault(256);
}
}
bool ExecutionEnvironment::comparePciIdBusNumber(std::unique_ptr<RootDeviceEnvironment> &rootDeviceEnvironment1, std::unique_ptr<RootDeviceEnvironment> &rootDeviceEnvironment2) {
const auto pciOrderVar = debugManager.flags.ZE_ENABLE_PCI_ID_DEVICE_ORDER.get();
if (!pciOrderVar) {
auto isIntegrated1 = rootDeviceEnvironment1->getHardwareInfo()->capabilityTable.isIntegratedDevice;
auto isIntegrated2 = rootDeviceEnvironment2->getHardwareInfo()->capabilityTable.isIntegratedDevice;
if (isIntegrated1 != isIntegrated2) {
return isIntegrated2;
}
}
// BDF sample format is : 00:02.0
auto pciBusInfo1 = rootDeviceEnvironment1->osInterface->getDriverModel()->getPciBusInfo();
auto pciBusInfo2 = rootDeviceEnvironment2->osInterface->getDriverModel()->getPciBusInfo();
if (pciBusInfo1.pciDomain != pciBusInfo2.pciDomain) {
return (pciBusInfo1.pciDomain < pciBusInfo2.pciDomain);
}
if (pciBusInfo1.pciBus != pciBusInfo2.pciBus) {
return (pciBusInfo1.pciBus < pciBusInfo2.pciBus);
}
if (pciBusInfo1.pciDevice != pciBusInfo2.pciDevice) {
return (pciBusInfo1.pciDevice < pciBusInfo2.pciDevice);
}
return (pciBusInfo1.pciFunction < pciBusInfo2.pciFunction);
}
} // namespace NEO