compute-runtime/shared/source/os_interface/linux/drm_memory_manager.cpp

1008 lines
43 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2017-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/os_interface/linux/drm_memory_manager.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/gmm_helper/resource_info.h"
#include "shared/source/helpers/heap_assigner.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/surface_format_info.h"
#include "shared/source/memory_manager/host_ptr_manager.h"
#include "shared/source/memory_manager/residency.h"
#include "shared/source/os_interface/linux/allocator_helper.h"
#include "shared/source/os_interface/linux/drm_memory_operations_handler.h"
#include "shared/source/os_interface/linux/os_context_linux.h"
#include "shared/source/os_interface/linux/os_interface.h"
#include "drm/i915_drm.h"
#include <cstring>
#include <iostream>
#include <memory>
namespace NEO {
DrmMemoryManager::DrmMemoryManager(gemCloseWorkerMode mode,
bool forcePinAllowed,
bool validateHostPtrMemory,
ExecutionEnvironment &executionEnvironment) : MemoryManager(executionEnvironment),
forcePinEnabled(forcePinAllowed),
validateHostPtrMemory(validateHostPtrMemory) {
initialize(mode);
}
void DrmMemoryManager::initialize(gemCloseWorkerMode mode) {
for (uint32_t rootDeviceIndex = 0; rootDeviceIndex < gfxPartitions.size(); ++rootDeviceIndex) {
auto gpuAddressSpace = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo()->capabilityTable.gpuAddressSpace;
if (!getGfxPartition(rootDeviceIndex)->init(gpuAddressSpace, getSizeToReserve(), rootDeviceIndex, gfxPartitions.size(), heapAssigner.apiAllowExternalHeapForSshAndDsh)) {
initialized = false;
return;
}
localMemAllocs.emplace_back();
}
MemoryManager::virtualPaddingAvailable = true;
if (DebugManager.flags.EnableDirectSubmission.get() == 1) {
mode = gemCloseWorkerMode::gemCloseWorkerInactive;
}
if (DebugManager.flags.EnableGemCloseWorker.get() != -1) {
mode = DebugManager.flags.EnableGemCloseWorker.get() ? gemCloseWorkerMode::gemCloseWorkerActive : gemCloseWorkerMode::gemCloseWorkerInactive;
}
if (mode != gemCloseWorkerMode::gemCloseWorkerInactive) {
gemCloseWorker.reset(new DrmGemCloseWorker(*this));
}
for (uint32_t rootDeviceIndex = 0; rootDeviceIndex < gfxPartitions.size(); ++rootDeviceIndex) {
BufferObject *bo = nullptr;
if (forcePinEnabled || validateHostPtrMemory) {
auto cpuAddrBo = alignedMallocWrapper(MemoryConstants::pageSize, MemoryConstants::pageSize);
UNRECOVERABLE_IF(cpuAddrBo == nullptr);
// Preprogram the Bo with MI_BATCH_BUFFER_END and MI_NOOP. This BO will be used as the last BB in a series to indicate the end of submission.
reinterpret_cast<uint32_t *>(cpuAddrBo)[0] = 0x05000000; // MI_BATCH_BUFFER_END
reinterpret_cast<uint32_t *>(cpuAddrBo)[1] = 0; // MI_NOOP
memoryForPinBBs.push_back(cpuAddrBo);
DEBUG_BREAK_IF(memoryForPinBBs[rootDeviceIndex] == nullptr);
bo = allocUserptr(reinterpret_cast<uintptr_t>(memoryForPinBBs[rootDeviceIndex]), MemoryConstants::pageSize, 0, rootDeviceIndex);
if (bo) {
if (isLimitedRange(rootDeviceIndex)) {
bo->gpuAddress = acquireGpuRange(bo->size, rootDeviceIndex, HeapIndex::HEAP_STANDARD);
}
} else {
alignedFreeWrapper(memoryForPinBBs[rootDeviceIndex]);
memoryForPinBBs[rootDeviceIndex] = nullptr;
DEBUG_BREAK_IF(true);
UNRECOVERABLE_IF(validateHostPtrMemory);
}
}
pinBBs.push_back(bo);
}
initialized = true;
}
DrmMemoryManager::~DrmMemoryManager() {
for (auto &memoryForPinBB : memoryForPinBBs) {
if (memoryForPinBB) {
MemoryManager::alignedFreeWrapper(memoryForPinBB);
}
}
}
void DrmMemoryManager::commonCleanup() {
if (gemCloseWorker) {
gemCloseWorker->close(false);
}
for (uint32_t rootDeviceIndex = 0; rootDeviceIndex < pinBBs.size(); ++rootDeviceIndex) {
if (auto bo = pinBBs[rootDeviceIndex]) {
if (isLimitedRange(rootDeviceIndex)) {
releaseGpuRange(reinterpret_cast<void *>(bo->gpuAddress), bo->size, rootDeviceIndex);
}
DrmMemoryManager::unreference(bo, true);
}
}
pinBBs.clear();
}
void DrmMemoryManager::eraseSharedBufferObject(NEO::BufferObject *bo) {
auto it = std::find(sharingBufferObjects.begin(), sharingBufferObjects.end(), bo);
DEBUG_BREAK_IF(it == sharingBufferObjects.end());
releaseGpuRange(reinterpret_cast<void *>((*it)->gpuAddress), (*it)->peekUnmapSize(), this->getRootDeviceIndex(bo->drm));
sharingBufferObjects.erase(it);
}
void DrmMemoryManager::pushSharedBufferObject(NEO::BufferObject *bo) {
bo->isReused = true;
sharingBufferObjects.push_back(bo);
}
uint32_t DrmMemoryManager::unreference(NEO::BufferObject *bo, bool synchronousDestroy) {
if (!bo)
return -1;
if (synchronousDestroy) {
while (bo->refCount > 1)
;
}
std::unique_lock<std::mutex> lock(mtx, std::defer_lock);
if (bo->isReused) {
lock.lock();
}
uint32_t r = bo->refCount.fetch_sub(1);
if (r == 1) {
if (bo->isReused) {
eraseSharedBufferObject(bo);
}
bo->close();
if (lock) {
lock.unlock();
}
delete bo;
}
return r;
}
uint64_t DrmMemoryManager::acquireGpuRange(size_t &size, uint32_t rootDeviceIndex, HeapIndex heapIndex) {
auto gfxPartition = getGfxPartition(rootDeviceIndex);
return GmmHelper::canonize(gfxPartition->heapAllocate(heapIndex, size));
}
void DrmMemoryManager::releaseGpuRange(void *address, size_t unmapSize, uint32_t rootDeviceIndex) {
uint64_t graphicsAddress = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(address));
graphicsAddress = GmmHelper::decanonize(graphicsAddress);
auto gfxPartition = getGfxPartition(rootDeviceIndex);
gfxPartition->freeGpuAddressRange(graphicsAddress, unmapSize);
}
bool DrmMemoryManager::isKmdMigrationAvailable(uint32_t rootDeviceIndex) {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto &hwHelper = NEO::HwHelper::get(hwInfo->platform.eRenderCoreFamily);
auto useKmdMigration = hwHelper.isKmdMigrationSupported(*hwInfo) &&
this->getDrm(rootDeviceIndex).isVmBindAvailable();
if (DebugManager.flags.UseKmdMigration.get() != -1) {
useKmdMigration = DebugManager.flags.UseKmdMigration.get();
}
return useKmdMigration;
}
NEO::BufferObject *DrmMemoryManager::allocUserptr(uintptr_t address, size_t size, uint64_t flags, uint32_t rootDeviceIndex) {
drm_i915_gem_userptr userptr = {};
userptr.user_ptr = address;
userptr.user_size = size;
userptr.flags = static_cast<uint32_t>(flags);
if (this->getDrm(rootDeviceIndex).ioctl(DRM_IOCTL_I915_GEM_USERPTR, &userptr) != 0) {
return nullptr;
}
PRINT_DEBUG_STRING(DebugManager.flags.PrintBOCreateDestroyResult.get(), stdout, "Created new BO with GEM_USERPTR, handle: BO-%d\n", userptr.handle);
auto res = new (std::nothrow) BufferObject(&getDrm(rootDeviceIndex), userptr.handle, size, maxOsContextCount);
if (!res) {
DEBUG_BREAK_IF(true);
return nullptr;
}
res->gpuAddress = address;
return res;
}
void DrmMemoryManager::emitPinningRequest(BufferObject *bo, const AllocationData &allocationData) const {
auto rootDeviceIndex = allocationData.rootDeviceIndex;
if (forcePinEnabled && pinBBs.at(rootDeviceIndex) != nullptr && allocationData.flags.forcePin && allocationData.size >= this->pinThreshold) {
pinBBs.at(rootDeviceIndex)->pin(&bo, 1, registeredEngines[defaultEngineIndex[rootDeviceIndex]].osContext, 0, getDefaultDrmContextId(rootDeviceIndex));
}
}
DrmAllocation *DrmMemoryManager::createGraphicsAllocation(OsHandleStorage &handleStorage, const AllocationData &allocationData) {
auto hostPtr = const_cast<void *>(allocationData.hostPtr);
auto allocation = std::make_unique<DrmAllocation>(allocationData.rootDeviceIndex, allocationData.type, nullptr, hostPtr, castToUint64(hostPtr), allocationData.size, MemoryPool::System4KBPages);
allocation->fragmentsStorage = handleStorage;
if (!allocation->setCacheRegion(&this->getDrm(allocationData.rootDeviceIndex), static_cast<CacheRegion>(allocationData.cacheRegion))) {
return nullptr;
}
return allocation.release();
}
DrmAllocation *DrmMemoryManager::allocateGraphicsMemoryWithAlignment(const AllocationData &allocationData) {
const size_t minAlignment = getUserptrAlignment();
size_t cAlignment = alignUp(std::max(allocationData.alignment, minAlignment), minAlignment);
// When size == 0 allocate allocationAlignment
// It's needed to prevent overlapping pages with user pointers
size_t cSize = std::max(alignUp(allocationData.size, minAlignment), minAlignment);
uint64_t gpuAddress = 0;
size_t alignedSize = cSize;
auto svmCpuAllocation = allocationData.type == GraphicsAllocation::AllocationType::SVM_CPU;
if (svmCpuAllocation) {
//add 2MB padding in case reserved addr is not 2MB aligned
alignedSize = alignUp(cSize, cAlignment) + cAlignment;
}
// if limitedRangeAlloction is enabled, memory allocation for bo in the limited Range heap is required
if ((isLimitedRange(allocationData.rootDeviceIndex) || svmCpuAllocation) && !allocationData.flags.isUSMHostAllocation) {
gpuAddress = acquireGpuRange(alignedSize, allocationData.rootDeviceIndex, HeapIndex::HEAP_STANDARD);
if (!gpuAddress) {
return nullptr;
}
if (svmCpuAllocation) {
gpuAddress = alignUp(gpuAddress, cAlignment);
}
}
return createAllocWithAlignment(allocationData, cSize, cAlignment, alignedSize, gpuAddress);
}
DrmAllocation *DrmMemoryManager::createAllocWithAlignmentFromUserptr(const AllocationData &allocationData, size_t size, size_t alignment, size_t alignedSVMSize, uint64_t gpuAddress) {
auto res = alignedMallocWrapper(size, alignment);
if (!res) {
return nullptr;
}
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(reinterpret_cast<uintptr_t>(res), size, 0, allocationData.rootDeviceIndex));
if (!bo) {
alignedFreeWrapper(res);
return nullptr;
}
obtainGpuAddress(allocationData, bo.get(), gpuAddress);
emitPinningRequest(bo.get(), allocationData);
auto allocation = std::make_unique<DrmAllocation>(allocationData.rootDeviceIndex, allocationData.type, bo.get(), res, bo->gpuAddress, size, MemoryPool::System4KBPages);
allocation->setDriverAllocatedCpuPtr(res);
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuAddress), alignedSVMSize);
if (!allocation->setCacheRegion(&this->getDrm(allocationData.rootDeviceIndex), static_cast<CacheRegion>(allocationData.cacheRegion))) {
alignedFreeWrapper(res);
return nullptr;
}
bo.release();
return allocation.release();
}
void DrmMemoryManager::obtainGpuAddress(const AllocationData &allocationData, BufferObject *bo, uint64_t gpuAddress) {
if ((isLimitedRange(allocationData.rootDeviceIndex) || allocationData.type == GraphicsAllocation::AllocationType::SVM_CPU) &&
!allocationData.flags.isUSMHostAllocation) {
bo->gpuAddress = gpuAddress;
}
}
DrmAllocation *DrmMemoryManager::allocateUSMHostGraphicsMemory(const AllocationData &allocationData) {
const size_t minAlignment = getUserptrAlignment();
// When size == 0 allocate allocationAlignment
// It's needed to prevent overlapping pages with user pointers
size_t cSize = std::max(alignUp(allocationData.size, minAlignment), minAlignment);
void *bufferPtr = const_cast<void *>(allocationData.hostPtr);
DEBUG_BREAK_IF(nullptr == bufferPtr);
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(reinterpret_cast<uintptr_t>(bufferPtr),
cSize,
0,
allocationData.rootDeviceIndex));
if (!bo) {
return nullptr;
}
// if limitedRangeAlloction is enabled, memory allocation for bo in the limited Range heap is required
uint64_t gpuAddress = 0;
if (isLimitedRange(allocationData.rootDeviceIndex)) {
gpuAddress = acquireGpuRange(cSize, allocationData.rootDeviceIndex, HeapIndex::HEAP_STANDARD);
if (!gpuAddress) {
return nullptr;
}
bo->gpuAddress = gpuAddress;
}
emitPinningRequest(bo.get(), allocationData);
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex,
allocationData.type,
bo.get(),
bufferPtr,
bo->gpuAddress,
cSize,
MemoryPool::System4KBPages);
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuAddress), cSize);
bo.release();
return allocation;
}
DrmAllocation *DrmMemoryManager::allocateGraphicsMemoryWithHostPtr(const AllocationData &allocationData) {
auto res = static_cast<DrmAllocation *>(MemoryManager::allocateGraphicsMemoryWithHostPtr(allocationData));
if (res != nullptr && !validateHostPtrMemory) {
emitPinningRequest(res->getBO(), allocationData);
}
return res;
}
GraphicsAllocation *DrmMemoryManager::allocateGraphicsMemoryWithGpuVa(const AllocationData &allocationData) {
auto osContextLinux = static_cast<OsContextLinux *>(allocationData.osContext);
const size_t minAlignment = getUserptrAlignment();
size_t alignedSize = alignUp(allocationData.size, minAlignment);
auto res = alignedMallocWrapper(alignedSize, minAlignment);
if (!res)
return nullptr;
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(reinterpret_cast<uintptr_t>(res), alignedSize, 0, allocationData.rootDeviceIndex));
if (!bo) {
alignedFreeWrapper(res);
return nullptr;
}
UNRECOVERABLE_IF(allocationData.gpuAddress == 0);
bo->gpuAddress = allocationData.gpuAddress;
BufferObject *boPtr = bo.get();
if (forcePinEnabled && pinBBs.at(allocationData.rootDeviceIndex) != nullptr && alignedSize >= this->pinThreshold) {
pinBBs.at(allocationData.rootDeviceIndex)->pin(&boPtr, 1, osContextLinux, 0, osContextLinux->getDrmContextIds()[0]);
}
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex, allocationData.type, bo.get(), res, bo->gpuAddress, alignedSize, MemoryPool::System4KBPages);
allocation->setDriverAllocatedCpuPtr(res);
bo.release();
return allocation;
}
DrmAllocation *DrmMemoryManager::allocateGraphicsMemoryForNonSvmHostPtr(const AllocationData &allocationData) {
if (allocationData.size == 0 || !allocationData.hostPtr)
return nullptr;
auto alignedPtr = alignDown(allocationData.hostPtr, MemoryConstants::pageSize);
auto alignedSize = alignSizeWholePage(allocationData.hostPtr, allocationData.size);
auto realAllocationSize = alignedSize;
auto offsetInPage = ptrDiff(allocationData.hostPtr, alignedPtr);
auto rootDeviceIndex = allocationData.rootDeviceIndex;
auto gpuVirtualAddress = acquireGpuRange(alignedSize, rootDeviceIndex, HeapIndex::HEAP_STANDARD);
if (!gpuVirtualAddress) {
return nullptr;
}
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(reinterpret_cast<uintptr_t>(alignedPtr), realAllocationSize, 0, rootDeviceIndex));
if (!bo) {
releaseGpuRange(reinterpret_cast<void *>(gpuVirtualAddress), alignedSize, rootDeviceIndex);
return nullptr;
}
bo->gpuAddress = gpuVirtualAddress;
if (validateHostPtrMemory) {
auto boPtr = bo.get();
int result = pinBBs.at(rootDeviceIndex)->validateHostPtr(&boPtr, 1, registeredEngines[defaultEngineIndex[rootDeviceIndex]].osContext, 0, getDefaultDrmContextId(rootDeviceIndex));
if (result != 0) {
unreference(bo.release(), true);
releaseGpuRange(reinterpret_cast<void *>(gpuVirtualAddress), alignedSize, rootDeviceIndex);
return nullptr;
}
}
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex, allocationData.type, bo.get(), const_cast<void *>(allocationData.hostPtr),
gpuVirtualAddress, allocationData.size, MemoryPool::System4KBPages);
allocation->setAllocationOffset(offsetInPage);
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuVirtualAddress), alignedSize);
bo.release();
return allocation;
}
DrmAllocation *DrmMemoryManager::allocateGraphicsMemory64kb(const AllocationData &allocationData) {
return nullptr;
}
GraphicsAllocation *DrmMemoryManager::allocateShareableMemory(const AllocationData &allocationData) {
auto gmm = std::make_unique<Gmm>(executionEnvironment.rootDeviceEnvironments[allocationData.rootDeviceIndex]->getGmmClientContext(), allocationData.hostPtr, allocationData.size, 0u, false);
size_t bufferSize = allocationData.size;
uint64_t gpuRange = acquireGpuRange(bufferSize, allocationData.rootDeviceIndex, HeapIndex::HEAP_STANDARD64KB);
drm_i915_gem_create create = {0, 0, 0};
create.size = bufferSize;
auto ret = this->getDrm(allocationData.rootDeviceIndex).ioctl(DRM_IOCTL_I915_GEM_CREATE, &create);
DEBUG_BREAK_IF(ret != 0);
((void)(ret));
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(new BufferObject(&getDrm(allocationData.rootDeviceIndex), create.handle, bufferSize, maxOsContextCount));
bo->gpuAddress = gpuRange;
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex, allocationData.type, bo.get(), nullptr, gpuRange, bufferSize, MemoryPool::SystemCpuInaccessible);
allocation->setDefaultGmm(gmm.release());
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuRange), bufferSize);
bo.release();
return allocation;
}
GraphicsAllocation *DrmMemoryManager::allocateGraphicsMemoryForImageImpl(const AllocationData &allocationData, std::unique_ptr<Gmm> gmm) {
if (allocationData.imgInfo->linearStorage) {
auto alloc = allocateGraphicsMemoryWithAlignment(allocationData);
if (alloc) {
alloc->setDefaultGmm(gmm.release());
}
return alloc;
}
uint64_t gpuRange = acquireGpuRange(allocationData.imgInfo->size, allocationData.rootDeviceIndex, HeapIndex::HEAP_STANDARD);
drm_i915_gem_create create = {0, 0, 0};
create.size = allocationData.imgInfo->size;
auto ret = this->getDrm(allocationData.rootDeviceIndex).ioctl(DRM_IOCTL_I915_GEM_CREATE, &create);
DEBUG_BREAK_IF(ret != 0);
UNUSED_VARIABLE(ret);
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(new (std::nothrow) BufferObject(&getDrm(allocationData.rootDeviceIndex), create.handle, allocationData.imgInfo->size, maxOsContextCount));
if (!bo) {
return nullptr;
}
bo->gpuAddress = gpuRange;
auto ret2 = bo->setTiling(I915_TILING_Y, static_cast<uint32_t>(allocationData.imgInfo->rowPitch));
DEBUG_BREAK_IF(ret2 != true);
UNUSED_VARIABLE(ret2);
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex, allocationData.type, bo.get(), nullptr, gpuRange, allocationData.imgInfo->size, MemoryPool::SystemCpuInaccessible);
allocation->setDefaultGmm(gmm.release());
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuRange), allocationData.imgInfo->size);
bo.release();
return allocation;
}
DrmAllocation *DrmMemoryManager::allocate32BitGraphicsMemoryImpl(const AllocationData &allocationData, bool useLocalMemory) {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[allocationData.rootDeviceIndex]->getHardwareInfo();
auto allocatorToUse = heapAssigner.get32BitHeapIndex(allocationData.type, useLocalMemory, *hwInfo, allocationData.flags.use32BitFrontWindow);
if (allocationData.hostPtr) {
uintptr_t inputPtr = reinterpret_cast<uintptr_t>(allocationData.hostPtr);
auto allocationSize = alignSizeWholePage(allocationData.hostPtr, allocationData.size);
auto realAllocationSize = allocationSize;
auto gfxPartition = getGfxPartition(allocationData.rootDeviceIndex);
auto gpuVirtualAddress = gfxPartition->heapAllocate(allocatorToUse, realAllocationSize);
if (!gpuVirtualAddress) {
return nullptr;
}
auto alignedUserPointer = reinterpret_cast<uintptr_t>(alignDown(allocationData.hostPtr, MemoryConstants::pageSize));
auto inputPointerOffset = inputPtr - alignedUserPointer;
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(alignedUserPointer, allocationSize, 0, allocationData.rootDeviceIndex));
if (!bo) {
gfxPartition->heapFree(allocatorToUse, gpuVirtualAddress, realAllocationSize);
return nullptr;
}
bo->gpuAddress = GmmHelper::canonize(gpuVirtualAddress);
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex, allocationData.type, bo.get(), const_cast<void *>(allocationData.hostPtr), GmmHelper::canonize(ptrOffset(gpuVirtualAddress, inputPointerOffset)),
allocationSize, MemoryPool::System4KBPagesWith32BitGpuAddressing);
allocation->set32BitAllocation(true);
allocation->setGpuBaseAddress(GmmHelper::canonize(gfxPartition->getHeapBase(allocatorToUse)));
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuVirtualAddress), realAllocationSize);
bo.release();
return allocation;
}
size_t alignedAllocationSize = alignUp(allocationData.size, MemoryConstants::pageSize);
auto allocationSize = alignedAllocationSize;
auto gfxPartition = getGfxPartition(allocationData.rootDeviceIndex);
auto gpuVA = gfxPartition->heapAllocate(allocatorToUse, allocationSize);
if (!gpuVA) {
return nullptr;
}
auto ptrAlloc = alignedMallocWrapper(alignedAllocationSize, getUserptrAlignment());
if (!ptrAlloc) {
gfxPartition->heapFree(allocatorToUse, gpuVA, allocationSize);
return nullptr;
}
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(reinterpret_cast<uintptr_t>(ptrAlloc), alignedAllocationSize, 0, allocationData.rootDeviceIndex));
if (!bo) {
alignedFreeWrapper(ptrAlloc);
gfxPartition->heapFree(allocatorToUse, gpuVA, allocationSize);
return nullptr;
}
bo->gpuAddress = GmmHelper::canonize(gpuVA);
// softpin to the GPU address, res if it uses limitedRange Allocation
auto allocation = new DrmAllocation(allocationData.rootDeviceIndex, allocationData.type, bo.get(), ptrAlloc, GmmHelper::canonize(gpuVA), alignedAllocationSize,
MemoryPool::System4KBPagesWith32BitGpuAddressing);
allocation->set32BitAllocation(true);
allocation->setGpuBaseAddress(GmmHelper::canonize(gfxPartition->getHeapBase(allocatorToUse)));
allocation->setDriverAllocatedCpuPtr(ptrAlloc);
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuVA), allocationSize);
bo.release();
return allocation;
}
BufferObject *DrmMemoryManager::findAndReferenceSharedBufferObject(int boHandle) {
BufferObject *bo = nullptr;
for (const auto &i : sharingBufferObjects) {
if (i->handle == boHandle) {
bo = i;
bo->reference();
break;
}
}
return bo;
}
GraphicsAllocation *DrmMemoryManager::createGraphicsAllocationFromSharedHandle(osHandle handle, const AllocationProperties &properties, bool requireSpecificBitness) {
std::unique_lock<std::mutex> lock(mtx);
drm_prime_handle openFd = {0, 0, 0};
openFd.fd = handle;
auto ret = this->getDrm(properties.rootDeviceIndex).ioctl(DRM_IOCTL_PRIME_FD_TO_HANDLE, &openFd);
if (ret != 0) {
int err = errno;
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "ioctl(PRIME_FD_TO_HANDLE) failed with %d. errno=%d(%s)\n", ret, err, strerror(err));
DEBUG_BREAK_IF(ret != 0);
UNUSED_VARIABLE(ret);
return nullptr;
}
auto boHandle = openFd.handle;
auto bo = findAndReferenceSharedBufferObject(boHandle);
if (bo == nullptr) {
size_t size = lseekFunction(handle, 0, SEEK_END);
bo = new (std::nothrow) BufferObject(&getDrm(properties.rootDeviceIndex), boHandle, size, maxOsContextCount);
if (!bo) {
return nullptr;
}
auto heapIndex = isLocalMemorySupported(properties.rootDeviceIndex) ? HeapIndex::HEAP_STANDARD2MB : HeapIndex::HEAP_STANDARD;
if (requireSpecificBitness && this->force32bitAllocations) {
heapIndex = HeapIndex::HEAP_EXTERNAL;
}
auto gpuRange = acquireGpuRange(size, properties.rootDeviceIndex, heapIndex);
bo->setAddress(gpuRange);
bo->setUnmapSize(size);
pushSharedBufferObject(bo);
}
lock.unlock();
auto drmAllocation = new DrmAllocation(properties.rootDeviceIndex, properties.allocationType, bo, reinterpret_cast<void *>(bo->gpuAddress), bo->size,
handle, MemoryPool::SystemCpuInaccessible);
if (requireSpecificBitness && this->force32bitAllocations) {
drmAllocation->set32BitAllocation(true);
drmAllocation->setGpuBaseAddress(GmmHelper::canonize(getExternalHeapBaseAddress(properties.rootDeviceIndex, drmAllocation->isAllocatedInLocalMemoryPool())));
}
if (properties.imgInfo) {
drm_i915_gem_get_tiling getTiling = {0};
getTiling.handle = boHandle;
ret = this->getDrm(properties.rootDeviceIndex).ioctl(DRM_IOCTL_I915_GEM_GET_TILING, &getTiling);
if (ret == 0) {
if (getTiling.tiling_mode == I915_TILING_NONE) {
properties.imgInfo->linearStorage = true;
}
}
Gmm *gmm = new Gmm(executionEnvironment.rootDeviceEnvironments[properties.rootDeviceIndex]->getGmmClientContext(), *properties.imgInfo, createStorageInfoFromProperties(properties));
drmAllocation->setDefaultGmm(gmm);
}
return drmAllocation;
}
void DrmMemoryManager::closeSharedHandle(GraphicsAllocation *gfxAllocation) {
DrmAllocation *drmAllocation = static_cast<DrmAllocation *>(gfxAllocation);
if (drmAllocation->peekSharedHandle() != Sharing::nonSharedResource) {
closeFunction(drmAllocation->peekSharedHandle());
drmAllocation->setSharedHandle(Sharing::nonSharedResource);
}
}
GraphicsAllocation *DrmMemoryManager::createPaddedAllocation(GraphicsAllocation *inputGraphicsAllocation, size_t sizeWithPadding) {
uint64_t gpuRange = 0llu;
auto rootDeviceIndex = inputGraphicsAllocation->getRootDeviceIndex();
gpuRange = acquireGpuRange(sizeWithPadding, rootDeviceIndex, HeapIndex::HEAP_STANDARD);
auto srcPtr = inputGraphicsAllocation->getUnderlyingBuffer();
auto srcSize = inputGraphicsAllocation->getUnderlyingBufferSize();
auto alignedSrcSize = alignUp(srcSize, MemoryConstants::pageSize);
auto alignedPtr = (uintptr_t)alignDown(srcPtr, MemoryConstants::pageSize);
auto offset = (uintptr_t)srcPtr - alignedPtr;
std::unique_ptr<BufferObject, BufferObject::Deleter> bo(allocUserptr(alignedPtr, alignedSrcSize, 0, rootDeviceIndex));
if (!bo) {
return nullptr;
}
bo->gpuAddress = gpuRange;
auto allocation = new DrmAllocation(rootDeviceIndex, inputGraphicsAllocation->getAllocationType(), bo.get(), srcPtr, GmmHelper::canonize(ptrOffset(gpuRange, offset)), sizeWithPadding,
inputGraphicsAllocation->getMemoryPool());
allocation->setReservedAddressRange(reinterpret_cast<void *>(gpuRange), sizeWithPadding);
bo.release();
return allocation;
}
void DrmMemoryManager::addAllocationToHostPtrManager(GraphicsAllocation *gfxAllocation) {
DrmAllocation *drmMemory = static_cast<DrmAllocation *>(gfxAllocation);
auto maxOsContextCount = 1u;
FragmentStorage fragment = {};
fragment.driverAllocation = true;
fragment.fragmentCpuPointer = gfxAllocation->getUnderlyingBuffer();
fragment.fragmentSize = alignUp(gfxAllocation->getUnderlyingBufferSize(), MemoryConstants::pageSize);
auto osHandle = new OsHandleLinux();
osHandle->bo = drmMemory->getBO();
fragment.osInternalStorage = osHandle;
fragment.residency = new ResidencyData(maxOsContextCount);
hostPtrManager->storeFragment(gfxAllocation->getRootDeviceIndex(), fragment);
}
void DrmMemoryManager::removeAllocationFromHostPtrManager(GraphicsAllocation *gfxAllocation) {
auto buffer = gfxAllocation->getUnderlyingBuffer();
auto fragment = hostPtrManager->getFragment({buffer, gfxAllocation->getRootDeviceIndex()});
if (fragment && fragment->driverAllocation) {
OsHandle *osStorageToRelease = fragment->osInternalStorage;
ResidencyData *residencyDataToRelease = fragment->residency;
if (hostPtrManager->releaseHostPtr(gfxAllocation->getRootDeviceIndex(), buffer)) {
delete osStorageToRelease;
delete residencyDataToRelease;
}
}
}
void DrmMemoryManager::freeGraphicsMemoryImpl(GraphicsAllocation *gfxAllocation) {
DrmAllocation *drmAlloc = static_cast<DrmAllocation *>(gfxAllocation);
this->unregisterAllocation(gfxAllocation);
for (auto &engine : this->registeredEngines) {
auto memoryOperationsInterface = static_cast<DrmMemoryOperationsHandler *>(executionEnvironment.rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->memoryOperationsInterface.get());
memoryOperationsInterface->evictWithinOsContext(engine.osContext, *gfxAllocation);
}
if (drmAlloc->getMmapPtr()) {
this->munmapFunction(drmAlloc->getMmapPtr(), drmAlloc->getMmapSize());
}
for (auto handleId = 0u; handleId < gfxAllocation->getNumGmms(); handleId++) {
delete gfxAllocation->getGmm(handleId);
}
if (gfxAllocation->fragmentsStorage.fragmentCount) {
cleanGraphicsMemoryCreatedFromHostPtr(gfxAllocation);
} else {
auto &bos = static_cast<DrmAllocation *>(gfxAllocation)->getBOs();
for (auto bo : bos) {
unreference(bo, bo && bo->isReused ? false : true);
}
closeSharedHandle(gfxAllocation);
}
releaseGpuRange(gfxAllocation->getReservedAddressPtr(), gfxAllocation->getReservedAddressSize(), gfxAllocation->getRootDeviceIndex());
alignedFreeWrapper(gfxAllocation->getDriverAllocatedCpuPtr());
drmAlloc->freeRegisteredBOBindExtHandles(&getDrm(drmAlloc->getRootDeviceIndex()));
delete gfxAllocation;
}
void DrmMemoryManager::handleFenceCompletion(GraphicsAllocation *allocation) {
static_cast<DrmAllocation *>(allocation)->getBO()->wait(-1);
}
GraphicsAllocation *DrmMemoryManager::createGraphicsAllocationFromExistingStorage(AllocationProperties &properties, void *ptr, MultiGraphicsAllocation &multiGraphicsAllocation) {
auto defaultAlloc = multiGraphicsAllocation.getDefaultGraphicsAllocation();
if (static_cast<DrmAllocation *>(defaultAlloc)->getMmapPtr()) {
properties.size = defaultAlloc->getUnderlyingBufferSize();
properties.gpuAddress = castToUint64(ptr);
auto internalHandle = defaultAlloc->peekInternalHandle(this);
return createUSMHostAllocationFromSharedHandle(static_cast<osHandle>(internalHandle), properties);
} else {
return allocateGraphicsMemoryWithProperties(properties, ptr);
}
}
DrmAllocation *DrmMemoryManager::createUSMHostAllocationFromSharedHandle(osHandle handle, const AllocationProperties &properties) {
std::unique_lock<std::mutex> lock(mtx);
drm_prime_handle openFd = {0, 0, 0};
openFd.fd = handle;
auto ret = this->getDrm(properties.rootDeviceIndex).ioctl(DRM_IOCTL_PRIME_FD_TO_HANDLE, &openFd);
if (ret != 0) {
int err = this->getDrm(properties.rootDeviceIndex).getErrno();
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "ioctl(PRIME_FD_TO_HANDLE) failed with %d. errno=%d(%s)\n", ret, err, strerror(err));
DEBUG_BREAK_IF(ret != 0);
return nullptr;
}
auto bo = new BufferObject(&getDrm(properties.rootDeviceIndex), openFd.handle, properties.size, maxOsContextCount);
bo->setAddress(properties.gpuAddress);
return new DrmAllocation(properties.rootDeviceIndex, properties.allocationType, bo, reinterpret_cast<void *>(bo->gpuAddress), bo->size,
handle, MemoryPool::SystemCpuInaccessible);
}
uint64_t DrmMemoryManager::getSystemSharedMemory(uint32_t rootDeviceIndex) {
uint64_t hostMemorySize = MemoryConstants::pageSize * (uint64_t)(sysconf(_SC_PHYS_PAGES));
drm_i915_gem_context_param getContextParam = {};
getContextParam.param = I915_CONTEXT_PARAM_GTT_SIZE;
auto ret = getDrm(rootDeviceIndex).ioctl(DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &getContextParam);
DEBUG_BREAK_IF(ret != 0);
UNUSED_VARIABLE(ret);
uint64_t gpuMemorySize = getContextParam.value;
return std::min(hostMemorySize, gpuMemorySize);
}
MemoryManager::AllocationStatus DrmMemoryManager::populateOsHandles(OsHandleStorage &handleStorage, uint32_t rootDeviceIndex) {
BufferObject *allocatedBos[maxFragmentsCount];
uint32_t numberOfBosAllocated = 0;
uint32_t indexesOfAllocatedBos[maxFragmentsCount];
auto maxOsContextCount = 1u;
for (unsigned int i = 0; i < maxFragmentsCount; i++) {
// If there is no fragment it means it already exists.
if (!handleStorage.fragmentStorageData[i].osHandleStorage && handleStorage.fragmentStorageData[i].fragmentSize) {
auto osHandle = new OsHandleLinux();
handleStorage.fragmentStorageData[i].osHandleStorage = osHandle;
handleStorage.fragmentStorageData[i].residency = new ResidencyData(maxOsContextCount);
osHandle->bo = allocUserptr((uintptr_t)handleStorage.fragmentStorageData[i].cpuPtr,
handleStorage.fragmentStorageData[i].fragmentSize,
0, rootDeviceIndex);
if (!osHandle->bo) {
handleStorage.fragmentStorageData[i].freeTheFragment = true;
return AllocationStatus::Error;
}
allocatedBos[numberOfBosAllocated] = osHandle->bo;
indexesOfAllocatedBos[numberOfBosAllocated] = i;
numberOfBosAllocated++;
}
}
if (validateHostPtrMemory) {
int result = pinBBs.at(rootDeviceIndex)->validateHostPtr(allocatedBos, numberOfBosAllocated, registeredEngines[defaultEngineIndex[rootDeviceIndex]].osContext, 0, getDefaultDrmContextId(rootDeviceIndex));
if (result == EFAULT) {
for (uint32_t i = 0; i < numberOfBosAllocated; i++) {
handleStorage.fragmentStorageData[indexesOfAllocatedBos[i]].freeTheFragment = true;
}
return AllocationStatus::InvalidHostPointer;
} else if (result != 0) {
return AllocationStatus::Error;
}
}
for (uint32_t i = 0; i < numberOfBosAllocated; i++) {
hostPtrManager->storeFragment(rootDeviceIndex, handleStorage.fragmentStorageData[indexesOfAllocatedBos[i]]);
}
return AllocationStatus::Success;
}
void DrmMemoryManager::cleanOsHandles(OsHandleStorage &handleStorage, uint32_t rootDeviceIndex) {
for (unsigned int i = 0; i < maxFragmentsCount; i++) {
if (handleStorage.fragmentStorageData[i].freeTheFragment) {
auto osHandle = static_cast<OsHandleLinux *>(handleStorage.fragmentStorageData[i].osHandleStorage);
if (osHandle->bo) {
BufferObject *search = osHandle->bo;
search->wait(-1);
auto refCount = unreference(search, true);
DEBUG_BREAK_IF(refCount != 1u);
UNUSED_VARIABLE(refCount);
}
delete handleStorage.fragmentStorageData[i].osHandleStorage;
handleStorage.fragmentStorageData[i].osHandleStorage = nullptr;
delete handleStorage.fragmentStorageData[i].residency;
handleStorage.fragmentStorageData[i].residency = nullptr;
}
}
}
bool DrmMemoryManager::setDomainCpu(GraphicsAllocation &graphicsAllocation, bool writeEnable) {
DEBUG_BREAK_IF(writeEnable); //unsupported path (for CPU writes call SW_FINISH ioctl in unlockResource)
auto bo = static_cast<DrmAllocation *>(&graphicsAllocation)->getBO();
if (bo == nullptr)
return false;
// move a buffer object to the CPU read, and possibly write domain, including waiting on flushes to occur
drm_i915_gem_set_domain set_domain = {};
set_domain.handle = bo->peekHandle();
set_domain.read_domains = I915_GEM_DOMAIN_CPU;
set_domain.write_domain = writeEnable ? I915_GEM_DOMAIN_CPU : 0;
return getDrm(graphicsAllocation.getRootDeviceIndex()).ioctl(DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain) == 0;
}
void *DrmMemoryManager::lockResourceImpl(GraphicsAllocation &graphicsAllocation) {
if (MemoryPool::LocalMemory == graphicsAllocation.getMemoryPool()) {
return lockResourceInLocalMemoryImpl(graphicsAllocation);
}
auto cpuPtr = graphicsAllocation.getUnderlyingBuffer();
if (cpuPtr != nullptr) {
auto success = setDomainCpu(graphicsAllocation, false);
DEBUG_BREAK_IF(!success);
(void)success;
return cpuPtr;
}
auto bo = static_cast<DrmAllocation &>(graphicsAllocation).getBO();
if (bo == nullptr)
return nullptr;
drm_i915_gem_mmap mmap_arg = {};
mmap_arg.handle = bo->peekHandle();
mmap_arg.size = bo->peekSize();
if (getDrm(graphicsAllocation.getRootDeviceIndex()).ioctl(DRM_IOCTL_I915_GEM_MMAP, &mmap_arg) != 0) {
return nullptr;
}
bo->setLockedAddress(reinterpret_cast<void *>(mmap_arg.addr_ptr));
auto success = setDomainCpu(graphicsAllocation, false);
DEBUG_BREAK_IF(!success);
(void)success;
return bo->peekLockedAddress();
}
void DrmMemoryManager::unlockResourceImpl(GraphicsAllocation &graphicsAllocation) {
if (MemoryPool::LocalMemory == graphicsAllocation.getMemoryPool()) {
return unlockResourceInLocalMemoryImpl(static_cast<DrmAllocation &>(graphicsAllocation).getBO());
}
auto cpuPtr = graphicsAllocation.getUnderlyingBuffer();
if (cpuPtr != nullptr) {
return;
}
auto bo = static_cast<DrmAllocation &>(graphicsAllocation).getBO();
if (bo == nullptr)
return;
releaseReservedCpuAddressRange(bo->peekLockedAddress(), bo->peekSize(), graphicsAllocation.getRootDeviceIndex());
bo->setLockedAddress(nullptr);
}
int DrmMemoryManager::obtainFdFromHandle(int boHandle, uint32_t rootDeviceindex) {
drm_prime_handle openFd = {0, 0, 0};
openFd.flags = DRM_CLOEXEC | DRM_RDWR;
openFd.handle = boHandle;
getDrm(rootDeviceindex).ioctl(DRM_IOCTL_PRIME_HANDLE_TO_FD, &openFd);
return openFd.fd;
}
uint32_t DrmMemoryManager::getDefaultDrmContextId(uint32_t rootDeviceIndex) const {
auto osContextLinux = static_cast<OsContextLinux *>(registeredEngines[defaultEngineIndex[rootDeviceIndex]].osContext);
return osContextLinux->getDrmContextIds()[0];
}
size_t DrmMemoryManager::getUserptrAlignment() {
auto alignment = MemoryConstants::allocationAlignment;
if (DebugManager.flags.ForceUserptrAlignment.get() != -1) {
alignment = DebugManager.flags.ForceUserptrAlignment.get() * MemoryConstants::kiloByte;
}
return alignment;
}
Drm &DrmMemoryManager::getDrm(uint32_t rootDeviceIndex) const {
return *this->executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->osInterface->get()->getDrm();
}
uint32_t DrmMemoryManager::getRootDeviceIndex(const Drm *drm) {
auto rootDeviceCount = this->executionEnvironment.rootDeviceEnvironments.size();
for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceCount; rootDeviceIndex++) {
if (&getDrm(rootDeviceIndex) == drm) {
return rootDeviceIndex;
}
}
return CommonConstants::unspecifiedDeviceIndex;
}
AddressRange DrmMemoryManager::reserveGpuAddress(size_t size, uint32_t rootDeviceIndex) {
auto gpuVa = acquireGpuRange(size, rootDeviceIndex, HeapIndex::HEAP_STANDARD);
return AddressRange{gpuVa, size};
}
void DrmMemoryManager::freeGpuAddress(AddressRange addressRange, uint32_t rootDeviceIndex) {
releaseGpuRange(reinterpret_cast<void *>(addressRange.address), addressRange.size, rootDeviceIndex);
}
std::unique_lock<std::mutex> DrmMemoryManager::acquireAllocLock() {
return std::unique_lock<std::mutex>(this->allocMutex);
}
std::vector<GraphicsAllocation *> &DrmMemoryManager::getSysMemAllocs() {
return this->sysMemAllocs;
}
std::vector<GraphicsAllocation *> &DrmMemoryManager::getLocalMemAllocs(uint32_t rootDeviceIndex) {
return this->localMemAllocs[rootDeviceIndex];
}
void DrmMemoryManager::registerSysMemAlloc(GraphicsAllocation *allocation) {
std::lock_guard<std::mutex> lock(this->allocMutex);
this->sysMemAllocs.push_back(allocation);
}
void DrmMemoryManager::registerLocalMemAlloc(GraphicsAllocation *allocation, uint32_t rootDeviceIndex) {
std::lock_guard<std::mutex> lock(this->allocMutex);
this->localMemAllocs[rootDeviceIndex].push_back(allocation);
}
void DrmMemoryManager::unregisterAllocation(GraphicsAllocation *allocation) {
std::lock_guard<std::mutex> lock(this->allocMutex);
sysMemAllocs.erase(std::remove(sysMemAllocs.begin(), sysMemAllocs.end(), allocation),
sysMemAllocs.end());
localMemAllocs[allocation->getRootDeviceIndex()].erase(std::remove(localMemAllocs[allocation->getRootDeviceIndex()].begin(),
localMemAllocs[allocation->getRootDeviceIndex()].end(),
allocation),
localMemAllocs[allocation->getRootDeviceIndex()].end());
}
void DrmMemoryManager::registerAllocationInOs(GraphicsAllocation *allocation) {
if (allocation && getDrm(allocation->getRootDeviceIndex()).resourceRegistrationEnabled()) {
auto drmAllocation = static_cast<DrmAllocation *>(allocation);
drmAllocation->registerBOBindExtHandle(&getDrm(drmAllocation->getRootDeviceIndex()));
if (isAllocationTypeToCapture(drmAllocation->getAllocationType())) {
drmAllocation->markForCapture();
}
}
}
} // namespace NEO