compute-runtime/opencl/test/unit_test/program/program_data_tests.cpp

824 lines
41 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2018-2023 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/helpers/string.h"
#include "shared/source/kernel/implicit_args.h"
#include "shared/source/memory_manager/allocations_list.h"
#include "shared/source/memory_manager/graphics_allocation.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/program/program_info_from_patchtokens.h"
#include "shared/test/common/compiler_interface/linker_mock.h"
#include "shared/test/common/device_binary_format/patchtokens_tests.h"
#include "shared/test/common/helpers/debug_manager_state_restore.h"
#include "shared/test/common/helpers/gtest_helpers.h"
#include "shared/test/common/mocks/mock_csr.h"
#include "shared/test/common/mocks/mock_execution_environment.h"
#include "shared/test/common/mocks/mock_memory_manager.h"
#include "shared/test/common/test_macros/test.h"
#include "opencl/source/platform/platform.h"
#include "opencl/source/program/program.h"
#include "opencl/test/unit_test/mocks/mock_buffer.h"
#include "opencl/test/unit_test/mocks/mock_cl_device.h"
#include "opencl/test/unit_test/mocks/mock_program.h"
#include "opencl/test/unit_test/program/program_with_source.h"
using namespace NEO;
using namespace iOpenCL;
static const char constValue[] = "11223344";
static const char globalValue[] = "55667788";
class ProgramDataTestBase : public testing::Test,
public ContextFixture,
public PlatformFixture,
public ProgramFixture {
using ContextFixture::setUp;
using PlatformFixture::setUp;
public:
ProgramDataTestBase() {
memset(&programBinaryHeader, 0x00, sizeof(SProgramBinaryHeader));
pCurPtr = nullptr;
pProgramPatchList = nullptr;
programPatchListSize = 0;
}
void buildAndDecodeProgramPatchList();
void SetUp() override {
PlatformFixture::setUp();
pClDevice = pPlatform->getClDevice(0);
rootDeviceIndex = pClDevice->getRootDeviceIndex();
cl_device_id device = pClDevice;
ContextFixture::setUp(1, &device);
ProgramFixture::setUp();
createProgramWithSource(
pContext,
"CopyBuffer_simd16.cl");
}
void TearDown() override {
knownSource.reset();
ProgramFixture::tearDown();
ContextFixture::tearDown();
PlatformFixture::tearDown();
}
size_t setupConstantAllocation() {
size_t constSize = strlen(constValue) + 1;
EXPECT_EQ(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
SPatchAllocateConstantMemorySurfaceProgramBinaryInfo allocateConstMemorySurface;
allocateConstMemorySurface.Token = PATCH_TOKEN_ALLOCATE_CONSTANT_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateConstMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo));
allocateConstMemorySurface.ConstantBufferIndex = 0;
allocateConstMemorySurface.InlineDataSize = static_cast<uint32_t>(constSize);
pAllocateConstMemorySurface.reset(new cl_char[allocateConstMemorySurface.Size + constSize]);
memcpy_s(pAllocateConstMemorySurface.get(),
sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo),
&allocateConstMemorySurface,
sizeof(SPatchAllocateConstantMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateConstMemorySurface.get() + sizeof(allocateConstMemorySurface), constSize, constValue, constSize);
pProgramPatchList = (void *)pAllocateConstMemorySurface.get();
programPatchListSize = static_cast<uint32_t>(allocateConstMemorySurface.Size + constSize);
return constSize;
}
size_t setupGlobalAllocation() {
size_t globalSize = strlen(globalValue) + 1;
EXPECT_EQ(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo allocateGlobalMemorySurface;
allocateGlobalMemorySurface.Token = PATCH_TOKEN_ALLOCATE_GLOBAL_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateGlobalMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
allocateGlobalMemorySurface.GlobalBufferIndex = 0;
allocateGlobalMemorySurface.InlineDataSize = static_cast<uint32_t>(globalSize);
pAllocateGlobalMemorySurface.reset(new cl_char[allocateGlobalMemorySurface.Size + globalSize]);
memcpy_s(pAllocateGlobalMemorySurface.get(),
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo),
&allocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateGlobalMemorySurface.get() + sizeof(allocateGlobalMemorySurface), globalSize, globalValue, globalSize);
pProgramPatchList = pAllocateGlobalMemorySurface.get();
programPatchListSize = static_cast<uint32_t>(allocateGlobalMemorySurface.Size + globalSize);
return globalSize;
}
std::unique_ptr<cl_char[]> pAllocateConstMemorySurface;
std::unique_ptr<cl_char[]> pAllocateGlobalMemorySurface;
char *pCurPtr;
SProgramBinaryHeader programBinaryHeader;
void *pProgramPatchList;
uint32_t programPatchListSize;
cl_int patchlistDecodeErrorCode = 0;
bool allowDecodeFailure = false;
ClDevice *pClDevice = nullptr;
uint32_t rootDeviceIndex;
};
void ProgramDataTestBase::buildAndDecodeProgramPatchList() {
size_t headerSize = sizeof(SProgramBinaryHeader);
cl_int error = CL_SUCCESS;
programBinaryHeader.Magic = 0x494E5443;
programBinaryHeader.Version = CURRENT_ICBE_VERSION;
programBinaryHeader.Device = defaultHwInfo->platform.eRenderCoreFamily;
programBinaryHeader.GPUPointerSizeInBytes = 8;
programBinaryHeader.NumberOfKernels = 0;
programBinaryHeader.PatchListSize = programPatchListSize;
char *pProgramData = new char[headerSize + programBinaryHeader.PatchListSize];
ASSERT_NE(nullptr, pProgramData); // NOLINT(clang-analyzer-cplusplus.NewDeleteLeaks)
pCurPtr = pProgramData;
// program header
memset(pCurPtr, 0, sizeof(SProgramBinaryHeader));
*(SProgramBinaryHeader *)pCurPtr = programBinaryHeader;
pCurPtr += sizeof(SProgramBinaryHeader);
// patch list
memcpy_s(pCurPtr, programPatchListSize, pProgramPatchList, programPatchListSize);
pCurPtr += programPatchListSize;
auto rootDeviceIndex = pPlatform->getClDevice(0)->getRootDeviceIndex();
// as we use mock compiler in unit test, replace the genBinary here.
pProgram->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy(pProgramData, headerSize + programBinaryHeader.PatchListSize);
pProgram->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = headerSize + programBinaryHeader.PatchListSize;
error = pProgram->processGenBinary(*pClDevice);
patchlistDecodeErrorCode = error;
if (allowDecodeFailure == false) {
EXPECT_EQ(CL_SUCCESS, error);
}
delete[] pProgramData;
}
using ProgramDataTest = ProgramDataTestBase;
TEST_F(ProgramDataTest, GivenEmptyProgramBinaryHeaderWhenBuildingAndDecodingThenSucessIsReturned) {
buildAndDecodeProgramPatchList();
}
TEST_F(ProgramDataTest, WhenAllocatingConstantMemorySurfaceThenUnderlyingBufferIsSetCorrectly) {
auto constSize = setupConstantAllocation();
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(0, memcmp(constValue, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex())->getUnderlyingBuffer(), constSize));
}
TEST_F(ProgramDataTest, givenProgramWhenAllocatingConstantMemorySurfaceThenProperDeviceBitfieldIsPassed) {
auto executionEnvironment = pClDevice->getExecutionEnvironment();
auto memoryManager = new MockMemoryManager(*executionEnvironment);
std::unique_ptr<MemoryManager> memoryManagerBackup(memoryManager);
std::swap(memoryManagerBackup, executionEnvironment->memoryManager);
EXPECT_NE(pClDevice->getDeviceBitfield(), memoryManager->recentlyPassedDeviceBitfield);
setupConstantAllocation();
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(pClDevice->getDeviceBitfield(), memoryManager->recentlyPassedDeviceBitfield);
std::swap(memoryManagerBackup, executionEnvironment->memoryManager);
}
TEST_F(ProgramDataTest, whenGlobalConstantsAreExportedThenAllocateSurfacesAsSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
char constantData[128] = {};
ProgramInfo programInfo;
programInfo.globalConstants.initData = constantData;
programInfo.globalConstants.size = sizeof(constantData);
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalConstants = true;
programInfo.linkerInput = std::move(mockLinkerInput);
this->pProgram->processProgramInfo(programInfo, *pClDevice);
ASSERT_NE(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_NE(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex())->getGpuAddress())));
}
TEST_F(ProgramDataTest, whenGlobalConstantsAreNotExportedThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
char constantData[128] = {};
ProgramInfo programInfo;
programInfo.globalConstants.initData = constantData;
programInfo.globalConstants.size = sizeof(constantData);
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalConstants = false;
programInfo.linkerInput = std::move(mockLinkerInput);
this->pProgram->processProgramInfo(programInfo, *pClDevice);
ASSERT_NE(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(
pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex())->getGpuAddress())));
}
TEST_F(ProgramDataTest, whenGlobalConstantsAreExportedButContextUnavailableThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
char constantData[128] = {};
ProgramInfo programInfo;
programInfo.globalConstants.initData = constantData;
programInfo.globalConstants.size = sizeof(constantData);
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalConstants = true;
programInfo.linkerInput = std::move(mockLinkerInput);
pProgram->context = nullptr;
this->pProgram->processProgramInfo(programInfo, *pClDevice);
pProgram->context = pContext;
ASSERT_NE(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(
pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex())->getGpuAddress())));
}
TEST_F(ProgramDataTest, whenGlobalVariablesAreExportedThenAllocateSurfacesAsSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
char globalData[128] = {};
ProgramInfo programInfo;
programInfo.globalVariables.initData = globalData;
programInfo.globalVariables.size = sizeof(globalData);
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalVariables = true;
programInfo.linkerInput = std::move(mockLinkerInput);
this->pProgram->processProgramInfo(programInfo, *pClDevice);
ASSERT_NE(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_NE(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex())->getGpuAddress())));
}
TEST_F(ProgramDataTest, whenGlobalVariablesAreExportedButContextUnavailableThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
char globalData[128] = {};
ProgramInfo programInfo;
programInfo.globalVariables.initData = globalData;
programInfo.globalVariables.size = sizeof(globalData);
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalVariables = true;
programInfo.linkerInput = std::move(mockLinkerInput);
pProgram->context = nullptr;
this->pProgram->processProgramInfo(programInfo, *pClDevice);
pProgram->context = pContext;
ASSERT_NE(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex())->getGpuAddress())));
}
TEST_F(ProgramDataTest, whenGlobalVariablesAreNotExportedThenAllocateSurfacesAsNonSvm) {
if (this->pContext->getSVMAllocsManager() == nullptr) {
return;
}
char globalData[128] = {};
ProgramInfo programInfo;
programInfo.globalVariables.initData = globalData;
programInfo.globalVariables.size = sizeof(globalData);
std::unique_ptr<WhiteBox<NEO::LinkerInput>> mockLinkerInput = std::make_unique<WhiteBox<NEO::LinkerInput>>();
mockLinkerInput->traits.exportsGlobalVariables = false;
programInfo.linkerInput = std::move(mockLinkerInput);
this->pProgram->processProgramInfo(programInfo, *pClDevice);
ASSERT_NE(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(nullptr, this->pContext->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex())->getGpuAddress())));
}
TEST_F(ProgramDataTest, givenConstantAllocationThatIsInUseByGpuWhenProgramIsBeingDestroyedThenItIsAddedToTemporaryAllocationList) {
setupConstantAllocation();
buildAndDecodeProgramPatchList();
auto &csr = *pPlatform->getClDevice(0)->getDefaultEngine().commandStreamReceiver;
auto tagAddress = csr.getTagAddress();
auto constantSurface = pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex());
constantSurface->updateTaskCount(*tagAddress + 1, csr.getOsContext().getContextId());
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_TRUE(csr.getDeferredAllocations().peekIsEmpty());
delete pProgram;
pProgram = nullptr;
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_FALSE(csr.getDeferredAllocations().peekIsEmpty());
EXPECT_EQ(constantSurface, csr.getDeferredAllocations().peekHead());
}
TEST_F(ProgramDataTest, givenGlobalAllocationThatIsInUseByGpuWhenProgramIsBeingDestroyedThenItIsAddedToTemporaryAllocationList) {
setupGlobalAllocation();
buildAndDecodeProgramPatchList();
auto &csr = *pPlatform->getClDevice(0)->getDefaultEngine().commandStreamReceiver;
auto tagAddress = csr.getTagAddress();
auto globalSurface = pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex());
globalSurface->updateTaskCount(*tagAddress + 1, csr.getOsContext().getContextId());
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_TRUE(csr.getDeferredAllocations().peekIsEmpty());
delete pProgram;
pProgram = nullptr;
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_FALSE(csr.getDeferredAllocations().peekIsEmpty());
EXPECT_EQ(globalSurface, csr.getDeferredAllocations().peekHead());
}
TEST_F(ProgramDataTest, GivenDeviceForcing32BitMessagesWhenConstAllocationIsPresentInProgramBinariesThen32BitStorageIsAllocated) {
auto constSize = setupConstantAllocation();
this->pContext->getDevice(0)->getMemoryManager()->setForce32BitAllocations(true);
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(0, memcmp(constValue, pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex())->getUnderlyingBuffer(), constSize));
if constexpr (is64bit) {
EXPECT_TRUE(pProgram->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex())->is32BitAllocation());
Add braces to avoid ambiguous 'else' For the new Linux/Fedora configuration with introduction of gcc 7.2, compilation of this file issues a new warning due to the correct diagnosis of an ambiguous 'else'. As warnings are being treated as errors, this aborts the build. The diagnostic: vpg-compute-neo/unit_tests/elflib/elflib_tests.cpp:123:12: error: suggest explicit braces to avoid ambiguous 'else' [-Werror=dangling-else] if (nonfailingAllocation == failureIndex) ^ Diagnosis: The diagnostic suggested that this: if (nonfailingAllocation == failureIndex) ASSERT_NE(nullptr, pWriter); should be changed to: if (nonfailingAllocation == failureIndex) { ASSERT_NE(nullptr, pWriter); } This is a valid suggestion. The same is true for EXPECT_EQ. Pick the files in repository ssh://gerrit-gfx.intel.com:29418/mirrors/github/google/googletest for tracing the definition. (There are many versions of gtest.h under the ufo tree). Starting in file include/gtest/gtest.h, the definition of ASSERT_NE can be traced back towards its origin as follows: ASSERT_NE include/gtest/gtest.h GTEST_ASSERT_NE include/gtest/gtest.h ASSERT_PRED_FORMAT2 include/gtest/gtest_pred_impl.h GTEST_PRED_FORMAT2_ include/gtest/gtest_pred_impl.h GTEST_ASSERT_ include/gtest/gtest_pred_impl.h where GTEST_ASSERT_ indeed *should* be enclosed in braces. GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) The correct fix would be to place the braces in the macro definition. However, as file gtest.h comes from Google, and as there are 37 different versions of it in the source tree, this workaround will address the macro invocations. Should it be desirable, it is left to others to correct gtest.h and friends. Change-Id: I870d38ba623fc7564f894c7b1ea7512b74244ee2 Signed-off-by: Dale Stimson <dale.b.stimson@intel.com>
2018-01-24 09:00:40 +08:00
}
}
TEST_F(ProgramDataTest, WhenAllocatingGlobalMemorySurfaceThenUnderlyingBufferIsSetCorrectly) {
auto globalSize = setupGlobalAllocation();
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(0, memcmp(globalValue, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex())->getUnderlyingBuffer(), globalSize));
}
TEST_F(ProgramDataTest, givenProgramWhenAllocatingGlobalMemorySurfaceThenProperDeviceBitfieldIsPassed) {
auto executionEnvironment = pClDevice->getExecutionEnvironment();
auto memoryManager = new MockMemoryManager(*executionEnvironment);
std::unique_ptr<MemoryManager> memoryManagerBackup(memoryManager);
std::swap(memoryManagerBackup, executionEnvironment->memoryManager);
EXPECT_NE(pClDevice->getDeviceBitfield(), memoryManager->recentlyPassedDeviceBitfield);
setupGlobalAllocation();
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(pClDevice->getDeviceBitfield(), memoryManager->recentlyPassedDeviceBitfield);
std::swap(memoryManagerBackup, executionEnvironment->memoryManager);
}
TEST_F(ProgramDataTest, Given32BitDeviceWhenGlobalMemorySurfaceIsPresentThenItHas32BitStorage) {
char globalValue[] = "55667788";
size_t globalSize = strlen(globalValue) + 1;
this->pContext->getDevice(0)->getMemoryManager()->setForce32BitAllocations(true);
EXPECT_EQ(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo allocateGlobalMemorySurface;
allocateGlobalMemorySurface.Token = PATCH_TOKEN_ALLOCATE_GLOBAL_MEMORY_SURFACE_PROGRAM_BINARY_INFO;
allocateGlobalMemorySurface.Size = static_cast<uint32_t>(sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
allocateGlobalMemorySurface.GlobalBufferIndex = 0;
allocateGlobalMemorySurface.InlineDataSize = static_cast<uint32_t>(globalSize);
cl_char *pAllocateGlobalMemorySurface = new cl_char[allocateGlobalMemorySurface.Size + globalSize];
memcpy_s(pAllocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo),
&allocateGlobalMemorySurface,
sizeof(SPatchAllocateGlobalMemorySurfaceProgramBinaryInfo));
memcpy_s((cl_char *)pAllocateGlobalMemorySurface + sizeof(allocateGlobalMemorySurface), globalSize, globalValue, globalSize);
pProgramPatchList = (void *)pAllocateGlobalMemorySurface;
programPatchListSize = static_cast<uint32_t>(allocateGlobalMemorySurface.Size + globalSize);
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex()));
EXPECT_EQ(0, memcmp(globalValue, pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex())->getUnderlyingBuffer(), globalSize));
if constexpr (is64bit) {
EXPECT_TRUE(pProgram->getGlobalSurface(pContext->getDevice(0)->getRootDeviceIndex())->is32BitAllocation());
Add braces to avoid ambiguous 'else' For the new Linux/Fedora configuration with introduction of gcc 7.2, compilation of this file issues a new warning due to the correct diagnosis of an ambiguous 'else'. As warnings are being treated as errors, this aborts the build. The diagnostic: vpg-compute-neo/unit_tests/elflib/elflib_tests.cpp:123:12: error: suggest explicit braces to avoid ambiguous 'else' [-Werror=dangling-else] if (nonfailingAllocation == failureIndex) ^ Diagnosis: The diagnostic suggested that this: if (nonfailingAllocation == failureIndex) ASSERT_NE(nullptr, pWriter); should be changed to: if (nonfailingAllocation == failureIndex) { ASSERT_NE(nullptr, pWriter); } This is a valid suggestion. The same is true for EXPECT_EQ. Pick the files in repository ssh://gerrit-gfx.intel.com:29418/mirrors/github/google/googletest for tracing the definition. (There are many versions of gtest.h under the ufo tree). Starting in file include/gtest/gtest.h, the definition of ASSERT_NE can be traced back towards its origin as follows: ASSERT_NE include/gtest/gtest.h GTEST_ASSERT_NE include/gtest/gtest.h ASSERT_PRED_FORMAT2 include/gtest/gtest_pred_impl.h GTEST_PRED_FORMAT2_ include/gtest/gtest_pred_impl.h GTEST_ASSERT_ include/gtest/gtest_pred_impl.h where GTEST_ASSERT_ indeed *should* be enclosed in braces. GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) The correct fix would be to place the braces in the macro definition. However, as file gtest.h comes from Google, and as there are 37 different versions of it in the source tree, this workaround will address the macro invocations. Should it be desirable, it is left to others to correct gtest.h and friends. Change-Id: I870d38ba623fc7564f894c7b1ea7512b74244ee2 Signed-off-by: Dale Stimson <dale.b.stimson@intel.com>
2018-01-24 09:00:40 +08:00
}
delete[] pAllocateGlobalMemorySurface;
}
TEST(ProgramScopeMetadataTest, WhenPatchingGlobalSurfaceThenPickProperSourceBuffer) {
MockExecutionEnvironment execEnv;
execEnv.incRefInternal();
MockClDevice device{new MockDevice(&execEnv, 0)};
execEnv.memoryManager = std::make_unique<MockMemoryManager>();
PatchTokensTestData::ValidProgramWithMixedGlobalVarAndConstSurfacesAndPointers decodedProgram;
decodedProgram.globalPointerMutable->GlobalPointerOffset = 0U;
decodedProgram.constantPointerMutable->ConstantPointerOffset = 0U;
memset(decodedProgram.globalSurfMutable + 1, 0U, sizeof(uintptr_t));
memset(decodedProgram.constSurfMutable + 1, 0U, sizeof(uintptr_t));
ProgramInfo programInfo;
MockProgram program(toClDeviceVector(device));
NEO::populateProgramInfo(programInfo, decodedProgram);
program.processProgramInfo(programInfo, device);
auto &buildInfo = program.buildInfos[device.getRootDeviceIndex()];
ASSERT_NE(nullptr, buildInfo.globalSurface);
ASSERT_NE(nullptr, buildInfo.constantSurface);
ASSERT_NE(nullptr, buildInfo.globalSurface->getUnderlyingBuffer());
ASSERT_NE(nullptr, buildInfo.constantSurface->getUnderlyingBuffer());
EXPECT_EQ(static_cast<uintptr_t>(buildInfo.globalSurface->getGpuAddressToPatch()), *reinterpret_cast<uintptr_t *>(buildInfo.constantSurface->getUnderlyingBuffer()));
EXPECT_EQ(static_cast<uintptr_t>(buildInfo.constantSurface->getGpuAddressToPatch()), *reinterpret_cast<uintptr_t *>(buildInfo.globalSurface->getUnderlyingBuffer()));
}
TEST_F(ProgramDataTest, GivenProgramWith32bitPointerOptWhenProgramScopeConstantBufferPatchTokensAreReadThenConstantPointerOffsetIsPatchedWith32bitPointer) {
createProgramWithSource(pContext, "CopyBuffer_simd16.cl");
ASSERT_NE(nullptr, pProgram);
MockProgram *prog = pProgram;
// simulate case when constant surface was not allocated
EXPECT_EQ(nullptr, prog->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
ProgramInfo programInfo;
programInfo.prepareLinkerInputStorage();
NEO::LinkerInput::RelocationInfo relocInfo;
relocInfo.relocationSegment = NEO::SegmentType::GlobalConstants;
relocInfo.offset = 0U;
relocInfo.type = NEO::LinkerInput::RelocationInfo::Type::Address;
relocInfo.symbolName = "GlobalConstantPointer";
NEO::SymbolInfo symbol = {};
symbol.offset = 0U;
symbol.size = 8U;
symbol.segment = NEO::SegmentType::GlobalConstants;
programInfo.linkerInput->addSymbol("GlobalConstantPointer", symbol);
programInfo.linkerInput->addDataRelocationInfo(relocInfo);
programInfo.linkerInput->setPointerSize(LinkerInput::Traits::PointerSize::Ptr32bit);
MockBuffer constantSurface;
ASSERT_LT(8U, constantSurface.getSize());
prog->setConstantSurface(&constantSurface.mockGfxAllocation);
constantSurface.mockGfxAllocation.set32BitAllocation(true);
uint32_t *constantSurfaceStorage = reinterpret_cast<uint32_t *>(constantSurface.getCpuAddress());
uint32_t sentinel = 0x17192329U;
constantSurfaceStorage[0] = 0U;
constantSurfaceStorage[1] = sentinel;
programInfo.globalConstants.initData = constantSurface.mockGfxAllocation.getUnderlyingBuffer();
programInfo.globalConstants.size = constantSurface.mockGfxAllocation.getUnderlyingBufferSize();
pProgram->setLinkerInput(pClDevice->getRootDeviceIndex(), std::move(programInfo.linkerInput));
pProgram->linkBinary(&pClDevice->getDevice(), programInfo.globalConstants.initData, programInfo.globalConstants.size, programInfo.globalVariables.initData, programInfo.globalVariables.size, {}, prog->externalFunctions);
uint32_t expectedAddr = static_cast<uint32_t>(constantSurface.getGraphicsAllocation(pClDevice->getRootDeviceIndex())->getGpuAddressToPatch());
EXPECT_EQ(expectedAddr, constantSurfaceStorage[0]);
EXPECT_EQ(sentinel, constantSurfaceStorage[1]);
constantSurface.mockGfxAllocation.set32BitAllocation(false);
prog->setConstantSurface(nullptr);
}
TEST_F(ProgramDataTest, GivenProgramWith32bitPointerOptWhenProgramScopeGlobalPointerPatchTokensAreReadThenGlobalPointerOffsetIsPatchedWith32bitPointer) {
createProgramWithSource(pContext, "CopyBuffer_simd16.cl");
ASSERT_NE(nullptr, pProgram);
MockProgram *prog = pProgram;
// simulate case when constant surface was not allocated
EXPECT_EQ(nullptr, prog->getConstantSurface(pContext->getDevice(0)->getRootDeviceIndex()));
ProgramInfo programInfo;
programInfo.prepareLinkerInputStorage();
NEO::LinkerInput::RelocationInfo relocInfo;
relocInfo.offset = 0U;
relocInfo.type = NEO::LinkerInput::RelocationInfo::Type::Address;
relocInfo.relocationSegment = NEO::SegmentType::GlobalVariables;
relocInfo.symbolName = "GlobalVariablePointer";
NEO::SymbolInfo symbol = {};
symbol.offset = 0U;
symbol.size = 8U;
symbol.segment = NEO::SegmentType::GlobalVariables;
programInfo.linkerInput->addSymbol("GlobalVariablePointer", symbol);
programInfo.linkerInput->addDataRelocationInfo(relocInfo);
programInfo.linkerInput->setPointerSize(LinkerInput::Traits::PointerSize::Ptr32bit);
MockBuffer globalSurface;
ASSERT_LT(8U, globalSurface.getSize());
prog->setGlobalSurface(&globalSurface.mockGfxAllocation);
globalSurface.mockGfxAllocation.set32BitAllocation(true);
uint32_t *globalSurfaceStorage = reinterpret_cast<uint32_t *>(globalSurface.getCpuAddress());
uint32_t sentinel = 0x17192329U;
globalSurfaceStorage[0] = 0U;
globalSurfaceStorage[1] = sentinel;
programInfo.globalVariables.initData = globalSurface.mockGfxAllocation.getUnderlyingBuffer();
programInfo.globalVariables.size = globalSurface.mockGfxAllocation.getUnderlyingBufferSize();
pProgram->setLinkerInput(pClDevice->getRootDeviceIndex(), std::move(programInfo.linkerInput));
pProgram->linkBinary(&pClDevice->getDevice(), programInfo.globalConstants.initData, programInfo.globalConstants.size, programInfo.globalVariables.initData, programInfo.globalVariables.size, {}, prog->externalFunctions);
uint32_t expectedAddr = static_cast<uint32_t>(globalSurface.getGraphicsAllocation(pClDevice->getRootDeviceIndex())->getGpuAddressToPatch());
EXPECT_EQ(expectedAddr, globalSurfaceStorage[0]);
EXPECT_EQ(sentinel, globalSurfaceStorage[1]);
globalSurface.mockGfxAllocation.set32BitAllocation(false);
prog->setGlobalSurface(nullptr);
}
TEST_F(ProgramDataTest, givenSymbolTablePatchTokenThenLinkerInputIsCreated) {
SPatchFunctionTableInfo token;
token.Token = PATCH_TOKEN_PROGRAM_SYMBOL_TABLE;
token.Size = static_cast<uint32_t>(sizeof(SPatchFunctionTableInfo));
token.NumEntries = 0;
pProgramPatchList = &token;
programPatchListSize = token.Size;
buildAndDecodeProgramPatchList();
EXPECT_NE(nullptr, pProgram->getLinkerInput(pContext->getDevice(0)->getRootDeviceIndex()));
}
TEST(ProgramLinkBinaryTest, whenLinkerInputEmptyThenLinkSuccessful) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
MockProgram program{nullptr, false, toClDeviceVector(*device)};
program.setLinkerInput(device->getRootDeviceIndex(), std::move(linkerInput));
auto ret = program.linkBinary(&device->getDevice(), nullptr, 0, nullptr, 0, {}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
}
TEST(ProgramLinkBinaryTest, whenLinkerUnresolvedExternalThenLinkFailedAndBuildLogAvailable) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
NEO::LinkerInput::RelocationInfo relocation = {};
relocation.symbolName = "A";
relocation.offset = 0;
linkerInput->textRelocations.push_back(NEO::LinkerInput::Relocations{relocation});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
auto rootDeviceIndex = device->getRootDeviceIndex();
MockProgram program{nullptr, false, toClDeviceVector(*device)};
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
std::vector<char> kernelHeap;
kernelHeap.resize(32, 7);
kernelInfo.heapInfo.pKernelHeap = kernelHeap.data();
kernelInfo.heapInfo.KernelHeapSize = static_cast<uint32_t>(kernelHeap.size());
kernelInfo.createKernelAllocation(device->getDevice(), false);
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
program.setLinkerInput(rootDeviceIndex, std::move(linkerInput));
std::string buildLog = program.getBuildLog(device->getRootDeviceIndex());
EXPECT_TRUE(buildLog.empty());
auto ret = program.linkBinary(&device->getDevice(), nullptr, 0, nullptr, 0, {}, program.externalFunctions);
EXPECT_NE(CL_SUCCESS, ret);
program.getKernelInfoArray(rootDeviceIndex).clear();
buildLog = program.getBuildLog(rootDeviceIndex);
EXPECT_FALSE(buildLog.empty());
Linker::UnresolvedExternals expectedUnresolvedExternals;
expectedUnresolvedExternals.push_back(Linker::UnresolvedExternal{relocation, 0, false});
auto expectedError = constructLinkerErrorMessage(expectedUnresolvedExternals, std::vector<std::string>{"kernel : " + kernelInfo.kernelDescriptor.kernelMetadata.kernelName});
EXPECT_TRUE(hasSubstr(buildLog, expectedError));
device->getMemoryManager()->freeGraphicsMemory(kernelInfo.getGraphicsAllocation());
}
TEST_F(ProgramDataTest, whenLinkerInputValidThenIsaIsProperlyPatched) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->symbols["A"] = NEO::SymbolInfo{4U, 4U, NEO::SegmentType::GlobalVariables};
linkerInput->symbols["B"] = NEO::SymbolInfo{8U, 4U, NEO::SegmentType::GlobalConstants};
linkerInput->symbols["C"] = NEO::SymbolInfo{16U, 4U, NEO::SegmentType::Instructions};
auto relocationType = NEO::LinkerInput::RelocationInfo::Type::Address;
linkerInput->textRelocations.push_back({NEO::LinkerInput::RelocationInfo{"A", 8U, relocationType},
NEO::LinkerInput::RelocationInfo{"B", 16U, relocationType},
NEO::LinkerInput::RelocationInfo{"C", 24U, relocationType}});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
linkerInput->exportedFunctionsSegmentId = 0;
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
MockProgram program{nullptr, false, toClDeviceVector(*device)};
auto &buildInfo = program.buildInfos[device->getRootDeviceIndex()];
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
std::vector<char> kernelHeap;
kernelHeap.resize(32, 7);
kernelInfo.heapInfo.pKernelHeap = kernelHeap.data();
kernelInfo.heapInfo.KernelHeapSize = static_cast<uint32_t>(kernelHeap.size());
MockGraphicsAllocation kernelIsa(kernelHeap.data(), kernelHeap.size());
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
program.setLinkerInput(device->getRootDeviceIndex(), std::move(linkerInput));
buildInfo.exportedFunctionsSurface = kernelInfo.kernelAllocation;
std::vector<char> globalVariablesBuffer;
globalVariablesBuffer.resize(32, 7);
std::vector<char> globalConstantsBuffer;
globalConstantsBuffer.resize(32, 7);
std::vector<char> globalVariablesInitData{32, 0};
std::vector<char> globalConstantsInitData{32, 0};
buildInfo.globalSurface = new MockGraphicsAllocation(globalVariablesBuffer.data(), globalVariablesBuffer.size());
buildInfo.constantSurface = new MockGraphicsAllocation(globalConstantsBuffer.data(), globalConstantsBuffer.size());
auto ret = program.linkBinary(&pClDevice->getDevice(), globalConstantsInitData.data(), globalConstantsInitData.size(), globalVariablesInitData.data(), globalVariablesInitData.size(), {}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
linkerInput.reset(static_cast<WhiteBox<LinkerInput> *>(buildInfo.linkerInput.release()));
for (size_t i = 0; i < linkerInput->textRelocations.size(); ++i) {
auto expectedPatch = buildInfo.globalSurface->getGpuAddress() + linkerInput->symbols[linkerInput->textRelocations[0][0].symbolName].offset;
auto relocationAddress = kernelHeap.data() + linkerInput->textRelocations[0][0].offset;
EXPECT_EQ(static_cast<uintptr_t>(expectedPatch), *reinterpret_cast<uintptr_t *>(relocationAddress)) << i;
}
program.getKernelInfoArray(rootDeviceIndex).clear();
delete buildInfo.globalSurface;
buildInfo.globalSurface = nullptr;
delete buildInfo.constantSurface;
buildInfo.constantSurface = nullptr;
}
TEST_F(ProgramDataTest, whenRelocationsAreNotNeededThenIsaIsPreserved) {
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->symbols["A"] = NEO::SymbolInfo{4U, 4U, NEO::SegmentType::GlobalVariables};
linkerInput->symbols["B"] = NEO::SymbolInfo{8U, 4U, NEO::SegmentType::GlobalConstants};
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
MockProgram program{nullptr, false, toClDeviceVector(*device)};
auto &buildInfo = program.buildInfos[device->getRootDeviceIndex()];
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
std::vector<char> kernelHeapData;
kernelHeapData.resize(32, 7);
std::vector<char> kernelHeap(kernelHeapData.begin(), kernelHeapData.end());
kernelInfo.heapInfo.pKernelHeap = kernelHeap.data();
kernelInfo.heapInfo.KernelHeapSize = static_cast<uint32_t>(kernelHeap.size());
MockGraphicsAllocation kernelIsa(kernelHeap.data(), kernelHeap.size());
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
program.setLinkerInput(rootDeviceIndex, std::move(linkerInput));
std::vector<char> globalVariablesBuffer;
globalVariablesBuffer.resize(32, 7);
std::vector<char> globalConstantsBuffer;
globalConstantsBuffer.resize(32, 7);
std::vector<char> globalVariablesInitData{32, 0};
std::vector<char> globalConstantsInitData{32, 0};
buildInfo.globalSurface = new MockGraphicsAllocation(globalVariablesBuffer.data(), globalVariablesBuffer.size());
buildInfo.constantSurface = new MockGraphicsAllocation(globalConstantsBuffer.data(), globalConstantsBuffer.size());
auto ret = program.linkBinary(&pClDevice->getDevice(), globalConstantsInitData.data(), globalConstantsInitData.size(), globalVariablesInitData.data(), globalVariablesInitData.size(), {}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_EQ(kernelHeapData, kernelHeap);
program.getKernelInfoArray(rootDeviceIndex).clear();
delete buildInfo.globalSurface;
buildInfo.globalSurface = nullptr;
delete buildInfo.constantSurface;
buildInfo.constantSurface = nullptr;
}
TEST(ProgramStringSectionTest, WhenConstStringBufferIsPresentThenUseItForLinking) {
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
auto rootDeviceIndex = device->getRootDeviceIndex();
MockProgram program{nullptr, false, toClDeviceVector(*device)};
uint8_t kernelHeapData[64] = {};
MockGraphicsAllocation kernelIsa(kernelHeapData, 64);
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
kernelInfo.heapInfo.pKernelHeap = kernelHeapData;
kernelInfo.heapInfo.KernelHeapSize = 64;
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->textRelocations.push_back({{".str", 0x8, LinkerInput::RelocationInfo::Type::Address, SegmentType::Instructions}});
linkerInput->symbols.insert({".str", {0x0, 0x8, SegmentType::GlobalStrings}});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
program.setLinkerInput(rootDeviceIndex, std::move(linkerInput));
auto isaCpuPtr = reinterpret_cast<char *>(kernelInfo.getGraphicsAllocation()->getUnderlyingBuffer());
auto patchAddr = ptrOffset(isaCpuPtr, 0x8);
const char constStringData[] = "Hello World!\n";
auto stringsAddr = reinterpret_cast<uintptr_t>(constStringData);
auto ret = program.linkBinary(&device->getDevice(), nullptr, 0, nullptr, 0, {constStringData, sizeof(constStringData)}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_EQ(static_cast<size_t>(stringsAddr), *reinterpret_cast<size_t *>(patchAddr));
program.getKernelInfoArray(rootDeviceIndex).clear();
}
TEST(ProgramImplicitArgsTest, givenImplicitRelocationAndStackCallsThenKernelRequiresImplicitArgs) {
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
auto rootDeviceIndex = device->getRootDeviceIndex();
MockProgram program{nullptr, false, toClDeviceVector(*device)};
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
kernelInfo.kernelDescriptor.kernelAttributes.flags.useStackCalls = true;
uint8_t kernelHeapData[64] = {};
kernelInfo.heapInfo.pKernelHeap = kernelHeapData;
kernelInfo.heapInfo.KernelHeapSize = 64;
MockGraphicsAllocation kernelIsa(kernelHeapData, 64);
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->textRelocations.push_back({{implicitArgsRelocationSymbolName, 0x8, LinkerInput::RelocationInfo::Type::AddressLow, SegmentType::Instructions}});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
program.setLinkerInput(rootDeviceIndex, std::move(linkerInput));
auto ret = program.linkBinary(&device->getDevice(), nullptr, 0, nullptr, 0, {}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_TRUE(kernelInfo.kernelDescriptor.kernelAttributes.flags.requiresImplicitArgs);
program.getKernelInfoArray(rootDeviceIndex).clear();
}
TEST(ProgramImplicitArgsTest, givenImplicitRelocationAndEnabledDebuggerThenKernelRequiresImplicitArgs) {
if (!defaultHwInfo->capabilityTable.debuggerSupported) {
GTEST_SKIP();
}
DebugManagerStateRestore restorer;
DebugManager.flags.EnableMockSourceLevelDebugger.set(1);
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
EXPECT_NE(nullptr, device->getDebugger());
auto rootDeviceIndex = device->getRootDeviceIndex();
MockProgram program{nullptr, false, toClDeviceVector(*device)};
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
kernelInfo.kernelDescriptor.kernelAttributes.flags.useStackCalls = false;
uint8_t kernelHeapData[64] = {};
kernelInfo.heapInfo.pKernelHeap = kernelHeapData;
kernelInfo.heapInfo.KernelHeapSize = 64;
MockGraphicsAllocation kernelIsa(kernelHeapData, 64);
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->textRelocations.push_back({{implicitArgsRelocationSymbolName, 0x8, LinkerInput::RelocationInfo::Type::AddressLow, SegmentType::Instructions}});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
program.setLinkerInput(rootDeviceIndex, std::move(linkerInput));
auto ret = program.linkBinary(&device->getDevice(), nullptr, 0, nullptr, 0, {}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_TRUE(kernelInfo.kernelDescriptor.kernelAttributes.flags.requiresImplicitArgs);
program.getKernelInfoArray(rootDeviceIndex).clear();
}
TEST(ProgramImplicitArgsTest, givenImplicitRelocationAndNoStackCallsAndDisabledDebuggerThenKernelDoesntRequireImplicitArgs) {
auto device = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(defaultHwInfo.get()));
EXPECT_EQ(nullptr, device->getDebugger());
auto rootDeviceIndex = device->getRootDeviceIndex();
MockProgram program{nullptr, false, toClDeviceVector(*device)};
KernelInfo kernelInfo = {};
kernelInfo.kernelDescriptor.kernelMetadata.kernelName = "onlyKernel";
kernelInfo.kernelDescriptor.kernelAttributes.flags.useStackCalls = false;
uint8_t kernelHeapData[64] = {};
kernelInfo.heapInfo.pKernelHeap = kernelHeapData;
kernelInfo.heapInfo.KernelHeapSize = 64;
MockGraphicsAllocation kernelIsa(kernelHeapData, 64);
kernelInfo.kernelAllocation = &kernelIsa;
program.getKernelInfoArray(rootDeviceIndex).push_back(&kernelInfo);
auto linkerInput = std::make_unique<WhiteBox<LinkerInput>>();
linkerInput->textRelocations.push_back({{implicitArgsRelocationSymbolName, 0x8, LinkerInput::RelocationInfo::Type::AddressLow, SegmentType::Instructions}});
linkerInput->traits.requiresPatchingOfInstructionSegments = true;
program.setLinkerInput(rootDeviceIndex, std::move(linkerInput));
auto ret = program.linkBinary(&device->getDevice(), nullptr, 0, nullptr, 0, {}, program.externalFunctions);
EXPECT_EQ(CL_SUCCESS, ret);
EXPECT_FALSE(kernelInfo.kernelDescriptor.kernelAttributes.flags.requiresImplicitArgs);
program.getKernelInfoArray(rootDeviceIndex).clear();
}