compute-runtime/unit_tests/program/program_data_tests.cpp

962 lines
42 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2017-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "core/unit_tests/compiler_interface/linker_mock.h"
#include "runtime/helpers/string.h"
#include "runtime/memory_manager/allocations_list.h"
#include "runtime/memory_manager/graphics_allocation.h"
#include "runtime/memory_manager/unified_memory_manager.h"
#include "runtime/platform/platform.h"
#include "runtime/program/program.h"
#include "test.h"
#include "unit_tests/mocks/mock_buffer.h"
#include "unit_tests/mocks/mock_csr.h"
#include "unit_tests/mocks/mock_program.h"
#include "unit_tests/program/program_with_source.h"
using namespace NEO;
using namespace iOpenCL;
static const char constValue[] = "11223344";
static const char globalValue[] = "55667788";
template <typename ProgramType>
class ProgramDataTestBase : public testing::Test,
public ContextFixture,
public PlatformFixture,
public ProgramFixture {
using ContextFixture::SetUp;
using PlatformFixture::SetUp;
public:
ProgramDataTestBase() {
memset(&programBinaryHeader, 0x00, sizeof(SProgramBinaryHeader));
pCurPtr = nullptr;
pProgramPatchList = nullptr;
programPatchListSize = 0;
}
void buildAndDecodeProgramPatchList();
void SetUp() override {
PlatformFixture::SetUp();
cl_device_id device = pPlatform->getDevice(0);
ContextFixture::SetUp(1, &device);
ProgramFixture::SetUp();
CreateProgramWithSource<ProgramType>(
pContext,
&device,
"CopyBuffer_simd8.cl");
}
void TearDown() override {
deleteDataReadFromFile(knownSource);
ProgramFixture::TearDown();
ContextFixture::TearDown();
PlatformFixture::TearDown();
}
size_t setupConstantAllocation() {
size_t constSize = strlen(constValue) + 1;
EXPECT_EQ(nullptr, pProgram->getConstantSurface());
SPatchAllocateConstantMemorySurfaceProgramBinaryInfo allocateConstMemorySurface;
allocateConstMemorySurface.Token = PATCH_TOKEN_ALLOCATE_CONSTANT_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateConstMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo) + constSize);
allocateConstMemorySurface.ConstantBufferIndex = 0;
allocateConstMemorySurface.InlineDataSize = static_cast<uint32_t>(constSize);
pAllocateConstMemorySurface.reset(new cl_char[allocateConstMemorySurface.Size]);
memcpy_s(pAllocateConstMemorySurface.get(),
sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo),
&allocateConstMemorySurface,
sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateConstMemorySurface.get() + sizeof(allocateConstMemorySurface), constSize, constValue, constSize);
pProgramPatchList = (void *)pAllocateConstMemorySurface.get();
programPatchListSize = allocateConstMemorySurface.Size;
return constSize;
}
size_t setupGlobalAllocation() {
size_t globalSize = strlen(globalValue) + 1;
EXPECT_EQ(nullptr, pProgram->getGlobalSurface());
SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo allocateGlobalMemorySurface;
allocateGlobalMemorySurface.Token = PATCH_TOKEN_ALLOCATE_GLOBAL_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateGlobalMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo) + globalSize);
allocateGlobalMemorySurface.GlobalBufferIndex = 0;
allocateGlobalMemorySurface.InlineDataSize = static_cast<uint32_t>(globalSize);
pAllocateGlobalMemorySurface.reset(new cl_char[allocateGlobalMemorySurface.Size]);
memcpy_s(pAllocateGlobalMemorySurface.get(),
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo),
&allocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateGlobalMemorySurface.get() + sizeof(allocateGlobalMemorySurface), globalSize, globalValue, globalSize);
pProgramPatchList = pAllocateGlobalMemorySurface.get();
programPatchListSize = allocateGlobalMemorySurface.Size;
return globalSize;
}
std::unique_ptr<cl_char[]> pAllocateConstMemorySurface;
std::unique_ptr<cl_char[]> pAllocateGlobalMemorySurface;
char *pCurPtr;
SProgramBinaryHeader programBinaryHeader;
void *pProgramPatchList;
uint32_t programPatchListSize;
cl_int patchlistDecodeErrorCode = 0;
bool allowDecodeFailure = false;
};
template <typename ProgramType>
void ProgramDataTestBase<ProgramType>::buildAndDecodeProgramPatchList() {
size_t headerSize = sizeof(SProgramBinaryHeader);
cl_int error = CL_SUCCESS;
programBinaryHeader.Magic = 0x494E5443;
programBinaryHeader.Version = CURRENT_ICBE_VERSION;
programBinaryHeader.Device = platformDevices[0]->platform.eRenderCoreFamily;
programBinaryHeader.GPUPointerSizeInBytes = 8;
programBinaryHeader.NumberOfKernels = 0;
programBinaryHeader.PatchListSize = programPatchListSize;
char *pProgramData = new char[headerSize + programBinaryHeader.PatchListSize];
ASSERT_NE(nullptr, pProgramData);
pCurPtr = pProgramData;
// program header
memset(pCurPtr, 0, sizeof(SProgramBinaryHeader));
*(SProgramBinaryHeader *)pCurPtr = programBinaryHeader;
pCurPtr += sizeof(SProgramBinaryHeader);
// patch list
memcpy_s(pCurPtr, programPatchListSize, pProgramPatchList, programPatchListSize);
pCurPtr += programPatchListSize;
//as we use mock compiler in unit test, replace the genBinary here.
pProgram->storeGenBinary(pProgramData, headerSize + programBinaryHeader.PatchListSize);
error = pProgram->processGenBinary();
patchlistDecodeErrorCode = error;
if (allowDecodeFailure == false) {
EXPECT_EQ(CL_SUCCESS, error);
}
delete[] pProgramData;
}
using ProgramDataTest = ProgramDataTestBase<NEO::Program>;
using MockProgramDataTest = ProgramDataTestBase<MockProgram>;
TEST_F(ProgramDataTest, EmptyProgramBinaryHeader) {
buildAndDecodeProgramPatchList();
}
TEST_F(ProgramDataTest, AllocateConstantMemorySurfaceProgramBinaryInfo) {
auto constSize = setupConstantAllocation();
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getConstantSurface());
EXPECT_EQ(0, memcmp(constValue, reinterpret_cast<char *>(pProgram->getConstantSurface()->getUnderlyingBuffer()), constSize));
}
TEST_F(MockProgramDataTest, whenGlobalConstantsAreExportedThenAllocateSurfacesAsSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
setupConstantAllocation();
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalConstants = true;
static_cast<MockProgram *>(pProgram)->linkerInput = std::move(mockLinkerInput);
buildAndDecodeProgramPatchList();
ASSERT_NE(nullptr, pProgram->getConstantSurface());
EXPECT_NE(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getConstantSurface()->getGpuAddress())));
}
TEST_F(MockProgramDataTest, whenGlobalConstantsAreNotExportedThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
setupConstantAllocation();
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalConstants = false;
static_cast<MockProgram *>(pProgram)->linkerInput = std::move(mockLinkerInput);
static_cast<MockProgram *>(pProgram)->context = nullptr;
buildAndDecodeProgramPatchList();
static_cast<MockProgram *>(pProgram)->context = pContext;
ASSERT_NE(nullptr, pProgram->getConstantSurface());
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getConstantSurface()->getGpuAddress())));
}
TEST_F(MockProgramDataTest, whenGlobalConstantsAreExportedButContextUnavailableThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
setupConstantAllocation();
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalConstants = true;
static_cast<MockProgram *>(pProgram)->linkerInput = std::move(mockLinkerInput);
static_cast<MockProgram *>(pProgram)->context = nullptr;
buildAndDecodeProgramPatchList();
static_cast<MockProgram *>(pProgram)->context = pContext;
ASSERT_NE(nullptr, pProgram->getConstantSurface());
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getConstantSurface()->getGpuAddress())));
}
TEST_F(MockProgramDataTest, whenGlobalVariablesAreExportedThenAllocateSurfacesAsSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
setupGlobalAllocation();
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalVariables = true;
static_cast<MockProgram *>(pProgram)->linkerInput = std::move(mockLinkerInput);
buildAndDecodeProgramPatchList();
ASSERT_NE(nullptr, pProgram->getGlobalSurface());
EXPECT_NE(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getGlobalSurface()->getGpuAddress())));
}
TEST_F(MockProgramDataTest, whenGlobalVariablesAreExportedButContextUnavailableThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
setupGlobalAllocation();
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalVariables = true;
static_cast<MockProgram *>(pProgram)->linkerInput = std::move(mockLinkerInput);
static_cast<MockProgram *>(pProgram)->context = nullptr;
buildAndDecodeProgramPatchList();
static_cast<MockProgram *>(pProgram)->context = pContext;
ASSERT_NE(nullptr, pProgram->getGlobalSurface());
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getGlobalSurface()->getGpuAddress())));
}
TEST_F(MockProgramDataTest, whenGlobalVariablesAreNotExportedThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
setupGlobalAllocation();
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalVariables = false;
static_cast<MockProgram *>(pProgram)->linkerInput = std::move(mockLinkerInput);
static_cast<MockProgram *>(pProgram)->context = nullptr;
buildAndDecodeProgramPatchList();
static_cast<MockProgram *>(pProgram)->context = pContext;
ASSERT_NE(nullptr, pProgram->getGlobalSurface());
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getGlobalSurface()->getGpuAddress())));
}
TEST_F(ProgramDataTest, givenConstantAllocationThatIsInUseByGpuWhenProgramIsBeingDestroyedThenItIsAddedToTemporaryAllocationList) {
setupConstantAllocation();
buildAndDecodeProgramPatchList();
auto &csr = *pPlatform->getDevice(0)->getDefaultEngine().commandStreamReceiver;
auto tagAddress = csr.getTagAddress();
auto constantSurface = pProgram->getConstantSurface();
constantSurface->updateTaskCount(*tagAddress + 1, csr.getOsContext().getContextId());
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
delete pProgram;
pProgram = nullptr;
EXPECT_FALSE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_EQ(constantSurface, csr.getTemporaryAllocations().peekHead());
}
TEST_F(ProgramDataTest, givenGlobalAllocationThatIsInUseByGpuWhenProgramIsBeingDestroyedThenItIsAddedToTemporaryAllocationList) {
setupGlobalAllocation();
buildAndDecodeProgramPatchList();
auto &csr = *pPlatform->getDevice(0)->getDefaultEngine().commandStreamReceiver;
auto tagAddress = csr.getTagAddress();
auto globalSurface = pProgram->getGlobalSurface();
globalSurface->updateTaskCount(*tagAddress + 1, csr.getOsContext().getContextId());
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
delete pProgram;
pProgram = nullptr;
EXPECT_FALSE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_EQ(globalSurface, csr.getTemporaryAllocations().peekHead());
}
TEST_F(ProgramDataTest, GivenDeviceForcing32BitMessagesWhenConstAllocationIsPresentInProgramBinariesThen32BitStorageIsAllocated) {
auto constSize = setupConstantAllocation();
this->pContext->getDevice(0)->getMemoryManager()->setForce32BitAllocations(true);
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getConstantSurface());
EXPECT_EQ(0, memcmp(constValue, reinterpret_cast<char *>(pProgram->getConstantSurface()->getUnderlyingBuffer()), constSize));
Add braces to avoid ambiguous 'else' For the new Linux/Fedora configuration with introduction of gcc 7.2, compilation of this file issues a new warning due to the correct diagnosis of an ambiguous 'else'. As warnings are being treated as errors, this aborts the build. The diagnostic: vpg-compute-neo/unit_tests/elflib/elflib_tests.cpp:123:12: error: suggest explicit braces to avoid ambiguous 'else' [-Werror=dangling-else] if (nonfailingAllocation == failureIndex) ^ Diagnosis: The diagnostic suggested that this: if (nonfailingAllocation == failureIndex) ASSERT_NE(nullptr, pWriter); should be changed to: if (nonfailingAllocation == failureIndex) { ASSERT_NE(nullptr, pWriter); } This is a valid suggestion. The same is true for EXPECT_EQ. Pick the files in repository ssh://gerrit-gfx.intel.com:29418/mirrors/github/google/googletest for tracing the definition. (There are many versions of gtest.h under the ufo tree). Starting in file include/gtest/gtest.h, the definition of ASSERT_NE can be traced back towards its origin as follows: ASSERT_NE include/gtest/gtest.h GTEST_ASSERT_NE include/gtest/gtest.h ASSERT_PRED_FORMAT2 include/gtest/gtest_pred_impl.h GTEST_PRED_FORMAT2_ include/gtest/gtest_pred_impl.h GTEST_ASSERT_ include/gtest/gtest_pred_impl.h where GTEST_ASSERT_ indeed *should* be enclosed in braces. GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) The correct fix would be to place the braces in the macro definition. However, as file gtest.h comes from Google, and as there are 37 different versions of it in the source tree, this workaround will address the macro invocations. Should it be desirable, it is left to others to correct gtest.h and friends. Change-Id: I870d38ba623fc7564f894c7b1ea7512b74244ee2 Signed-off-by: Dale Stimson <dale.b.stimson@intel.com>
2018-01-24 09:00:40 +08:00
if (is64bit) {
EXPECT_TRUE(pProgram->getConstantSurface()->is32BitAllocation());
Add braces to avoid ambiguous 'else' For the new Linux/Fedora configuration with introduction of gcc 7.2, compilation of this file issues a new warning due to the correct diagnosis of an ambiguous 'else'. As warnings are being treated as errors, this aborts the build. The diagnostic: vpg-compute-neo/unit_tests/elflib/elflib_tests.cpp:123:12: error: suggest explicit braces to avoid ambiguous 'else' [-Werror=dangling-else] if (nonfailingAllocation == failureIndex) ^ Diagnosis: The diagnostic suggested that this: if (nonfailingAllocation == failureIndex) ASSERT_NE(nullptr, pWriter); should be changed to: if (nonfailingAllocation == failureIndex) { ASSERT_NE(nullptr, pWriter); } This is a valid suggestion. The same is true for EXPECT_EQ. Pick the files in repository ssh://gerrit-gfx.intel.com:29418/mirrors/github/google/googletest for tracing the definition. (There are many versions of gtest.h under the ufo tree). Starting in file include/gtest/gtest.h, the definition of ASSERT_NE can be traced back towards its origin as follows: ASSERT_NE include/gtest/gtest.h GTEST_ASSERT_NE include/gtest/gtest.h ASSERT_PRED_FORMAT2 include/gtest/gtest_pred_impl.h GTEST_PRED_FORMAT2_ include/gtest/gtest_pred_impl.h GTEST_ASSERT_ include/gtest/gtest_pred_impl.h where GTEST_ASSERT_ indeed *should* be enclosed in braces. GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) The correct fix would be to place the braces in the macro definition. However, as file gtest.h comes from Google, and as there are 37 different versions of it in the source tree, this workaround will address the macro invocations. Should it be desirable, it is left to others to correct gtest.h and friends. Change-Id: I870d38ba623fc7564f894c7b1ea7512b74244ee2 Signed-off-by: Dale Stimson <dale.b.stimson@intel.com>
2018-01-24 09:00:40 +08:00
}
}
TEST_F(ProgramDataTest, AllocateGlobalMemorySurfaceProgramBinaryInfo) {
auto globalSize = setupGlobalAllocation();
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getGlobalSurface());
EXPECT_EQ(0, memcmp(globalValue, reinterpret_cast<char *>(pProgram->getGlobalSurface()->getUnderlyingBuffer()), globalSize));
}
TEST_F(ProgramDataTest, GlobalPointerProgramBinaryInfo) {
char globalValue;
char *pGlobalPointerValue = &globalValue;
size_t globalPointerSize = sizeof(pGlobalPointerValue);
char *ptr;
// simulate case when global surface was not allocated
EXPECT_EQ(nullptr, pProgram->getGlobalSurface());
SPatchGlobalPointerProgramBinaryInfo globalPointer;
globalPointer.Token = PATCH_TOKEN_GLOBAL_POINTER_PROGRAM_BINARY_INFO;
globalPointer.Size = sizeof(SPatchGlobalPointerProgramBinaryInfo);
globalPointer.GlobalBufferIndex = 0;
globalPointer.GlobalPointerOffset = 0;
globalPointer.BufferIndex = 0;
globalPointer.BufferType = PROGRAM_SCOPE_GLOBAL_BUFFER;
cl_char *pGlobalPointer = new cl_char[globalPointer.Size];
memcpy_s(pGlobalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo),
&globalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo));
pProgramPatchList = (void *)pGlobalPointer;
programPatchListSize = globalPointer.Size;
this->allowDecodeFailure = true;
buildAndDecodeProgramPatchList();
EXPECT_EQ(nullptr, pProgram->getGlobalSurface());
EXPECT_EQ(CL_INVALID_BINARY, this->patchlistDecodeErrorCode);
this->allowDecodeFailure = false;
delete[] pGlobalPointer;
// regular case - global surface exists
SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo allocateGlobalMemorySurface;
allocateGlobalMemorySurface.Token = PATCH_TOKEN_ALLOCATE_GLOBAL_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateGlobalMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo) + globalPointerSize);
allocateGlobalMemorySurface.GlobalBufferIndex = 0;
allocateGlobalMemorySurface.InlineDataSize = static_cast<uint32_t>(globalPointerSize);
cl_char *pAllocateGlobalMemorySurface = new cl_char[allocateGlobalMemorySurface.Size];
memcpy_s(pAllocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo),
&allocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateGlobalMemorySurface + sizeof(allocateGlobalMemorySurface), globalPointerSize, &pGlobalPointerValue, globalPointerSize);
pProgramPatchList = (void *)pAllocateGlobalMemorySurface;
programPatchListSize = allocateGlobalMemorySurface.Size;
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getGlobalSurface());
auto globalSurface = pProgram->getGlobalSurface();
globalSurface->setCpuPtrAndGpuAddress(globalSurface->getUnderlyingBuffer(), globalSurface->getGpuAddress() + 1);
EXPECT_NE(reinterpret_cast<uint64_t>(globalSurface->getUnderlyingBuffer()), globalSurface->getGpuAddress());
EXPECT_EQ(0, memcmp(&pGlobalPointerValue, reinterpret_cast<char *>(globalSurface->getUnderlyingBuffer()), globalPointerSize));
delete[] pAllocateGlobalMemorySurface;
// global pointer to global surface - simulate invalid GlobalBufferIndex
globalPointer.Token = PATCH_TOKEN_GLOBAL_POINTER_PROGRAM_BINARY_INFO;
globalPointer.Size = sizeof(SPatchGlobalPointerProgramBinaryInfo);
globalPointer.GlobalBufferIndex = 10;
globalPointer.GlobalPointerOffset = 0;
globalPointer.BufferIndex = 0;
globalPointer.BufferType = PROGRAM_SCOPE_GLOBAL_BUFFER;
pGlobalPointer = new cl_char[globalPointer.Size];
memcpy_s(pGlobalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo),
&globalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo));
pProgramPatchList = (void *)pGlobalPointer;
programPatchListSize = globalPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(&pGlobalPointerValue, reinterpret_cast<char *>(globalSurface->getUnderlyingBuffer()), globalPointerSize));
delete[] pGlobalPointer;
// global pointer to global surface - simulate invalid BufferIndex
globalPointer.Token = PATCH_TOKEN_GLOBAL_POINTER_PROGRAM_BINARY_INFO;
globalPointer.Size = sizeof(SPatchGlobalPointerProgramBinaryInfo);
globalPointer.GlobalBufferIndex = 0;
globalPointer.GlobalPointerOffset = 0;
globalPointer.BufferIndex = 10;
globalPointer.BufferType = PROGRAM_SCOPE_GLOBAL_BUFFER;
pGlobalPointer = new cl_char[globalPointer.Size];
memcpy_s(pGlobalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo),
&globalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo));
pProgramPatchList = (void *)pGlobalPointer;
programPatchListSize = globalPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(&pGlobalPointerValue, reinterpret_cast<char *>(globalSurface->getUnderlyingBuffer()), globalPointerSize));
delete[] pGlobalPointer;
// global pointer to global surface - simulate invalid BufferType
globalPointer.Token = PATCH_TOKEN_GLOBAL_POINTER_PROGRAM_BINARY_INFO;
globalPointer.Size = sizeof(SPatchGlobalPointerProgramBinaryInfo);
globalPointer.GlobalBufferIndex = 0;
globalPointer.GlobalPointerOffset = 0;
globalPointer.BufferIndex = 0;
globalPointer.BufferType = PROGRAM_SCOPE_CONSTANT_BUFFER;
pGlobalPointer = new cl_char[globalPointer.Size];
memcpy_s(pGlobalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo),
&globalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo));
pProgramPatchList = (void *)pGlobalPointer;
programPatchListSize = globalPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(&pGlobalPointerValue, reinterpret_cast<char *>(globalSurface->getUnderlyingBuffer()), globalPointerSize));
delete[] pGlobalPointer;
// regular case - global pointer to global surface - all parameters valid
globalPointer.Token = PATCH_TOKEN_GLOBAL_POINTER_PROGRAM_BINARY_INFO;
globalPointer.Size = sizeof(SPatchGlobalPointerProgramBinaryInfo);
globalPointer.GlobalBufferIndex = 0;
globalPointer.GlobalPointerOffset = 0;
globalPointer.BufferIndex = 0;
globalPointer.BufferType = PROGRAM_SCOPE_GLOBAL_BUFFER;
pGlobalPointer = new cl_char[globalPointer.Size];
memcpy_s(pGlobalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo),
&globalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo));
pProgramPatchList = (void *)pGlobalPointer;
programPatchListSize = globalPointer.Size;
buildAndDecodeProgramPatchList();
if (!globalSurface->is32BitAllocation()) {
EXPECT_NE(0, memcmp(&pGlobalPointerValue, reinterpret_cast<char *>(globalSurface->getUnderlyingBuffer()), globalPointerSize));
ptr = pGlobalPointerValue + (globalSurface->getGpuAddressToPatch());
EXPECT_EQ(0, memcmp(&ptr, reinterpret_cast<char *>(globalSurface->getUnderlyingBuffer()), globalPointerSize));
}
delete[] pGlobalPointer;
}
TEST_F(ProgramDataTest, Given32BitDeviceWhenGlobalMemorySurfaceIsPresentThenItHas32BitStorage) {
char globalValue[] = "55667788";
size_t globalSize = strlen(globalValue) + 1;
this->pContext->getDevice(0)->getMemoryManager()->setForce32BitAllocations(true);
EXPECT_EQ(nullptr, pProgram->getGlobalSurface());
SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo allocateGlobalMemorySurface;
allocateGlobalMemorySurface.Token = PATCH_TOKEN_ALLOCATE_GLOBAL_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateGlobalMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo) + globalSize);
allocateGlobalMemorySurface.GlobalBufferIndex = 0;
allocateGlobalMemorySurface.InlineDataSize = static_cast<uint32_t>(globalSize);
cl_char *pAllocateGlobalMemorySurface = new cl_char[allocateGlobalMemorySurface.Size];
memcpy_s(pAllocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo),
&allocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateGlobalMemorySurface + sizeof(allocateGlobalMemorySurface), globalSize, globalValue, globalSize);
pProgramPatchList = (void *)pAllocateGlobalMemorySurface;
programPatchListSize = allocateGlobalMemorySurface.Size;
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getGlobalSurface());
EXPECT_EQ(0, memcmp(globalValue, reinterpret_cast<char *>(pProgram->getGlobalSurface()->getUnderlyingBuffer()), globalSize));
Add braces to avoid ambiguous 'else' For the new Linux/Fedora configuration with introduction of gcc 7.2, compilation of this file issues a new warning due to the correct diagnosis of an ambiguous 'else'. As warnings are being treated as errors, this aborts the build. The diagnostic: vpg-compute-neo/unit_tests/elflib/elflib_tests.cpp:123:12: error: suggest explicit braces to avoid ambiguous 'else' [-Werror=dangling-else] if (nonfailingAllocation == failureIndex) ^ Diagnosis: The diagnostic suggested that this: if (nonfailingAllocation == failureIndex) ASSERT_NE(nullptr, pWriter); should be changed to: if (nonfailingAllocation == failureIndex) { ASSERT_NE(nullptr, pWriter); } This is a valid suggestion. The same is true for EXPECT_EQ. Pick the files in repository ssh://gerrit-gfx.intel.com:29418/mirrors/github/google/googletest for tracing the definition. (There are many versions of gtest.h under the ufo tree). Starting in file include/gtest/gtest.h, the definition of ASSERT_NE can be traced back towards its origin as follows: ASSERT_NE include/gtest/gtest.h GTEST_ASSERT_NE include/gtest/gtest.h ASSERT_PRED_FORMAT2 include/gtest/gtest_pred_impl.h GTEST_PRED_FORMAT2_ include/gtest/gtest_pred_impl.h GTEST_ASSERT_ include/gtest/gtest_pred_impl.h where GTEST_ASSERT_ indeed *should* be enclosed in braces. GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) The correct fix would be to place the braces in the macro definition. However, as file gtest.h comes from Google, and as there are 37 different versions of it in the source tree, this workaround will address the macro invocations. Should it be desirable, it is left to others to correct gtest.h and friends. Change-Id: I870d38ba623fc7564f894c7b1ea7512b74244ee2 Signed-off-by: Dale Stimson <dale.b.stimson@intel.com>
2018-01-24 09:00:40 +08:00
if (is64bit) {
EXPECT_TRUE(pProgram->getGlobalSurface()->is32BitAllocation());
Add braces to avoid ambiguous 'else' For the new Linux/Fedora configuration with introduction of gcc 7.2, compilation of this file issues a new warning due to the correct diagnosis of an ambiguous 'else'. As warnings are being treated as errors, this aborts the build. The diagnostic: vpg-compute-neo/unit_tests/elflib/elflib_tests.cpp:123:12: error: suggest explicit braces to avoid ambiguous 'else' [-Werror=dangling-else] if (nonfailingAllocation == failureIndex) ^ Diagnosis: The diagnostic suggested that this: if (nonfailingAllocation == failureIndex) ASSERT_NE(nullptr, pWriter); should be changed to: if (nonfailingAllocation == failureIndex) { ASSERT_NE(nullptr, pWriter); } This is a valid suggestion. The same is true for EXPECT_EQ. Pick the files in repository ssh://gerrit-gfx.intel.com:29418/mirrors/github/google/googletest for tracing the definition. (There are many versions of gtest.h under the ufo tree). Starting in file include/gtest/gtest.h, the definition of ASSERT_NE can be traced back towards its origin as follows: ASSERT_NE include/gtest/gtest.h GTEST_ASSERT_NE include/gtest/gtest.h ASSERT_PRED_FORMAT2 include/gtest/gtest_pred_impl.h GTEST_PRED_FORMAT2_ include/gtest/gtest_pred_impl.h GTEST_ASSERT_ include/gtest/gtest_pred_impl.h where GTEST_ASSERT_ indeed *should* be enclosed in braces. GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) The correct fix would be to place the braces in the macro definition. However, as file gtest.h comes from Google, and as there are 37 different versions of it in the source tree, this workaround will address the macro invocations. Should it be desirable, it is left to others to correct gtest.h and friends. Change-Id: I870d38ba623fc7564f894c7b1ea7512b74244ee2 Signed-off-by: Dale Stimson <dale.b.stimson@intel.com>
2018-01-24 09:00:40 +08:00
}
delete[] pAllocateGlobalMemorySurface;
}
TEST_F(ProgramDataTest, ConstantPointerProgramBinaryInfo) {
const char *pConstantData = "01234567";
size_t constantDataLen = strlen(pConstantData);
// simulate case when constant surface was not allocated
EXPECT_EQ(nullptr, pProgram->getConstantSurface());
SPatchConstantPointerProgramBinaryInfo constantPointer;
constantPointer.Token = PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO;
constantPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
constantPointer.ConstantBufferIndex = 0;
constantPointer.ConstantPointerOffset = 0;
constantPointer.BufferIndex = 0;
constantPointer.BufferType = PROGRAM_SCOPE_CONSTANT_BUFFER;
cl_char *pConstantPointer = new cl_char[constantPointer.Size];
memcpy_s(pConstantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo),
&constantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo));
pProgramPatchList = (void *)pConstantPointer;
programPatchListSize = constantPointer.Size;
this->allowDecodeFailure = true;
buildAndDecodeProgramPatchList();
EXPECT_EQ(nullptr, pProgram->getConstantSurface());
EXPECT_EQ(CL_INVALID_BINARY, this->patchlistDecodeErrorCode);
this->allowDecodeFailure = false;
delete[] pConstantPointer;
// regular case - constant surface exists
SPatchAllocateConstantMemorySurfaceProgramBinaryInfo allocateConstMemorySurface;
allocateConstMemorySurface.Token = PATCH_TOKEN_ALLOCATE_CONSTANT_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
// note : + sizeof(uint64_t) is to accomodate for constant buffer offset
allocateConstMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo) + constantDataLen + sizeof(uint64_t));
allocateConstMemorySurface.ConstantBufferIndex = 0;
allocateConstMemorySurface.InlineDataSize = static_cast<uint32_t>(constantDataLen + sizeof(uint64_t));
auto pAllocateConstMemorySurface = std::unique_ptr<char>(new char[allocateConstMemorySurface.Size]);
// copy the token header
memcpy_s(pAllocateConstMemorySurface.get(),
sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo),
&allocateConstMemorySurface,
sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo));
// copy the constant data
memcpy_s((char *)pAllocateConstMemorySurface.get() + sizeof(allocateConstMemorySurface), constantDataLen, pConstantData, constantDataLen);
// zero-out the constant buffer offset (will be patched during gen binary decoding)
size_t constantBufferOffsetPatchOffset = constantDataLen;
*(uint64_t *)((char *)pAllocateConstMemorySurface.get() + sizeof(allocateConstMemorySurface) + constantBufferOffsetPatchOffset) = 0U;
pProgramPatchList = (void *)pAllocateConstMemorySurface.get();
programPatchListSize = allocateConstMemorySurface.Size;
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getConstantSurface());
auto constantSurface = pProgram->getConstantSurface();
constantSurface->setCpuPtrAndGpuAddress(constantSurface->getUnderlyingBuffer(), constantSurface->getGpuAddress() + 1);
EXPECT_NE(reinterpret_cast<uint64_t>(constantSurface->getUnderlyingBuffer()), constantSurface->getGpuAddress());
EXPECT_EQ(0, memcmp(pConstantData, reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()), constantDataLen));
// there was no PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO, so constant buffer offset should be still 0
EXPECT_EQ(0U, *(uint64_t *)(reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()) + constantBufferOffsetPatchOffset));
// once finally constant buffer offset gets patched - the patch value depends on the bitness of the compute kernel
auto patchOffsetValueStorage = std::unique_ptr<uint64_t>(new uint64_t); // 4bytes for 32-bit compute kernel, full 8byte for 64-bit compute kernel
uint64_t *patchOffsetValue = patchOffsetValueStorage.get();
if (constantSurface->is32BitAllocation() || (sizeof(void *) == 4)) {
reinterpret_cast<uint32_t *>(patchOffsetValue)[0] = static_cast<uint32_t>(constantSurface->getGpuAddressToPatch());
reinterpret_cast<uint32_t *>(patchOffsetValue)[1] = 0; // just pad with 0
} else {
// full 8 bytes
*reinterpret_cast<uint64_t *>(patchOffsetValue) = constantSurface->getGpuAddressToPatch();
}
// constant pointer to constant surface - simulate invalid GlobalBufferIndex
constantPointer.Token = PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO;
constantPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
constantPointer.ConstantBufferIndex = 10;
constantPointer.ConstantPointerOffset = 0;
constantPointer.BufferIndex = 0;
constantPointer.BufferType = PROGRAM_SCOPE_CONSTANT_BUFFER;
pConstantPointer = new cl_char[constantPointer.Size];
memcpy_s(pConstantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo),
&constantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo));
pProgramPatchList = (void *)pConstantPointer;
programPatchListSize = constantPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(pConstantData, reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()), constantDataLen));
// check that constant pointer offset was not patched
EXPECT_EQ(0U, *(uint64_t *)(reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()) + constantBufferOffsetPatchOffset));
// reset the constant pointer offset
*(uint64_t *)((char *)constantSurface->getUnderlyingBuffer() + constantBufferOffsetPatchOffset) = 0U;
delete[] pConstantPointer;
// constant pointer to constant surface - simulate invalid BufferIndex
constantPointer.Token = PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO;
constantPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
constantPointer.ConstantBufferIndex = 0;
constantPointer.ConstantPointerOffset = 0;
constantPointer.BufferIndex = 10;
constantPointer.BufferType = PROGRAM_SCOPE_CONSTANT_BUFFER;
pConstantPointer = new cl_char[constantPointer.Size];
memcpy_s(pConstantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo),
&constantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo));
pProgramPatchList = (void *)pConstantPointer;
programPatchListSize = constantPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(pConstantData, reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()), constantDataLen));
// check that constant pointer offset was not patched
EXPECT_EQ(0U, *(uint64_t *)(reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()) + constantBufferOffsetPatchOffset));
// reset the constant pointer offset
*(uint64_t *)((char *)constantSurface->getUnderlyingBuffer() + constantBufferOffsetPatchOffset) = 0U;
delete[] pConstantPointer;
// constant pointer to constant surface - simulate invalid BufferType
constantPointer.Token = PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO;
constantPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
constantPointer.ConstantBufferIndex = 0;
constantPointer.ConstantPointerOffset = 0;
constantPointer.BufferIndex = 0;
constantPointer.BufferType = PROGRAM_SCOPE_GLOBAL_BUFFER;
pConstantPointer = new cl_char[constantPointer.Size];
memcpy_s(pConstantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo),
&constantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo));
pProgramPatchList = (void *)pConstantPointer;
programPatchListSize = constantPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(pConstantData, reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()), constantDataLen));
// check that constant pointer offset was not patched
EXPECT_EQ(0U, *(uint64_t *)(reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()) + constantBufferOffsetPatchOffset));
// reset the constant pointer offset
*(uint64_t *)((char *)constantSurface->getUnderlyingBuffer() + constantBufferOffsetPatchOffset) = 0U;
delete[] pConstantPointer;
// regular case - constant pointer to constant surface - all parameters valid
constantPointer.Token = PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO;
constantPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
constantPointer.ConstantBufferIndex = 0;
constantPointer.ConstantPointerOffset = constantDataLen;
constantPointer.BufferIndex = 0;
constantPointer.BufferType = PROGRAM_SCOPE_CONSTANT_BUFFER;
pConstantPointer = new cl_char[constantPointer.Size];
memcpy_s(pConstantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo),
&constantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo));
pProgramPatchList = (void *)pConstantPointer;
programPatchListSize = constantPointer.Size;
buildAndDecodeProgramPatchList();
EXPECT_EQ(0, memcmp(pConstantData, reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()), constantDataLen));
// check that constant pointer offset was patched
EXPECT_EQ(*reinterpret_cast<uint64_t *>(patchOffsetValue), *(uint64_t *)(reinterpret_cast<char *>(constantSurface->getUnderlyingBuffer()) + constantBufferOffsetPatchOffset));
delete[] pConstantPointer;
}
TEST_F(ProgramDataTest, GivenProgramWith32bitPointerOptWhenProgramScopeConstantBufferPatchTokensAreReadThenConstantPointerOffsetIsPatchedWith32bitPointer) {
cl_device_id device = pPlatform->getDevice(0);
CreateProgramWithSource<MockProgram>(pContext, &device, "CopyBuffer_simd8.cl");
ASSERT_NE(nullptr, pProgram);
MockProgram *prog = static_cast<MockProgram *>(pProgram);
// simulate case when constant surface was not allocated
EXPECT_EQ(nullptr, prog->getConstantSurface());
SPatchConstantPointerProgramBinaryInfo constantPointer;
constantPointer.Token = PATCH_TOKEN_CONSTANT_POINTER_PROGRAM_BINARY_INFO;
constantPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
constantPointer.ConstantBufferIndex = 0;
constantPointer.ConstantPointerOffset = 0;
constantPointer.BufferIndex = 0;
constantPointer.BufferType = PROGRAM_SCOPE_CONSTANT_BUFFER;
auto pConstantPointer = std::unique_ptr<char[]>(new char[constantPointer.Size]);
memcpy_s(pConstantPointer.get(),
sizeof(SPatchConstantPointerProgramBinaryInfo),
&constantPointer,
sizeof(SPatchConstantPointerProgramBinaryInfo));
pProgramPatchList = (void *)pConstantPointer.get();
programPatchListSize = constantPointer.Size;
MockBuffer constantSurface;
ASSERT_LT(8U, constantSurface.getSize());
prog->setConstantSurface(&constantSurface.mockGfxAllocation);
constantSurface.mockGfxAllocation.set32BitAllocation(true);
uint32_t *constantSurfaceStorage = reinterpret_cast<uint32_t *>(constantSurface.getCpuAddress());
uint32_t sentinel = 0x17192329U;
constantSurfaceStorage[0] = 0U;
constantSurfaceStorage[1] = sentinel;
buildAndDecodeProgramPatchList();
uint32_t expectedAddr = static_cast<uint32_t>(constantSurface.getGraphicsAllocation()->getGpuAddressToPatch());
EXPECT_EQ(expectedAddr, constantSurfaceStorage[0]);
EXPECT_EQ(sentinel, constantSurfaceStorage[1]);
constantSurface.mockGfxAllocation.set32BitAllocation(false);
prog->setConstantSurface(nullptr);
}
TEST_F(ProgramDataTest, GivenProgramWith32bitPointerOptWhenProgramScopeGlobalPointerPatchTokensAreReadThenGlobalPointerOffsetIsPatchedWith32bitPointer) {
cl_device_id device = pPlatform->getDevice(0);
CreateProgramWithSource<MockProgram>(pContext, &device, "CopyBuffer_simd8.cl");
ASSERT_NE(nullptr, pProgram);
MockProgram *prog = static_cast<MockProgram *>(pProgram);
// simulate case when constant surface was not allocated
EXPECT_EQ(nullptr, prog->getConstantSurface());
SPatchGlobalPointerProgramBinaryInfo globalPointer;
globalPointer.Token = PATCH_TOKEN_GLOBAL_POINTER_PROGRAM_BINARY_INFO;
globalPointer.Size = sizeof(SPatchConstantPointerProgramBinaryInfo);
globalPointer.GlobalBufferIndex = 0;
globalPointer.GlobalPointerOffset = 0;
globalPointer.BufferIndex = 0;
globalPointer.BufferType = PROGRAM_SCOPE_GLOBAL_BUFFER;
auto pGlobalPointer = std::unique_ptr<char[]>(new char[globalPointer.Size]);
memcpy_s(pGlobalPointer.get(),
sizeof(SPatchGlobalPointerProgramBinaryInfo),
&globalPointer,
sizeof(SPatchGlobalPointerProgramBinaryInfo));
pProgramPatchList = (void *)pGlobalPointer.get();
programPatchListSize = globalPointer.Size;
MockBuffer globalSurface;
ASSERT_LT(8U, globalSurface.getSize());
prog->setGlobalSurface(&globalSurface.mockGfxAllocation);
globalSurface.mockGfxAllocation.set32BitAllocation(true);
uint32_t *globalSurfaceStorage = reinterpret_cast<uint32_t *>(globalSurface.getCpuAddress());
uint32_t sentinel = 0x17192329U;
globalSurfaceStorage[0] = 0U;
globalSurfaceStorage[1] = sentinel;
buildAndDecodeProgramPatchList();
uint32_t expectedAddr = static_cast<uint32_t>(globalSurface.getGraphicsAllocation()->getGpuAddressToPatch());
EXPECT_EQ(expectedAddr, globalSurfaceStorage[0]);
EXPECT_EQ(sentinel, globalSurfaceStorage[1]);
globalSurface.mockGfxAllocation.set32BitAllocation(false);
prog->setGlobalSurface(nullptr);
}
TEST_F(ProgramDataTest, givenSymbolTablePatchTokenThenLinkerInputIsCreated) {
SPatchFunctionTableInfo token;
token.Token = PATCH_TOKEN_PROGRAM_SYMBOL_TABLE;
token.Size = static_cast<uint32_t>(sizeof(SPatchFunctionTableInfo));
token.NumEntries = 0;
pProgramPatchList = &token;
programPatchListSize = token.Size;
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getLinkerInput());
}
TEST(ProgramLinkBinaryTest, whenLinkerInputEmptyThenLinkSuccessful) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
NEO::ExecutionEnvironment env;
MockProgram program{env};
program.linkerInput = std::move(linkerInput);
auto ret = program.linkBinary();
EXPECT_EQ(CL_SUCCESS, ret);
}
TEST(ProgramLinkBinaryTest, whenLinkerUnresolvedExternalThenLinkFailedAndBuildLogAvailable) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
NEO::LinkerInput::RelocationInfo relocation = {};
relocation.symbolName = "A";
relocation.offset = 0;
linkerInput->relocations.push_back(NEO::LinkerInput::Relocations{relocation});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
NEO::ExecutionEnvironment env;
MockProgram program{env};
KernelInfo kernelInfo = {};
kernelInfo.name = "onlyKernel";
std::vector<char> kernelHeap;
kernelHeap.resize(32, 7);
kernelInfo.heapInfo.pKernelHeap = kernelHeap.data();
iOpenCL::SKernelBinaryHeaderCommon kernelHeader = {};
kernelHeader.KernelHeapSize = static_cast<uint32_t>(kernelHeap.size());
kernelInfo.heapInfo.pKernelHeader = &kernelHeader;
program.getKernelInfoArray().push_back(&kernelInfo);
program.linkerInput = std::move(linkerInput);
EXPECT_EQ(nullptr, program.getBuildLog(nullptr));
auto ret = program.linkBinary();
EXPECT_NE(CL_SUCCESS, ret);
program.getKernelInfoArray().clear();
auto buildLog = program.getBuildLog(nullptr);
ASSERT_NE(nullptr, buildLog);
Linker::UnresolvedExternals expectedUnresolvedExternals;
expectedUnresolvedExternals.push_back(Linker::UnresolvedExternal{relocation, 0, false});
auto expectedError = constructLinkerErrorMessage(expectedUnresolvedExternals, std::vector<std::string>{"kernel : " + kernelInfo.name});
EXPECT_THAT(buildLog, ::testing::HasSubstr(expectedError));
}
TEST(ProgramLinkBinaryTest, whenPrepareLinkerInputStorageGetsCalledTwiceThenLinkerInputStorageIsReused) {
ExecutionEnvironment execEnv;
MockProgram program{execEnv};
EXPECT_EQ(nullptr, program.linkerInput);
program.prepareLinkerInputStorage();
EXPECT_NE(nullptr, program.linkerInput);
auto prevLinkerInput = program.getLinkerInput();
program.prepareLinkerInputStorage();
EXPECT_EQ(prevLinkerInput, program.linkerInput.get());
}
TEST_F(ProgramDataTest, whenLinkerInputValidThenIsaIsProperlyPatched) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->symbols["A"] = NEO::SymbolInfo{4U, 4U, NEO::SymbolInfo::GlobalVariable};
linkerInput->symbols["B"] = NEO::SymbolInfo{8U, 4U, NEO::SymbolInfo::GlobalConstant};
linkerInput->symbols["C"] = NEO::SymbolInfo{16U, 4U, NEO::SymbolInfo::Function};
linkerInput->relocations.push_back({NEO::LinkerInput::RelocationInfo{"A", 8U}, NEO::LinkerInput::RelocationInfo{"B", 16U}, NEO::LinkerInput::RelocationInfo{"C", 24U}});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
linkerInput->exportedFunctionsSegmentId = 0;
NEO::ExecutionEnvironment env;
MockProgram program{env};
KernelInfo kernelInfo = {};
kernelInfo.name = "onlyKernel";
std::vector<char> kernelHeap;
kernelHeap.resize(32, 7);
kernelInfo.heapInfo.pKernelHeap = kernelHeap.data();
iOpenCL::SKernelBinaryHeaderCommon kernelHeader = {};
kernelHeader.KernelHeapSize = static_cast<uint32_t>(kernelHeap.size());
kernelInfo.heapInfo.pKernelHeader = &kernelHeader;
MockGraphicsAllocation kernelIsa(kernelHeap.data(), kernelHeap.size());
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray().push_back(&kernelInfo);
program.linkerInput = std::move(linkerInput);
program.exportedFunctionsSurface = kernelInfo.kernelAllocation;
std::vector<char> globalVariablesBuffer;
globalVariablesBuffer.resize(32, 7);
std::vector<char> globalConstantsBuffer;
globalConstantsBuffer.resize(32, 7);
program.globalSurface = new MockGraphicsAllocation(globalVariablesBuffer.data(), globalVariablesBuffer.size());
program.constantSurface = new MockGraphicsAllocation(globalConstantsBuffer.data(), globalConstantsBuffer.size());
program.pDevice = this->pContext->getDevice(0);
auto ret = program.linkBinary();
EXPECT_EQ(CL_SUCCESS, ret);
linkerInput.reset(static_cast<WhiteBox<LinkerInput> *>(program.linkerInput.release()));
for (size_t i = 0; i < linkerInput->relocations.size(); ++i) {
auto expectedPatch = program.globalSurface->getGpuAddress() + linkerInput->symbols[linkerInput->relocations[0][0].symbolName].offset;
auto relocationAddress = kernelHeap.data() + linkerInput->relocations[0][0].offset;
EXPECT_EQ(static_cast<uintptr_t>(expectedPatch), *reinterpret_cast<uintptr_t *>(relocationAddress)) << i;
}
program.getKernelInfoArray().clear();
delete program.globalSurface;
program.globalSurface = nullptr;
delete program.constantSurface;
program.constantSurface = nullptr;
}
TEST_F(ProgramDataTest, whenRelocationsAreNotNeededThenIsaIsPreserved) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->symbols["A"] = NEO::SymbolInfo{4U, 4U, NEO::SymbolInfo::GlobalVariable};
linkerInput->symbols["B"] = NEO::SymbolInfo{8U, 4U, NEO::SymbolInfo::GlobalConstant};
NEO::ExecutionEnvironment env;
MockProgram program{env};
KernelInfo kernelInfo = {};
kernelInfo.name = "onlyKernel";
std::vector<char> kernelHeapData;
kernelHeapData.resize(32, 7);
std::vector<char> kernelHeap(kernelHeapData.begin(), kernelHeapData.end());
kernelInfo.heapInfo.pKernelHeap = kernelHeap.data();
iOpenCL::SKernelBinaryHeaderCommon kernelHeader = {};
kernelHeader.KernelHeapSize = static_cast<uint32_t>(kernelHeap.size());
kernelInfo.heapInfo.pKernelHeader = &kernelHeader;
MockGraphicsAllocation kernelIsa(kernelHeap.data(), kernelHeap.size());
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray().push_back(&kernelInfo);
program.linkerInput = std::move(linkerInput);
std::vector<char> globalVariablesBuffer;
globalVariablesBuffer.resize(32, 7);
std::vector<char> globalConstantsBuffer;
globalConstantsBuffer.resize(32, 7);
program.globalSurface = new MockGraphicsAllocation(globalVariablesBuffer.data(), globalVariablesBuffer.size());
program.constantSurface = new MockGraphicsAllocation(globalConstantsBuffer.data(), globalConstantsBuffer.size());
program.pDevice = this->pContext->getDevice(0);
auto ret = program.linkBinary();
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_EQ(kernelHeapData, kernelHeap);
program.getKernelInfoArray().clear();
delete program.globalSurface;
program.globalSurface = nullptr;
delete program.constantSurface;
program.constantSurface = nullptr;
}