compute-runtime/opencl/source/mem_obj/image.cpp

1424 lines
60 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2018-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/source/mem_obj/image.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/gmm_helper/gmm.h"
#include "shared/source/gmm_helper/resource_info.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/utilities/compiler_support.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/cl_device/cl_device_get_cap.inl"
#include "opencl/source/command_queue/command_queue.h"
#include "opencl/source/context/context.h"
#include "opencl/source/helpers/get_info_status_mapper.h"
#include "opencl/source/helpers/gmm_types_converter.h"
#include "opencl/source/helpers/memory_properties_flags_helpers.h"
#include "opencl/source/helpers/mipmap.h"
#include "opencl/source/helpers/surface_formats.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/mem_obj/mem_obj_helper.h"
#include "opencl/source/platform/platform.h"
#include "igfxfmid.h"
#include <map>
namespace NEO {
ImageFuncs imageFactory[IGFX_MAX_CORE] = {};
Image::Image(Context *context,
const MemoryPropertiesFlags &memoryProperties,
cl_mem_flags flags,
cl_mem_flags_intel flagsIntel,
size_t size,
void *hostPtr,
cl_image_format imageFormat,
const cl_image_desc &imageDesc,
bool zeroCopy,
GraphicsAllocation *graphicsAllocation,
bool isObjectRedescribed,
uint32_t baseMipLevel,
uint32_t mipCount,
const ClSurfaceFormatInfo &surfaceFormatInfo,
const SurfaceOffsets *surfaceOffsets)
: MemObj(context,
imageDesc.image_type,
memoryProperties,
flags,
flagsIntel,
size,
graphicsAllocation->getUnderlyingBuffer(),
hostPtr,
graphicsAllocation,
zeroCopy,
false,
isObjectRedescribed),
createFunction(nullptr),
imageFormat(std::move(imageFormat)),
imageDesc(imageDesc),
surfaceFormatInfo(surfaceFormatInfo),
cubeFaceIndex(__GMM_NO_CUBE_MAP),
mediaPlaneType(0),
baseMipLevel(baseMipLevel),
mipCount(mipCount) {
magic = objectMagic;
if (surfaceOffsets)
setSurfaceOffsets(surfaceOffsets->offset, surfaceOffsets->xOffset, surfaceOffsets->yOffset, surfaceOffsets->yOffsetForUVplane);
else
setSurfaceOffsets(0, 0, 0, 0);
}
void Image::transferData(void *dest, size_t destRowPitch, size_t destSlicePitch,
void *src, size_t srcRowPitch, size_t srcSlicePitch,
std::array<size_t, 3> copyRegion, std::array<size_t, 3> copyOrigin) {
size_t pixelSize = surfaceFormatInfo.surfaceFormat.ImageElementSizeInBytes;
size_t lineWidth = copyRegion[0] * pixelSize;
DBG_LOG(LogMemoryObject, __FUNCTION__, "memcpy dest:", dest, "sizeRowToCopy:", lineWidth, "src:", src);
if (imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) {
// For 1DArray type, array region and origin are stored on 2nd position. For 2Darray its on 3rd position.
std::swap(copyOrigin[1], copyOrigin[2]);
std::swap(copyRegion[1], copyRegion[2]);
}
for (size_t slice = copyOrigin[2]; slice < (copyOrigin[2] + copyRegion[2]); slice++) {
auto srcSliceOffset = ptrOffset(src, srcSlicePitch * slice);
auto dstSliceOffset = ptrOffset(dest, destSlicePitch * slice);
for (size_t height = copyOrigin[1]; height < (copyOrigin[1] + copyRegion[1]); height++) {
auto srcRowOffset = ptrOffset(srcSliceOffset, srcRowPitch * height);
auto dstRowOffset = ptrOffset(dstSliceOffset, destRowPitch * height);
memcpy_s(ptrOffset(dstRowOffset, copyOrigin[0] * pixelSize), lineWidth,
ptrOffset(srcRowOffset, copyOrigin[0] * pixelSize), lineWidth);
}
}
}
Image::~Image() = default;
Image *Image::create(Context *context,
const MemoryPropertiesFlags &memoryProperties,
cl_mem_flags flags,
cl_mem_flags_intel flagsIntel,
const ClSurfaceFormatInfo *surfaceFormat,
const cl_image_desc *imageDesc,
const void *hostPtr,
cl_int &errcodeRet) {
UNRECOVERABLE_IF(surfaceFormat == nullptr);
Image *image = nullptr;
GraphicsAllocation *memory = nullptr;
GraphicsAllocation *mapAllocation = nullptr;
MemoryManager *memoryManager = context->getMemoryManager();
Buffer *parentBuffer = castToObject<Buffer>(imageDesc->mem_object);
Image *parentImage = castToObject<Image>(imageDesc->mem_object);
auto &hwHelper = HwHelper::get(context->getDevice(0)->getHardwareInfo().platform.eRenderCoreFamily);
auto rootDeviceIndex = context->getDevice(0)->getRootDeviceIndex();
auto clientContext = context->getDevice(0)->getRootDeviceEnvironment().getGmmClientContext();
do {
size_t imageWidth = imageDesc->image_width;
size_t imageHeight = 1;
size_t imageDepth = 1;
size_t imageCount = 1;
size_t hostPtrMinSize = 0;
cl_image_desc imageDescriptor = *imageDesc;
ImageInfo imgInfo = {};
void *hostPtrToSet = nullptr;
if (memoryProperties.flags.useHostPtr) {
hostPtrToSet = const_cast<void *>(hostPtr);
}
imgInfo.imgDesc = Image::convertDescriptor(imageDescriptor);
imgInfo.surfaceFormat = &surfaceFormat->surfaceFormat;
imgInfo.mipCount = imageDesc->num_mip_levels;
Gmm *gmm = nullptr;
if (imageDesc->image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY || imageDesc->image_type == CL_MEM_OBJECT_IMAGE2D_ARRAY) {
imageCount = imageDesc->image_array_size;
}
switch (imageDesc->image_type) {
case CL_MEM_OBJECT_IMAGE3D:
imageDepth = imageDesc->image_depth;
CPP_ATTRIBUTE_FALLTHROUGH;
case CL_MEM_OBJECT_IMAGE2D:
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
imageHeight = imageDesc->image_height;
case CL_MEM_OBJECT_IMAGE1D:
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
case CL_MEM_OBJECT_IMAGE1D_BUFFER:
break;
default:
DEBUG_BREAK_IF("Unsupported cl_image_type");
break;
}
if (parentImage) {
imageWidth = parentImage->getImageDesc().image_width;
imageHeight = parentImage->getImageDesc().image_height;
imageDepth = 1;
if (IsNV12Image(&parentImage->getImageFormat())) {
if (imageDesc->image_depth == 1) { // UV Plane
imageWidth /= 2;
imageHeight /= 2;
imgInfo.plane = GMM_PLANE_U;
} else {
imgInfo.plane = GMM_PLANE_Y;
}
}
imgInfo.surfaceFormat = &parentImage->surfaceFormatInfo.surfaceFormat;
imageDescriptor = parentImage->getImageDesc();
}
auto hostPtrRowPitch = imageDesc->image_row_pitch ? imageDesc->image_row_pitch : imageWidth * surfaceFormat->surfaceFormat.ImageElementSizeInBytes;
auto hostPtrSlicePitch = imageDesc->image_slice_pitch ? imageDesc->image_slice_pitch : hostPtrRowPitch * imageHeight;
imgInfo.linearStorage = !hwHelper.tilingAllowed(context->isSharedContext, Image::isImage1d(*imageDesc),
memoryProperties.flags.forceLinearStorage);
imgInfo.preferRenderCompression = MemObjHelper::isSuitableForRenderCompression(!imgInfo.linearStorage, memoryProperties,
*context, true);
imgInfo.preferRenderCompression &= !Image::isFormatRedescribable(surfaceFormat->OCLImageFormat);
if (!context->getDevice(0)->getSharedDeviceInfo().imageSupport && !imgInfo.linearStorage) {
errcodeRet = CL_INVALID_OPERATION;
return nullptr;
}
switch (imageDesc->image_type) {
case CL_MEM_OBJECT_IMAGE3D:
hostPtrMinSize = hostPtrSlicePitch * imageDepth;
break;
case CL_MEM_OBJECT_IMAGE2D:
if (IsNV12Image(&surfaceFormat->OCLImageFormat)) {
hostPtrMinSize = hostPtrRowPitch * imageHeight + hostPtrRowPitch * imageHeight / 2;
} else {
hostPtrMinSize = hostPtrRowPitch * imageHeight;
}
hostPtrSlicePitch = 0;
break;
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
hostPtrMinSize = hostPtrSlicePitch * imageCount;
break;
case CL_MEM_OBJECT_IMAGE1D:
case CL_MEM_OBJECT_IMAGE1D_BUFFER:
hostPtrMinSize = hostPtrRowPitch;
hostPtrSlicePitch = 0;
break;
default:
DEBUG_BREAK_IF("Unsupported cl_image_type");
break;
}
bool zeroCopy = false;
bool transferNeeded = false;
if (((imageDesc->image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER) || (imageDesc->image_type == CL_MEM_OBJECT_IMAGE2D)) && (parentBuffer != nullptr)) {
if (!hwHelper.checkResourceCompatibility(*parentBuffer->getGraphicsAllocation())) {
errcodeRet = CL_INVALID_MEM_OBJECT;
return nullptr;
}
memory = parentBuffer->getGraphicsAllocation();
// Image from buffer - we never allocate memory, we use what buffer provides
zeroCopy = true;
hostPtr = parentBuffer->getHostPtr();
hostPtrToSet = const_cast<void *>(hostPtr);
parentBuffer->incRefInternal();
GmmTypesConverter::queryImgFromBufferParams(imgInfo, memory);
UNRECOVERABLE_IF(imgInfo.offset != 0);
imgInfo.offset = parentBuffer->getOffset();
if (memoryManager->peekVirtualPaddingSupport() && (imageDesc->image_type == CL_MEM_OBJECT_IMAGE2D)) {
// Retrieve sizes from GMM and apply virtual padding if buffer storage is not big enough
auto queryGmmImgInfo(imgInfo);
auto gmm = std::make_unique<Gmm>(clientContext, queryGmmImgInfo, StorageInfo{});
auto gmmAllocationSize = gmm->gmmResourceInfo->getSizeAllocation();
if (gmmAllocationSize > memory->getUnderlyingBufferSize()) {
memory = memoryManager->createGraphicsAllocationWithPadding(memory, gmmAllocationSize);
}
}
} else if (parentImage != nullptr) {
memory = parentImage->getGraphicsAllocation();
memory->getDefaultGmm()->queryImageParams(imgInfo);
} else {
errcodeRet = CL_OUT_OF_HOST_MEMORY;
if (memoryProperties.flags.useHostPtr) {
if (!context->isSharedContext) {
AllocationProperties allocProperties = MemObjHelper::getAllocationPropertiesWithImageInfo(rootDeviceIndex, imgInfo,
false, // allocateMemory
memoryProperties, context->getDevice(0)->getHardwareInfo(),
context->getDevice(0)->getDeviceBitfield());
memory = memoryManager->allocateGraphicsMemoryWithProperties(allocProperties, hostPtr);
if (memory) {
if (memory->getUnderlyingBuffer() != hostPtr) {
zeroCopy = false;
transferNeeded = true;
} else {
zeroCopy = true;
}
}
} else {
gmm = new Gmm(clientContext, imgInfo, StorageInfo{});
memory = memoryManager->allocateGraphicsMemoryWithProperties({rootDeviceIndex,
false, // allocateMemory
imgInfo.size, GraphicsAllocation::AllocationType::SHARED_CONTEXT_IMAGE,
false, // isMultiStorageAllocation
context->getDevice(0)->getDeviceBitfield()},
hostPtr);
memory->setDefaultGmm(gmm);
zeroCopy = true;
}
if (memory) {
AllocationProperties properties{rootDeviceIndex,
false, // allocateMemory
hostPtrMinSize, GraphicsAllocation::AllocationType::MAP_ALLOCATION,
false, // isMultiStorageAllocation
context->getDevice(0)->getDeviceBitfield()};
properties.flags.flushL3RequiredForRead = properties.flags.flushL3RequiredForWrite = true;
mapAllocation = memoryManager->allocateGraphicsMemoryWithProperties(properties, hostPtr);
}
} else {
AllocationProperties allocProperties = MemObjHelper::getAllocationPropertiesWithImageInfo(rootDeviceIndex, imgInfo,
true, // allocateMemory
memoryProperties, context->getDevice(0)->getHardwareInfo(),
context->getDevice(0)->getDeviceBitfield());
memory = memoryManager->allocateGraphicsMemoryWithProperties(allocProperties);
if (memory && MemoryPool::isSystemMemoryPool(memory->getMemoryPool())) {
zeroCopy = true;
}
}
}
transferNeeded |= memoryProperties.flags.copyHostPtr;
if (!memory) {
break;
}
if (parentBuffer == nullptr) {
memory->setAllocationType(GraphicsAllocation::AllocationType::IMAGE);
}
memory->setMemObjectsAllocationWithWritableFlags(!memoryProperties.flags.readOnly &&
!memoryProperties.flags.hostReadOnly &&
!memoryProperties.flags.hostNoAccess);
DBG_LOG(LogMemoryObject, __FUNCTION__, "hostPtr:", hostPtr, "size:", memory->getUnderlyingBufferSize(), "memoryStorage:", memory->getUnderlyingBuffer(), "GPU address:", std::hex, memory->getGpuAddress());
if (parentImage) {
imageDescriptor.image_height = imageHeight;
imageDescriptor.image_width = imageWidth;
imageDescriptor.image_type = CL_MEM_OBJECT_IMAGE2D;
imageDescriptor.image_depth = 1;
imageDescriptor.image_array_size = 0;
imageDescriptor.image_row_pitch = 0;
imageDescriptor.image_slice_pitch = 0;
imageDescriptor.mem_object = imageDesc->mem_object;
parentImage->incRefInternal();
imgInfo.imgDesc = Image::convertDescriptor(imageDescriptor);
}
image = createImageHw(context, memoryProperties, flags, flagsIntel, imgInfo.size, hostPtrToSet, surfaceFormat->OCLImageFormat,
imageDescriptor, zeroCopy, memory, false, 0, 0, surfaceFormat);
if (context->isProvidingPerformanceHints() && HwHelper::renderCompressedImagesSupported(context->getDevice(0)->getHardwareInfo())) {
if (memory->getDefaultGmm()) {
if (memory->getDefaultGmm()->isRenderCompressed) {
context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_NEUTRAL_INTEL, IMAGE_IS_COMPRESSED, image);
} else {
context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_NEUTRAL_INTEL, IMAGE_IS_NOT_COMPRESSED, image);
}
}
}
if (imageDesc->image_type != CL_MEM_OBJECT_IMAGE1D_ARRAY && imageDesc->image_type != CL_MEM_OBJECT_IMAGE2D_ARRAY) {
image->imageDesc.image_array_size = 0;
}
if ((imageDesc->image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER) || ((imageDesc->image_type == CL_MEM_OBJECT_IMAGE2D) && (imageDesc->mem_object != nullptr))) {
image->associatedMemObject = castToObject<MemObj>(imageDesc->mem_object);
}
// Driver needs to store rowPitch passed by the app in order to synchronize the host_ptr later on map call
image->setHostPtrRowPitch(imageDesc->image_row_pitch ? imageDesc->image_row_pitch : hostPtrRowPitch);
image->setHostPtrSlicePitch(hostPtrSlicePitch);
image->setImageCount(imageCount);
image->setHostPtrMinSize(hostPtrMinSize);
image->setImageRowPitch(imgInfo.rowPitch);
image->setImageSlicePitch(imgInfo.slicePitch);
image->setQPitch(imgInfo.qPitch);
image->setSurfaceOffsets(imgInfo.offset, imgInfo.xOffset, imgInfo.yOffset, imgInfo.yOffsetForUVPlane);
image->setMipCount(imgInfo.mipCount);
if (parentImage) {
image->setMediaPlaneType(static_cast<cl_uint>(imageDesc->image_depth));
image->setParentSharingHandler(parentImage->getSharingHandler());
}
if (parentBuffer) {
image->setParentSharingHandler(parentBuffer->getSharingHandler());
}
errcodeRet = CL_SUCCESS;
if (context->isProvidingPerformanceHints() && image->isMemObjZeroCopy()) {
context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_GOOD_INTEL, CL_IMAGE_MEETS_ALIGNMENT_RESTRICTIONS, static_cast<cl_mem>(image));
}
if (transferNeeded) {
std::array<size_t, 3> copyOrigin = {{0, 0, 0}};
std::array<size_t, 3> copyRegion = {{imageWidth, imageHeight, std::max(imageDepth, imageCount)}};
if (imageDesc->image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) {
copyRegion = {{imageWidth, imageCount, 1}};
} else {
copyRegion = {{imageWidth, imageHeight, std::max(imageDepth, imageCount)}};
}
if (!imgInfo.linearStorage || !MemoryPool::isSystemMemoryPool(memory->getMemoryPool())) {
auto cmdQ = context->getSpecialQueue();
if (IsNV12Image(&image->getImageFormat())) {
errcodeRet = image->writeNV12Planes(hostPtr, hostPtrRowPitch);
} else {
errcodeRet = cmdQ->enqueueWriteImage(image, CL_TRUE, &copyOrigin[0], &copyRegion[0],
hostPtrRowPitch, hostPtrSlicePitch,
hostPtr, mapAllocation, 0, nullptr, nullptr);
}
} else {
image->transferData(memory->getUnderlyingBuffer(), imgInfo.rowPitch, imgInfo.slicePitch,
const_cast<void *>(hostPtr), hostPtrRowPitch, hostPtrSlicePitch,
copyRegion, copyOrigin);
}
}
image->mapAllocation = mapAllocation;
if (errcodeRet != CL_SUCCESS) {
image->release();
image = nullptr;
memory = nullptr;
break;
}
} while (false);
return image;
}
Image *Image::createImageHw(Context *context, const MemoryPropertiesFlags &memoryProperties, cl_mem_flags flags, cl_mem_flags_intel flagsIntel, size_t size, void *hostPtr,
const cl_image_format &imageFormat, const cl_image_desc &imageDesc,
bool zeroCopy, GraphicsAllocation *graphicsAllocation,
bool isObjectRedescribed, uint32_t baseMipLevel, uint32_t mipCount,
const ClSurfaceFormatInfo *surfaceFormatInfo) {
const auto device = context->getDevice(0);
const auto &hwInfo = device->getHardwareInfo();
auto funcCreate = imageFactory[hwInfo.platform.eRenderCoreFamily].createImageFunction;
DEBUG_BREAK_IF(nullptr == funcCreate);
auto image = funcCreate(context, memoryProperties, flags, flagsIntel, size, hostPtr, imageFormat, imageDesc,
zeroCopy, graphicsAllocation, isObjectRedescribed, baseMipLevel, mipCount, surfaceFormatInfo, nullptr);
DEBUG_BREAK_IF(nullptr == image);
image->createFunction = funcCreate;
return image;
}
Image *Image::createSharedImage(Context *context, SharingHandler *sharingHandler, const McsSurfaceInfo &mcsSurfaceInfo,
GraphicsAllocation *graphicsAllocation, GraphicsAllocation *mcsAllocation,
cl_mem_flags flags, const ClSurfaceFormatInfo *surfaceFormat, ImageInfo &imgInfo, uint32_t cubeFaceIndex, uint32_t baseMipLevel, uint32_t mipCount) {
auto sharedImage = createImageHw(context, MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0, 0), flags, 0, graphicsAllocation->getUnderlyingBufferSize(),
nullptr, surfaceFormat->OCLImageFormat, Image::convertDescriptor(imgInfo.imgDesc), false, graphicsAllocation, false, baseMipLevel, mipCount, surfaceFormat);
sharedImage->setSharingHandler(sharingHandler);
sharedImage->setMcsAllocation(mcsAllocation);
sharedImage->setQPitch(imgInfo.qPitch);
sharedImage->setHostPtrRowPitch(imgInfo.imgDesc.imageRowPitch);
sharedImage->setHostPtrSlicePitch(imgInfo.imgDesc.imageSlicePitch);
sharedImage->setCubeFaceIndex(cubeFaceIndex);
sharedImage->setSurfaceOffsets(imgInfo.offset, imgInfo.xOffset, imgInfo.yOffset, imgInfo.yOffsetForUVPlane);
sharedImage->setMcsSurfaceInfo(mcsSurfaceInfo);
return sharedImage;
}
cl_int Image::validate(Context *context,
const MemoryPropertiesFlags &memoryProperties,
const ClSurfaceFormatInfo *surfaceFormat,
const cl_image_desc *imageDesc,
const void *hostPtr) {
auto pClDevice = context->getDevice(0);
size_t srcSize = 0;
size_t retSize = 0;
const size_t *maxWidth = nullptr;
const size_t *maxHeight = nullptr;
const uint32_t *pitchAlignment = nullptr;
const uint32_t *baseAddressAlignment = nullptr;
if (!surfaceFormat) {
return CL_IMAGE_FORMAT_NOT_SUPPORTED;
}
Image *parentImage = castToObject<Image>(imageDesc->mem_object);
Buffer *parentBuffer = castToObject<Buffer>(imageDesc->mem_object);
if (imageDesc->image_type == CL_MEM_OBJECT_IMAGE2D) {
if ((imageDesc->mem_object != nullptr) && (pClDevice->getSharedDeviceInfo().imageSupport == false)) {
return CL_INVALID_OPERATION;
}
pClDevice->getCap<CL_DEVICE_IMAGE2D_MAX_WIDTH>(reinterpret_cast<const void *&>(maxWidth), srcSize, retSize);
pClDevice->getCap<CL_DEVICE_IMAGE2D_MAX_HEIGHT>(reinterpret_cast<const void *&>(maxHeight), srcSize, retSize);
if (imageDesc->image_width > *maxWidth ||
imageDesc->image_height > *maxHeight) {
return CL_INVALID_IMAGE_SIZE;
}
if (parentBuffer) { // Image 2d from buffer
pClDevice->getCap<CL_DEVICE_IMAGE_PITCH_ALIGNMENT>(reinterpret_cast<const void *&>(pitchAlignment), srcSize, retSize);
pClDevice->getCap<CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT>(reinterpret_cast<const void *&>(baseAddressAlignment), srcSize, retSize);
const auto rowSize = imageDesc->image_row_pitch != 0 ? imageDesc->image_row_pitch : alignUp(imageDesc->image_width * surfaceFormat->surfaceFormat.NumChannels * surfaceFormat->surfaceFormat.PerChannelSizeInBytes, *pitchAlignment);
const auto minimumBufferSize = imageDesc->image_height * rowSize;
if ((imageDesc->image_row_pitch % (*pitchAlignment)) ||
((parentBuffer->getMemoryPropertiesFlags() & CL_MEM_USE_HOST_PTR) && (reinterpret_cast<uint64_t>(parentBuffer->getHostPtr()) % (*baseAddressAlignment))) ||
(minimumBufferSize > parentBuffer->getSize())) {
return CL_INVALID_IMAGE_FORMAT_DESCRIPTOR;
} else if (memoryProperties.flags.useHostPtr || memoryProperties.flags.copyHostPtr) {
return CL_INVALID_VALUE;
}
}
if (parentImage && !IsNV12Image(&parentImage->getImageFormat())) { // Image 2d from image 2d
if (!parentImage->hasSameDescriptor(*imageDesc) || !parentImage->hasValidParentImageFormat(surfaceFormat->OCLImageFormat)) {
return CL_INVALID_IMAGE_FORMAT_DESCRIPTOR;
}
}
if (!(parentImage && IsNV12Image(&parentImage->getImageFormat())) &&
(imageDesc->image_width == 0 || imageDesc->image_height == 0)) {
return CL_INVALID_IMAGE_DESCRIPTOR;
}
}
if (hostPtr == nullptr) {
if (imageDesc->image_row_pitch != 0 && imageDesc->mem_object == nullptr) {
return CL_INVALID_IMAGE_DESCRIPTOR;
}
} else {
if (imageDesc->image_row_pitch != 0) {
if (imageDesc->image_row_pitch % surfaceFormat->surfaceFormat.ImageElementSizeInBytes != 0 ||
imageDesc->image_row_pitch < imageDesc->image_width * surfaceFormat->surfaceFormat.ImageElementSizeInBytes) {
return CL_INVALID_IMAGE_DESCRIPTOR;
}
}
}
if (parentBuffer && imageDesc->image_type != CL_MEM_OBJECT_IMAGE1D_BUFFER && imageDesc->image_type != CL_MEM_OBJECT_IMAGE2D) {
return CL_INVALID_IMAGE_DESCRIPTOR;
}
if (parentImage && imageDesc->image_type != CL_MEM_OBJECT_IMAGE2D) {
return CL_INVALID_IMAGE_DESCRIPTOR;
}
return validateImageTraits(context, memoryProperties, &surfaceFormat->OCLImageFormat, imageDesc, hostPtr);
}
cl_int Image::validateImageFormat(const cl_image_format *imageFormat) {
if (!imageFormat) {
return CL_INVALID_IMAGE_FORMAT_DESCRIPTOR;
}
bool isValidFormat = isValidSingleChannelFormat(imageFormat) ||
isValidIntensityFormat(imageFormat) ||
isValidLuminanceFormat(imageFormat) ||
isValidDepthFormat(imageFormat) ||
isValidDoubleChannelFormat(imageFormat) ||
isValidTripleChannelFormat(imageFormat) ||
isValidRGBAFormat(imageFormat) ||
isValidSRGBFormat(imageFormat) ||
isValidARGBFormat(imageFormat) ||
isValidDepthStencilFormat(imageFormat) ||
isValidYUVFormat(imageFormat);
if (isValidFormat) {
return CL_SUCCESS;
}
return CL_INVALID_IMAGE_FORMAT_DESCRIPTOR;
}
cl_int Image::validatePlanarYUV(Context *context,
const MemoryPropertiesFlags &memoryProperties,
const cl_image_desc *imageDesc,
const void *hostPtr) {
cl_int errorCode = CL_SUCCESS;
auto pClDevice = context->getDevice(0);
const size_t *maxWidth = nullptr;
const size_t *maxHeight = nullptr;
size_t srcSize = 0;
size_t retSize = 0;
while (true) {
Image *memObject = castToObject<Image>(imageDesc->mem_object);
if (memObject != nullptr) {
if (memObject->memObjectType == CL_MEM_OBJECT_IMAGE2D) {
if (imageDesc->image_depth != 1 && imageDesc->image_depth != 0) {
errorCode = CL_INVALID_IMAGE_DESCRIPTOR;
}
}
break;
}
if (imageDesc->mem_object != nullptr) {
errorCode = CL_INVALID_IMAGE_DESCRIPTOR;
break;
}
if (!memoryProperties.flags.hostNoAccess) {
errorCode = CL_INVALID_VALUE;
break;
} else {
if (imageDesc->image_height % 4 ||
imageDesc->image_width % 4 ||
imageDesc->image_type != CL_MEM_OBJECT_IMAGE2D) {
errorCode = CL_INVALID_IMAGE_DESCRIPTOR;
break;
}
}
pClDevice->getCap<CL_DEVICE_PLANAR_YUV_MAX_WIDTH_INTEL>(reinterpret_cast<const void *&>(maxWidth), srcSize, retSize);
pClDevice->getCap<CL_DEVICE_PLANAR_YUV_MAX_HEIGHT_INTEL>(reinterpret_cast<const void *&>(maxHeight), srcSize, retSize);
if (imageDesc->image_width > *maxWidth || imageDesc->image_height > *maxHeight) {
errorCode = CL_INVALID_IMAGE_SIZE;
break;
}
break;
}
return errorCode;
}
cl_int Image::validatePackedYUV(const MemoryPropertiesFlags &memoryProperties, const cl_image_desc *imageDesc) {
cl_int errorCode = CL_SUCCESS;
while (true) {
if (!memoryProperties.flags.readOnly) {
errorCode = CL_INVALID_VALUE;
break;
} else {
if (imageDesc->image_width % 2 != 0 ||
imageDesc->image_type != CL_MEM_OBJECT_IMAGE2D) {
errorCode = CL_INVALID_IMAGE_DESCRIPTOR;
break;
}
}
break;
}
return errorCode;
}
cl_int Image::validateImageTraits(Context *context, const MemoryPropertiesFlags &memoryProperties, const cl_image_format *imageFormat, const cl_image_desc *imageDesc, const void *hostPtr) {
if (IsNV12Image(imageFormat))
return validatePlanarYUV(context, memoryProperties, imageDesc, hostPtr);
else if (IsPackedYuvImage(imageFormat))
return validatePackedYUV(memoryProperties, imageDesc);
return CL_SUCCESS;
}
size_t Image::calculateHostPtrSize(const size_t *region, size_t rowPitch, size_t slicePitch, size_t pixelSize, uint32_t imageType) {
DEBUG_BREAK_IF(!((rowPitch != 0) && (slicePitch != 0)));
size_t sizeToReturn = 0u;
switch (imageType) {
case CL_MEM_OBJECT_IMAGE1D:
case CL_MEM_OBJECT_IMAGE1D_BUFFER:
sizeToReturn = region[0] * pixelSize;
break;
case CL_MEM_OBJECT_IMAGE2D:
sizeToReturn = (region[1] - 1) * rowPitch + region[0] * pixelSize;
break;
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
sizeToReturn = (region[1] - 1) * slicePitch + region[0] * pixelSize;
break;
case CL_MEM_OBJECT_IMAGE3D:
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
sizeToReturn = (region[2] - 1) * slicePitch + (region[1] - 1) * rowPitch + region[0] * pixelSize;
break;
default:
DEBUG_BREAK_IF("Unsupported cl_image_type");
break;
}
DEBUG_BREAK_IF(sizeToReturn == 0);
return sizeToReturn;
}
void Image::calculateHostPtrOffset(size_t *imageOffset, const size_t *origin, const size_t *region, size_t rowPitch, size_t slicePitch, uint32_t imageType, size_t bytesPerPixel) {
size_t computedImageRowPitch = rowPitch ? rowPitch : region[0] * bytesPerPixel;
size_t computedImageSlicePitch = slicePitch ? slicePitch : region[1] * computedImageRowPitch * bytesPerPixel;
switch (imageType) {
case CL_MEM_OBJECT_IMAGE1D:
case CL_MEM_OBJECT_IMAGE1D_BUFFER:
case CL_MEM_OBJECT_IMAGE2D:
DEBUG_BREAK_IF(slicePitch != 0 && slicePitch < computedImageRowPitch * region[1]);
CPP_ATTRIBUTE_FALLTHROUGH;
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
case CL_MEM_OBJECT_IMAGE3D:
*imageOffset = origin[2] * computedImageSlicePitch + origin[1] * computedImageRowPitch + origin[0] * bytesPerPixel;
break;
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
*imageOffset = origin[1] * computedImageSlicePitch + origin[0] * bytesPerPixel;
break;
default:
DEBUG_BREAK_IF("Unsupported cl_image_type");
*imageOffset = 0;
break;
}
}
// Called by clGetImageParamsINTEL to obtain image row pitch and slice pitch
// Assumption: all parameters are already validated be calling function
cl_int Image::getImageParams(Context *context,
cl_mem_flags memFlags,
const ClSurfaceFormatInfo *surfaceFormat,
const cl_image_desc *imageDesc,
size_t *imageRowPitch,
size_t *imageSlicePitch) {
cl_int retVal = CL_SUCCESS;
auto clientContext = context->getDevice(0)->getRootDeviceEnvironment().getGmmClientContext();
ImageInfo imgInfo = {};
cl_image_desc imageDescriptor = *imageDesc;
imgInfo.imgDesc = Image::convertDescriptor(imageDescriptor);
imgInfo.surfaceFormat = &surfaceFormat->surfaceFormat;
auto gmm = std::make_unique<Gmm>(clientContext, imgInfo, StorageInfo{});
*imageRowPitch = imgInfo.rowPitch;
*imageSlicePitch = imgInfo.slicePitch;
return retVal;
}
const cl_image_desc &Image::getImageDesc() const {
return imageDesc;
}
const cl_image_format &Image::getImageFormat() const {
return imageFormat;
}
const ClSurfaceFormatInfo &Image::getSurfaceFormatInfo() const {
return surfaceFormatInfo;
}
cl_mem_object_type Image::convertType(const ImageType type) {
switch (type) {
case ImageType::Image2D:
return CL_MEM_OBJECT_IMAGE2D;
case ImageType::Image3D:
return CL_MEM_OBJECT_IMAGE3D;
case ImageType::Image2DArray:
return CL_MEM_OBJECT_IMAGE2D_ARRAY;
case ImageType::Image1D:
return CL_MEM_OBJECT_IMAGE1D;
case ImageType::Image1DArray:
return CL_MEM_OBJECT_IMAGE1D_ARRAY;
case ImageType::Image1DBuffer:
return CL_MEM_OBJECT_IMAGE1D_BUFFER;
default:
break;
}
return 0;
}
ImageType Image::convertType(const cl_mem_object_type type) {
switch (type) {
case CL_MEM_OBJECT_IMAGE2D:
return ImageType::Image2D;
case CL_MEM_OBJECT_IMAGE3D:
return ImageType::Image3D;
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
return ImageType::Image2DArray;
case CL_MEM_OBJECT_IMAGE1D:
return ImageType::Image1D;
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
return ImageType::Image1DArray;
case CL_MEM_OBJECT_IMAGE1D_BUFFER:
return ImageType::Image1DBuffer;
default:
break;
}
return ImageType::Invalid;
}
ImageDescriptor Image::convertDescriptor(const cl_image_desc &imageDesc) {
ImageDescriptor desc = {};
desc.fromParent = imageDesc.mem_object != nullptr;
desc.imageArraySize = imageDesc.image_array_size;
desc.imageDepth = imageDesc.image_depth;
desc.imageHeight = imageDesc.image_height;
desc.imageRowPitch = imageDesc.image_row_pitch;
desc.imageSlicePitch = imageDesc.image_slice_pitch;
desc.imageType = convertType(imageDesc.image_type);
desc.imageWidth = imageDesc.image_width;
desc.numMipLevels = imageDesc.num_mip_levels;
desc.numSamples = imageDesc.num_samples;
return desc;
}
cl_image_desc Image::convertDescriptor(const ImageDescriptor &imageDesc) {
cl_image_desc desc = {};
desc.mem_object = nullptr;
desc.image_array_size = imageDesc.imageArraySize;
desc.image_depth = imageDesc.imageDepth;
desc.image_height = imageDesc.imageHeight;
desc.image_row_pitch = imageDesc.imageRowPitch;
desc.image_slice_pitch = imageDesc.imageSlicePitch;
desc.image_type = convertType(imageDesc.imageType);
desc.image_width = imageDesc.imageWidth;
desc.num_mip_levels = imageDesc.numMipLevels;
desc.num_samples = imageDesc.numSamples;
return desc;
}
cl_int Image::getImageInfo(cl_image_info paramName,
size_t paramValueSize,
void *paramValue,
size_t *paramValueSizeRet) {
cl_int retVal;
size_t srcParamSize = 0;
void *srcParam = nullptr;
auto imageDesc = getImageDesc();
auto surfFmtInfo = getSurfaceFormatInfo();
size_t retParam;
size_t array_size = imageDesc.image_array_size * (imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY || imageDesc.image_type == CL_MEM_OBJECT_IMAGE2D_ARRAY);
size_t SlicePitch = hostPtrSlicePitch * !(imageDesc.image_type == CL_MEM_OBJECT_IMAGE2D || imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D || imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER);
switch (paramName) {
case CL_IMAGE_FORMAT:
srcParamSize = sizeof(cl_image_format);
srcParam = &(surfFmtInfo.OCLImageFormat);
break;
case CL_IMAGE_ELEMENT_SIZE:
srcParamSize = sizeof(size_t);
srcParam = &(surfFmtInfo.surfaceFormat.ImageElementSizeInBytes);
break;
case CL_IMAGE_ROW_PITCH:
srcParamSize = sizeof(size_t);
if (mcsSurfaceInfo.multisampleCount > 1) {
retParam = imageDesc.image_width * surfFmtInfo.surfaceFormat.ImageElementSizeInBytes * imageDesc.num_samples;
} else {
retParam = hostPtrRowPitch;
}
srcParam = &retParam;
break;
case CL_IMAGE_SLICE_PITCH:
srcParamSize = sizeof(size_t);
srcParam = &SlicePitch;
break;
case CL_IMAGE_WIDTH:
srcParamSize = sizeof(size_t);
retParam = imageDesc.image_width;
if (this->baseMipLevel) {
retParam = imageDesc.image_width >> this->baseMipLevel;
retParam = std::max(retParam, (size_t)1);
}
srcParam = &retParam;
break;
case CL_IMAGE_HEIGHT:
srcParamSize = sizeof(size_t);
retParam = imageDesc.image_height * !((imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D) || (imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) || (imageDesc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER));
if ((retParam != 0) && (this->baseMipLevel > 0)) {
retParam = retParam >> this->baseMipLevel;
retParam = std::max(retParam, (size_t)1);
}
srcParam = &retParam;
break;
case CL_IMAGE_DEPTH:
srcParamSize = sizeof(size_t);
retParam = imageDesc.image_depth * (imageDesc.image_type == CL_MEM_OBJECT_IMAGE3D);
if ((retParam != 0) && (this->baseMipLevel > 0)) {
retParam = retParam >> this->baseMipLevel;
retParam = std::max(retParam, (size_t)1);
}
srcParam = &retParam;
break;
case CL_IMAGE_ARRAY_SIZE:
srcParamSize = sizeof(size_t);
srcParam = &(array_size);
break;
case CL_IMAGE_BUFFER:
srcParamSize = sizeof(cl_mem);
srcParam = &(imageDesc.buffer);
break;
case CL_IMAGE_NUM_MIP_LEVELS:
srcParamSize = sizeof(cl_uint);
srcParam = &(imageDesc.num_mip_levels);
break;
case CL_IMAGE_NUM_SAMPLES:
srcParamSize = sizeof(cl_uint);
srcParam = &(imageDesc.num_samples);
break;
default:
getOsSpecificImageInfo(paramName, &srcParamSize, &srcParam);
break;
}
retVal = changeGetInfoStatusToCLResultType(::getInfo(paramValue, paramValueSize, srcParam, srcParamSize));
if (paramValueSizeRet) {
*paramValueSizeRet = srcParamSize;
}
return retVal;
}
Image *Image::redescribeFillImage() {
const uint32_t redescribeTable[3][3] = {
{17, 27, 5}, // {CL_R, CL_UNSIGNED_INT8}, {CL_RG, CL_UNSIGNED_INT8}, {CL_RGBA, CL_UNSIGNED_INT8}
{18, 28, 6}, // {CL_R, CL_UNSIGNED_INT16}, {CL_RG, CL_UNSIGNED_INT16}, {CL_RGBA, CL_UNSIGNED_INT16}
{19, 29, 7} // {CL_R, CL_UNSIGNED_INT32}, {CL_RG, CL_UNSIGNED_INT32}, {CL_RGBA, CL_UNSIGNED_INT32}
};
auto imageFormatNew = this->imageFormat;
auto imageDescNew = this->imageDesc;
const ClSurfaceFormatInfo *surfaceFormat = nullptr;
uint32_t redescribeTableCol = this->surfaceFormatInfo.surfaceFormat.NumChannels / 2;
uint32_t redescribeTableRow = this->surfaceFormatInfo.surfaceFormat.PerChannelSizeInBytes / 2;
ArrayRef<const ClSurfaceFormatInfo> readWriteSurfaceFormats = SurfaceFormats::readWrite();
uint32_t surfaceFormatIdx = redescribeTable[redescribeTableRow][redescribeTableCol];
surfaceFormat = &readWriteSurfaceFormats[surfaceFormatIdx];
imageFormatNew.image_channel_order = surfaceFormat->OCLImageFormat.image_channel_order;
imageFormatNew.image_channel_data_type = surfaceFormat->OCLImageFormat.image_channel_data_type;
DEBUG_BREAK_IF(nullptr == createFunction);
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags | CL_MEM_USE_HOST_PTR, flagsIntel, 0);
auto image = createFunction(context,
memoryProperties,
flags | CL_MEM_USE_HOST_PTR,
flagsIntel,
this->getSize(),
this->getCpuAddress(),
imageFormatNew,
imageDescNew,
this->isMemObjZeroCopy(),
this->getGraphicsAllocation(),
true,
this->baseMipLevel,
this->mipCount,
surfaceFormat,
&this->surfaceOffsets);
image->setQPitch(this->getQPitch());
image->setCubeFaceIndex(this->getCubeFaceIndex());
image->associatedMemObject = this->associatedMemObject;
return image;
}
static const uint32_t redescribeTableBytes[] = {
17, // {CL_R, CL_UNSIGNED_INT8} 1 byte
18, // {CL_R, CL_UNSIGNED_INT16} 2 byte
19, // {CL_R, CL_UNSIGNED_INT32} 4 byte
29, // {CL_RG, CL_UNSIGNED_INT32} 8 byte
7 // {CL_RGBA, CL_UNSIGNED_INT32} 16 byte
};
bool Image::isFormatRedescribable(cl_image_format format) {
const ArrayRef<const ClSurfaceFormatInfo> readWriteSurfaceFormats = SurfaceFormats::readWrite();
for (auto indexInRedescribeTable = 0u; indexInRedescribeTable < sizeof(redescribeTableBytes) / sizeof(uint32_t); indexInRedescribeTable++) {
const uint32_t formatIndex = redescribeTableBytes[indexInRedescribeTable];
const cl_image_format nonRedescribableFormat = readWriteSurfaceFormats[formatIndex].OCLImageFormat;
if (nonRedescribableFormat.image_channel_data_type == format.image_channel_data_type &&
nonRedescribableFormat.image_channel_order == format.image_channel_order) {
return false;
}
}
return true;
}
Image *Image::redescribe() {
const uint32_t bytesPerPixel = this->surfaceFormatInfo.surfaceFormat.NumChannels * surfaceFormatInfo.surfaceFormat.PerChannelSizeInBytes;
const uint32_t exponent = Math::log2(bytesPerPixel);
DEBUG_BREAK_IF(exponent >= 5u);
const uint32_t surfaceFormatIdx = redescribeTableBytes[exponent % 5];
const ArrayRef<const ClSurfaceFormatInfo> readWriteSurfaceFormats = SurfaceFormats::readWrite();
const ClSurfaceFormatInfo *surfaceFormat = &readWriteSurfaceFormats[surfaceFormatIdx];
auto imageFormatNew = this->imageFormat;
imageFormatNew.image_channel_order = surfaceFormat->OCLImageFormat.image_channel_order;
imageFormatNew.image_channel_data_type = surfaceFormat->OCLImageFormat.image_channel_data_type;
DEBUG_BREAK_IF(nullptr == createFunction);
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags | CL_MEM_USE_HOST_PTR, flagsIntel, 0);
auto image = createFunction(context,
memoryProperties,
flags | CL_MEM_USE_HOST_PTR,
flagsIntel,
this->getSize(),
this->getCpuAddress(),
imageFormatNew,
this->imageDesc,
this->isMemObjZeroCopy(),
this->getGraphicsAllocation(),
true,
this->baseMipLevel,
this->mipCount,
surfaceFormat,
&this->surfaceOffsets);
image->setQPitch(this->getQPitch());
image->setCubeFaceIndex(this->getCubeFaceIndex());
image->associatedMemObject = this->associatedMemObject;
return image;
}
void Image::transferDataToHostPtr(MemObjSizeArray &copySize, MemObjOffsetArray &copyOffset) {
transferData(hostPtr, hostPtrRowPitch, hostPtrSlicePitch,
graphicsAllocation->getUnderlyingBuffer(), imageDesc.image_row_pitch, imageDesc.image_slice_pitch,
copySize, copyOffset);
}
void Image::transferDataFromHostPtr(MemObjSizeArray &copySize, MemObjOffsetArray &copyOffset) {
transferData(memoryStorage, imageDesc.image_row_pitch, imageDesc.image_slice_pitch,
hostPtr, hostPtrRowPitch, hostPtrSlicePitch,
copySize, copyOffset);
}
cl_int Image::writeNV12Planes(const void *hostPtr, size_t hostPtrRowPitch) {
CommandQueue *cmdQ = context->getSpecialQueue();
size_t origin[3] = {0, 0, 0};
size_t region[3] = {this->imageDesc.image_width, this->imageDesc.image_height, 1};
cl_int retVal = 0;
cl_image_desc imageDesc = {0};
cl_image_format imageFormat = {0};
// Make NV12 planes readable and writable both on device and host
cl_mem_flags flags = CL_MEM_READ_WRITE;
// Plane Y
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_R;
imageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
// image_width & image_height are ignored for plane extraction
imageDesc.image_width = 0;
imageDesc.image_height = 0;
// set mem_object to the full NV12 image
imageDesc.mem_object = this;
// get access to the Y plane (CL_R)
imageDesc.image_depth = 0;
const ClSurfaceFormatInfo *surfaceFormat = Image::getSurfaceFormatFromTable(flags, &imageFormat, context->getDevice(0)->getHardwareInfo().capabilityTable.clVersionSupport);
// Create NV12 UV Plane image
std::unique_ptr<Image> imageYPlane(Image::create(
context,
MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0, 0),
flags,
0,
surfaceFormat,
&imageDesc,
nullptr,
retVal));
retVal = cmdQ->enqueueWriteImage(imageYPlane.get(), CL_TRUE, origin, region, hostPtrRowPitch, 0, hostPtr, nullptr, 0, nullptr, nullptr);
// UV Plane is two times smaller than Plane Y
region[0] = region[0] / 2;
region[1] = region[1] / 2;
imageDesc.image_width = 0;
imageDesc.image_height = 0;
imageDesc.image_depth = 1; // UV plane
imageFormat.image_channel_order = CL_RG;
hostPtr = static_cast<const void *>(static_cast<const char *>(hostPtr) + (hostPtrRowPitch * this->imageDesc.image_height));
surfaceFormat = Image::getSurfaceFormatFromTable(flags, &imageFormat, context->getDevice(0)->getHardwareInfo().capabilityTable.clVersionSupport);
// Create NV12 UV Plane image
std::unique_ptr<Image> imageUVPlane(Image::create(
context,
MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0, 0),
flags,
0,
surfaceFormat,
&imageDesc,
nullptr,
retVal));
retVal = cmdQ->enqueueWriteImage(imageUVPlane.get(), CL_TRUE, origin, region, hostPtrRowPitch, 0, hostPtr, nullptr, 0, nullptr, nullptr);
return retVal;
}
const ClSurfaceFormatInfo *Image::getSurfaceFormatFromTable(cl_mem_flags flags, const cl_image_format *imageFormat, unsigned int clVersionSupport) {
if (!imageFormat) {
DEBUG_BREAK_IF("Invalid format");
return nullptr;
}
ArrayRef<const ClSurfaceFormatInfo> formats = SurfaceFormats::surfaceFormats(flags, imageFormat, clVersionSupport);
for (auto &format : formats) {
if (format.OCLImageFormat.image_channel_data_type == imageFormat->image_channel_data_type &&
format.OCLImageFormat.image_channel_order == imageFormat->image_channel_order) {
return &format;
}
}
DEBUG_BREAK_IF("Invalid format");
return nullptr;
}
bool Image::isImage1d(const cl_image_desc &imageDesc) {
auto imageType = imageDesc.image_type;
auto buffer = castToObject<Buffer>(imageDesc.buffer);
return (imageType == CL_MEM_OBJECT_IMAGE1D || imageType == CL_MEM_OBJECT_IMAGE1D_ARRAY ||
imageType == CL_MEM_OBJECT_IMAGE1D_BUFFER || buffer);
}
bool Image::isImage2d(cl_mem_object_type imageType) {
return imageType == CL_MEM_OBJECT_IMAGE2D;
}
bool Image::isImage2dOr2dArray(cl_mem_object_type imageType) {
return imageType == CL_MEM_OBJECT_IMAGE2D || imageType == CL_MEM_OBJECT_IMAGE2D_ARRAY;
}
bool Image::isDepthFormat(const cl_image_format &imageFormat) {
return imageFormat.image_channel_order == CL_DEPTH || imageFormat.image_channel_order == CL_DEPTH_STENCIL;
}
Image *Image::validateAndCreateImage(Context *context,
const MemoryPropertiesFlags &memoryProperties,
cl_mem_flags flags,
cl_mem_flags_intel flagsIntel,
const cl_image_format *imageFormat,
const cl_image_desc *imageDesc,
const void *hostPtr,
cl_int &errcodeRet) {
if (!MemObjHelper::validateMemoryPropertiesForImage(memoryProperties, flags, flagsIntel, imageDesc->mem_object, *context)) {
errcodeRet = CL_INVALID_VALUE;
return nullptr;
}
bool isHostPtrUsed = (hostPtr != nullptr);
bool areHostPtrFlagsUsed = memoryProperties.flags.copyHostPtr || memoryProperties.flags.useHostPtr;
if (isHostPtrUsed != areHostPtrFlagsUsed) {
errcodeRet = CL_INVALID_HOST_PTR;
return nullptr;
}
errcodeRet = Image::validateImageFormat(imageFormat);
if (errcodeRet != CL_SUCCESS) {
return nullptr;
}
const auto surfaceFormat = Image::getSurfaceFormatFromTable(flags, imageFormat, context->getDevice(0)->getHardwareInfo().capabilityTable.clVersionSupport);
errcodeRet = Image::validate(context, memoryProperties, surfaceFormat, imageDesc, hostPtr);
if (errcodeRet != CL_SUCCESS) {
return nullptr;
}
return Image::create(context, memoryProperties, flags, flagsIntel, surfaceFormat, imageDesc, hostPtr, errcodeRet);
}
bool Image::isValidSingleChannelFormat(const cl_image_format *imageFormat) {
auto channelOrder = imageFormat->image_channel_order;
auto dataType = imageFormat->image_channel_data_type;
bool isValidOrder = (channelOrder == CL_A) ||
(channelOrder == CL_R) ||
(channelOrder == CL_Rx);
bool isValidDataType = (dataType == CL_UNORM_INT8) ||
(dataType == CL_UNORM_INT16) ||
(dataType == CL_SNORM_INT8) ||
(dataType == CL_SNORM_INT16) ||
(dataType == CL_HALF_FLOAT) ||
(dataType == CL_FLOAT) ||
(dataType == CL_SIGNED_INT8) ||
(dataType == CL_SIGNED_INT16) ||
(dataType == CL_SIGNED_INT32) ||
(dataType == CL_UNSIGNED_INT8) ||
(dataType == CL_UNSIGNED_INT16) ||
(dataType == CL_UNSIGNED_INT32);
return isValidOrder && isValidDataType;
}
bool Image::isValidIntensityFormat(const cl_image_format *imageFormat) {
if (imageFormat->image_channel_order != CL_INTENSITY) {
return false;
}
auto dataType = imageFormat->image_channel_data_type;
return (dataType == CL_UNORM_INT8) ||
(dataType == CL_UNORM_INT16) ||
(dataType == CL_SNORM_INT8) ||
(dataType == CL_SNORM_INT16) ||
(dataType == CL_HALF_FLOAT) ||
(dataType == CL_FLOAT);
}
bool Image::isValidLuminanceFormat(const cl_image_format *imageFormat) {
if (imageFormat->image_channel_order != CL_LUMINANCE) {
return false;
}
auto dataType = imageFormat->image_channel_data_type;
return (dataType == CL_UNORM_INT8) ||
(dataType == CL_UNORM_INT16) ||
(dataType == CL_SNORM_INT8) ||
(dataType == CL_SNORM_INT16) ||
(dataType == CL_HALF_FLOAT) ||
(dataType == CL_FLOAT);
}
bool Image::isValidDepthFormat(const cl_image_format *imageFormat) {
if (imageFormat->image_channel_order != CL_DEPTH) {
return false;
}
auto dataType = imageFormat->image_channel_data_type;
return (dataType == CL_UNORM_INT16) ||
(dataType == CL_FLOAT);
}
bool Image::isValidDoubleChannelFormat(const cl_image_format *imageFormat) {
auto channelOrder = imageFormat->image_channel_order;
auto dataType = imageFormat->image_channel_data_type;
bool isValidOrder = (channelOrder == CL_RG) ||
(channelOrder == CL_RGx) ||
(channelOrder == CL_RA);
bool isValidDataType = (dataType == CL_UNORM_INT8) ||
(dataType == CL_UNORM_INT16) ||
(dataType == CL_SNORM_INT8) ||
(dataType == CL_SNORM_INT16) ||
(dataType == CL_HALF_FLOAT) ||
(dataType == CL_FLOAT) ||
(dataType == CL_SIGNED_INT8) ||
(dataType == CL_SIGNED_INT16) ||
(dataType == CL_SIGNED_INT32) ||
(dataType == CL_UNSIGNED_INT8) ||
(dataType == CL_UNSIGNED_INT16) ||
(dataType == CL_UNSIGNED_INT32);
return isValidOrder && isValidDataType;
}
bool Image::isValidTripleChannelFormat(const cl_image_format *imageFormat) {
auto channelOrder = imageFormat->image_channel_order;
auto dataType = imageFormat->image_channel_data_type;
bool isValidOrder = (channelOrder == CL_RGB) ||
(channelOrder == CL_RGBx);
bool isValidDataType = (dataType == CL_UNORM_SHORT_565) ||
(dataType == CL_UNORM_SHORT_555) ||
(dataType == CL_UNORM_INT_101010);
return isValidOrder && isValidDataType;
}
bool Image::isValidRGBAFormat(const cl_image_format *imageFormat) {
if (imageFormat->image_channel_order != CL_RGBA) {
return false;
}
auto dataType = imageFormat->image_channel_data_type;
return (dataType == CL_UNORM_INT8) ||
(dataType == CL_UNORM_INT16) ||
(dataType == CL_SNORM_INT8) ||
(dataType == CL_SNORM_INT16) ||
(dataType == CL_HALF_FLOAT) ||
(dataType == CL_FLOAT) ||
(dataType == CL_SIGNED_INT8) ||
(dataType == CL_SIGNED_INT16) ||
(dataType == CL_SIGNED_INT32) ||
(dataType == CL_UNSIGNED_INT8) ||
(dataType == CL_UNSIGNED_INT16) ||
(dataType == CL_UNSIGNED_INT32);
}
bool Image::isValidSRGBFormat(const cl_image_format *imageFormat) {
auto channelOrder = imageFormat->image_channel_order;
auto dataType = imageFormat->image_channel_data_type;
bool isValidOrder = (channelOrder == CL_sRGB) ||
(channelOrder == CL_sRGBx) ||
(channelOrder == CL_sRGBA) ||
(channelOrder == CL_sBGRA);
bool isValidDataType = (dataType == CL_UNORM_INT8);
return isValidOrder && isValidDataType;
}
bool Image::isValidARGBFormat(const cl_image_format *imageFormat) {
auto channelOrder = imageFormat->image_channel_order;
auto dataType = imageFormat->image_channel_data_type;
bool isValidOrder = (channelOrder == CL_ARGB) ||
(channelOrder == CL_BGRA) ||
(channelOrder == CL_ABGR);
bool isValidDataType = (dataType == CL_UNORM_INT8) ||
(dataType == CL_SNORM_INT8) ||
(dataType == CL_SIGNED_INT8) ||
(dataType == CL_UNSIGNED_INT8);
return isValidOrder && isValidDataType;
}
bool Image::isValidDepthStencilFormat(const cl_image_format *imageFormat) {
if (imageFormat->image_channel_order != CL_DEPTH_STENCIL) {
return false;
}
auto dataType = imageFormat->image_channel_data_type;
return (dataType == CL_UNORM_INT24) ||
(dataType == CL_FLOAT);
}
bool Image::isValidYUVFormat(const cl_image_format *imageFormat) {
auto dataType = imageFormat->image_channel_data_type;
bool isValidOrder = IsNV12Image(imageFormat) || IsPackedYuvImage(imageFormat);
bool isValidDataType = (dataType == CL_UNORM_INT8);
return isValidOrder && isValidDataType;
}
bool Image::hasAlphaChannel(const cl_image_format *imageFormat) {
auto channelOrder = imageFormat->image_channel_order;
return (channelOrder == CL_A) ||
(channelOrder == CL_Rx) ||
(channelOrder == CL_RA) ||
(channelOrder == CL_RGx) ||
(channelOrder == CL_RGBx) ||
(channelOrder == CL_RGBA) ||
(channelOrder == CL_BGRA) ||
(channelOrder == CL_ARGB) ||
(channelOrder == CL_INTENSITY) ||
(channelOrder == CL_sRGBA) ||
(channelOrder == CL_sBGRA) ||
(channelOrder == CL_sRGBx) ||
(channelOrder == CL_ABGR);
}
size_t Image::calculateOffsetForMapping(const MemObjOffsetArray &origin) const {
size_t rowPitch = mappingOnCpuAllowed() ? imageDesc.image_row_pitch : getHostPtrRowPitch();
size_t slicePitch = mappingOnCpuAllowed() ? imageDesc.image_slice_pitch : getHostPtrSlicePitch();
size_t offset = getSurfaceFormatInfo().surfaceFormat.ImageElementSizeInBytes * origin[0];
switch (imageDesc.image_type) {
case CL_MEM_OBJECT_IMAGE1D_ARRAY:
offset += slicePitch * origin[1];
break;
case CL_MEM_OBJECT_IMAGE2D:
offset += rowPitch * origin[1];
break;
case CL_MEM_OBJECT_IMAGE2D_ARRAY:
case CL_MEM_OBJECT_IMAGE3D:
offset += rowPitch * origin[1] + slicePitch * origin[2];
break;
default:
break;
}
return offset;
}
cl_int Image::validateRegionAndOrigin(const size_t *origin, const size_t *region, const cl_image_desc &imgDesc) {
if (region[0] == 0 || region[1] == 0 || region[2] == 0) {
return CL_INVALID_VALUE;
}
bool notMipMapped = (false == isMipMapped(imgDesc));
if ((imgDesc.image_type == CL_MEM_OBJECT_IMAGE1D || imgDesc.image_type == CL_MEM_OBJECT_IMAGE1D_BUFFER) &&
(((origin[1] > 0) && notMipMapped) || origin[2] > 0 || region[1] > 1 || region[2] > 1)) {
return CL_INVALID_VALUE;
}
if ((imgDesc.image_type == CL_MEM_OBJECT_IMAGE2D || imgDesc.image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) &&
(((origin[2] > 0) && notMipMapped) || region[2] > 1)) {
return CL_INVALID_VALUE;
}
if (notMipMapped) {
return CL_SUCCESS;
}
uint32_t mipLevel = findMipLevel(imgDesc.image_type, origin);
if (mipLevel < imgDesc.num_mip_levels) {
return CL_SUCCESS;
} else {
return CL_INVALID_MIP_LEVEL;
}
}
bool Image::hasSameDescriptor(const cl_image_desc &imageDesc) const {
return this->imageDesc.image_type == imageDesc.image_type &&
this->imageDesc.image_width == imageDesc.image_width &&
this->imageDesc.image_height == imageDesc.image_height &&
this->imageDesc.image_depth == imageDesc.image_depth &&
this->imageDesc.image_array_size == imageDesc.image_array_size &&
this->hostPtrRowPitch == imageDesc.image_row_pitch &&
this->hostPtrSlicePitch == imageDesc.image_slice_pitch &&
this->imageDesc.num_mip_levels == imageDesc.num_mip_levels &&
this->imageDesc.num_samples == imageDesc.num_samples;
}
bool Image::hasValidParentImageFormat(const cl_image_format &imageFormat) const {
if (this->imageFormat.image_channel_data_type != imageFormat.image_channel_data_type) {
return false;
}
switch (this->imageFormat.image_channel_order) {
case CL_BGRA:
return imageFormat.image_channel_order == CL_sBGRA;
case CL_sBGRA:
return imageFormat.image_channel_order == CL_BGRA;
case CL_RGBA:
return imageFormat.image_channel_order == CL_sRGBA;
case CL_sRGBA:
return imageFormat.image_channel_order == CL_RGBA;
case CL_RGB:
return imageFormat.image_channel_order == CL_sRGB;
case CL_sRGB:
return imageFormat.image_channel_order == CL_RGB;
case CL_RGBx:
return imageFormat.image_channel_order == CL_sRGBx;
case CL_sRGBx:
return imageFormat.image_channel_order == CL_RGBx;
case CL_R:
return imageFormat.image_channel_order == CL_DEPTH;
default:
return false;
}
}
} // namespace NEO