compute-runtime/unit_tests/mem_obj/buffer_tests.cpp

2417 lines
106 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2017-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "core/helpers/hw_helper.h"
#include "core/memory_manager/unified_memory_manager.h"
#include "core/unit_tests/helpers/debug_manager_state_restore.h"
#include "core/unit_tests/utilities/base_object_utils.h"
#include "public/cl_ext_private.h"
#include "runtime/command_queue/command_queue_hw.h"
#include "runtime/command_queue/gpgpu_walker.h"
#include "runtime/event/user_event.h"
#include "runtime/gmm_helper/gmm.h"
#include "runtime/gmm_helper/gmm_helper.h"
#include "runtime/gmm_helper/resource_info.h"
#include "runtime/helpers/array_count.h"
#include "runtime/helpers/memory_properties_flags_helpers.h"
#include "runtime/helpers/options.h"
#include "runtime/mem_obj/buffer.h"
#include "runtime/memory_manager/allocations_list.h"
#include "runtime/os_interface/os_context.h"
#include "runtime/platform/platform.h"
#include "test.h"
#include "unit_tests/fixtures/device_fixture.h"
#include "unit_tests/fixtures/memory_management_fixture.h"
#include "unit_tests/gen_common/matchers.h"
#include "unit_tests/helpers/hw_parse.h"
#include "unit_tests/helpers/unit_test_helper.h"
#include "unit_tests/mocks/mock_buffer.h"
#include "unit_tests/mocks/mock_command_queue.h"
#include "unit_tests/mocks/mock_context.h"
#include "unit_tests/mocks/mock_execution_environment.h"
#include "unit_tests/mocks/mock_gmm_resource_info.h"
#include "unit_tests/mocks/mock_memory_manager.h"
#include "unit_tests/mocks/mock_timestamp_container.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace NEO;
static const unsigned int g_scTestBufferSizeInBytes = 16;
TEST(Buffer, giveBufferWhenAskedForPtrOffsetForMappingThenReturnCorrectValue) {
MockContext ctx;
cl_int retVal;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, 0, 1, nullptr, retVal));
MemObjOffsetArray offset = {{4, 5, 6}};
auto retOffset = buffer->calculateOffsetForMapping(offset);
EXPECT_EQ(offset[0], retOffset);
}
TEST(Buffer, giveBufferCreateWithHostPtrButWithoutProperFlagsWhenCreatedThenErrorIsReturned) {
MockContext ctx;
cl_int retVal;
auto hostPtr = reinterpret_cast<void *>(0x1774);
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, CL_MEM_READ_WRITE, 1, hostPtr, retVal));
EXPECT_EQ(retVal, CL_INVALID_HOST_PTR);
}
TEST(Buffer, givenBufferWhenAskedForPtrLengthThenReturnCorrectValue) {
MockContext ctx;
cl_int retVal;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, 0, 1, nullptr, retVal));
MemObjSizeArray size = {{4, 5, 6}};
auto retOffset = buffer->calculateMappedPtrLength(size);
EXPECT_EQ(size[0], retOffset);
}
TEST(Buffer, givenReadOnlySetOfInputFlagsWhenPassedToisReadOnlyMemoryPermittedByFlagsThenTrueIsReturned) {
class MockBuffer : public Buffer {
public:
using Buffer::isReadOnlyMemoryPermittedByFlags;
};
cl_mem_flags flags = CL_MEM_HOST_NO_ACCESS | CL_MEM_READ_ONLY;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
EXPECT_TRUE(MockBuffer::isReadOnlyMemoryPermittedByFlags(memoryProperties));
flags = CL_MEM_HOST_READ_ONLY | CL_MEM_READ_ONLY;
memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
EXPECT_TRUE(MockBuffer::isReadOnlyMemoryPermittedByFlags(memoryProperties));
}
class BufferReadOnlyTest : public testing::TestWithParam<uint64_t> {
};
TEST_P(BufferReadOnlyTest, givenNonReadOnlySetOfInputFlagsWhenPassedToisReadOnlyMemoryPermittedByFlagsThenFalseIsReturned) {
class MockBuffer : public Buffer {
public:
using Buffer::isReadOnlyMemoryPermittedByFlags;
};
cl_mem_flags flags = GetParam() | CL_MEM_USE_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
EXPECT_FALSE(MockBuffer::isReadOnlyMemoryPermittedByFlags(memoryProperties));
}
static cl_mem_flags nonReadOnlyFlags[] = {
CL_MEM_READ_WRITE | CL_MEM_HOST_READ_ONLY,
CL_MEM_WRITE_ONLY,
CL_MEM_READ_ONLY | CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_READ_ONLY,
CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_NO_ACCESS,
CL_MEM_HOST_READ_ONLY | CL_MEM_WRITE_ONLY,
CL_MEM_HOST_WRITE_ONLY | CL_MEM_WRITE_ONLY,
0};
INSTANTIATE_TEST_CASE_P(
nonReadOnlyFlags,
BufferReadOnlyTest,
testing::ValuesIn(nonReadOnlyFlags));
TEST(Buffer, givenReadOnlyHostPtrMemoryWhenBufferIsCreatedWithReadOnlyFlagsThenBufferHasAllocatedNewMemoryStorageAndBufferIsNotZeroCopy) {
void *memory = alignedMalloc(MemoryConstants::pageSize, MemoryConstants::pageSize);
ASSERT_NE(nullptr, memory);
memset(memory, 0xAA, MemoryConstants::pageSize);
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
::testing::NiceMock<GMockMemoryManagerFailFirstAllocation> *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*device->getExecutionEnvironment());
device->injectMemoryManager(memoryManager);
MockContext ctx(device.get());
// First fail simulates error for read only memory allocation
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillOnce(::testing::Return(nullptr))
.WillRepeatedly(::testing::Invoke(memoryManager, &GMockMemoryManagerFailFirstAllocation::baseAllocateGraphicsMemoryInDevicePool));
cl_int retVal;
cl_mem_flags flags = CL_MEM_HOST_READ_ONLY | CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, (void *)memory, retVal));
EXPECT_FALSE(buffer->isMemObjZeroCopy());
void *memoryStorage = buffer->getCpuAddressForMemoryTransfer();
EXPECT_NE((void *)memory, memoryStorage);
EXPECT_THAT(buffer->getCpuAddressForMemoryTransfer(), MemCompare(memory, MemoryConstants::pageSize));
alignedFree(memory);
}
TEST(Buffer, givenReadOnlyHostPtrMemoryWhenBufferIsCreatedWithReadOnlyFlagsAndSecondAllocationFailsThenNullptrIsReturned) {
void *memory = alignedMalloc(MemoryConstants::pageSize, MemoryConstants::pageSize);
ASSERT_NE(nullptr, memory);
memset(memory, 0xAA, MemoryConstants::pageSize);
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
::testing::NiceMock<GMockMemoryManagerFailFirstAllocation> *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*device->getExecutionEnvironment());
device->injectMemoryManager(memoryManager);
MockContext ctx(device.get());
// First fail simulates error for read only memory allocation
// Second fail returns nullptr
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillRepeatedly(::testing::Return(nullptr));
cl_int retVal;
cl_mem_flags flags = CL_MEM_HOST_READ_ONLY | CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, (void *)memory, retVal));
EXPECT_EQ(nullptr, buffer.get());
alignedFree(memory);
}
TEST(Buffer, givenReadOnlyHostPtrMemoryWhenBufferIsCreatedWithKernelWriteFlagThenBufferAllocationFailsAndReturnsNullptr) {
void *memory = alignedMalloc(MemoryConstants::pageSize, MemoryConstants::pageSize);
ASSERT_NE(nullptr, memory);
memset(memory, 0xAA, MemoryConstants::pageSize);
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
::testing::NiceMock<GMockMemoryManagerFailFirstAllocation> *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*device->getExecutionEnvironment());
device->injectMemoryManager(memoryManager);
MockContext ctx(device.get());
// First fail simulates error for read only memory allocation
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillOnce(::testing::Return(nullptr));
cl_int retVal;
cl_mem_flags flags = CL_MEM_HOST_READ_ONLY | CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, (void *)memory, retVal));
EXPECT_EQ(nullptr, buffer.get());
alignedFree(memory);
}
TEST(Buffer, givenNullPtrWhenBufferIsCreatedWithKernelReadOnlyFlagsThenBufferAllocationFailsAndReturnsNullptr) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
::testing::NiceMock<GMockMemoryManagerFailFirstAllocation> *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*device->getExecutionEnvironment());
device->injectMemoryManager(memoryManager);
MockContext ctx(device.get());
// First fail simulates error for read only memory allocation
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillOnce(::testing::Return(nullptr));
cl_int retVal;
cl_mem_flags flags = CL_MEM_HOST_READ_ONLY | CL_MEM_WRITE_ONLY;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, nullptr, retVal));
EXPECT_EQ(nullptr, buffer.get());
}
TEST(Buffer, givenNullptrPassedToBufferCreateWhenAllocationIsNotSystemMemoryPoolThenBufferIsNotZeroCopy) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
::testing::NiceMock<GMockMemoryManagerFailFirstAllocation> *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*device->getExecutionEnvironment());
device->injectMemoryManager(memoryManager);
MockContext ctx(device.get());
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillOnce(::testing::Invoke(memoryManager, &GMockMemoryManagerFailFirstAllocation::allocateNonSystemGraphicsMemoryInDevicePool));
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_READ_WRITE;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, nullptr, retVal));
ASSERT_NE(nullptr, buffer.get());
EXPECT_FALSE(buffer->isMemObjZeroCopy());
}
TEST(Buffer, givenNullptrPassedToBufferCreateWhenAllocationIsNotSystemMemoryPoolThenAllocationIsNotAddedToHostPtrManager) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
::testing::NiceMock<GMockMemoryManagerFailFirstAllocation> *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*device->getExecutionEnvironment());
device->injectMemoryManager(memoryManager);
MockContext ctx(device.get());
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillOnce(::testing::Invoke(memoryManager, &GMockMemoryManagerFailFirstAllocation::allocateNonSystemGraphicsMemoryInDevicePool));
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_READ_WRITE;
auto hostPtrManager = static_cast<MockHostPtrManager *>(memoryManager->getHostPtrManager());
auto hostPtrAllocationCountBefore = hostPtrManager->getFragmentCount();
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, nullptr, retVal));
ASSERT_NE(nullptr, buffer.get());
auto hostPtrAllocationCountAfter = hostPtrManager->getFragmentCount();
EXPECT_EQ(hostPtrAllocationCountBefore, hostPtrAllocationCountAfter);
}
TEST(Buffer, givenNullptrPassedToBufferCreateWhenNoSharedContextOrRenderCompressedBuffersThenBuffersAllocationTypeIsBufferOrBufferHostMemory) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
MockContext ctx(device.get());
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_READ_WRITE;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, nullptr, retVal));
ASSERT_NE(nullptr, buffer.get());
if (MemoryPool::isSystemMemoryPool(buffer->getGraphicsAllocation()->getMemoryPool())) {
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, buffer->getGraphicsAllocation()->getAllocationType());
} else {
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER, buffer->getGraphicsAllocation()->getAllocationType());
}
}
TEST(Buffer, givenHostPtrPassedToBufferCreateWhenMemUseHostPtrFlagisSetAndBufferIsNotZeroCopyThenCreateMapAllocationWithHostPtr) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
MockContext ctx(device.get());
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
auto size = MemoryConstants::pageSize;
void *ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
auto ptrOffset = 1;
void *offsetedPtr = (void *)((uintptr_t)ptr + ptrOffset);
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, offsetedPtr, retVal));
ASSERT_NE(nullptr, buffer.get());
auto mapAllocation = buffer->getMapAllocation();
EXPECT_NE(nullptr, mapAllocation);
EXPECT_EQ(offsetedPtr, mapAllocation->getUnderlyingBuffer());
EXPECT_EQ(GraphicsAllocation::AllocationType::EXTERNAL_HOST_PTR, mapAllocation->getAllocationType());
alignedFree(ptr);
}
TEST(Buffer, givenAlignedHostPtrPassedToBufferCreateWhenNoSharedContextOrRenderCompressedBuffersThenBuffersAllocationTypeIsBufferHostMemory) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
MockContext ctx(device.get());
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
void *hostPtr = reinterpret_cast<void *>(0x3000);
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, hostPtr, retVal));
ASSERT_NE(nullptr, buffer.get());
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, buffer->getGraphicsAllocation()->getAllocationType());
}
TEST(Buffer, givenAllocHostPtrFlagPassedToBufferCreateWhenNoSharedContextOrRenderCompressedBuffersThenBuffersAllocationTypeIsBufferHostMemory) {
std::unique_ptr<MockDevice> device(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
MockContext ctx(device.get());
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_ALLOC_HOST_PTR;
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, MemoryConstants::pageSize, nullptr, retVal));
ASSERT_NE(nullptr, buffer.get());
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, buffer->getGraphicsAllocation()->getAllocationType());
}
TEST(Buffer, givenRenderCompressedBuffersEnabledWhenAllocationTypeIsQueriedThenBufferCompressedTypeIsReturnedIn64Bit) {
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(0, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, true, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_COMPRESSED, type);
}
TEST(Buffer, givenRenderCompressedBuffersDisabledLocalMemoryEnabledWhenAllocationTypeIsQueriedThenBufferTypeIsReturnedIn64Bit) {
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(0, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, false, true, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER, type);
}
TEST(Buffer, givenSharedContextWhenAllocationTypeIsQueriedThenBufferHostMemoryTypeIsReturned) {
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(0, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = true;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, false, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, type);
}
TEST(Buffer, givenSharedContextAndRenderCompressedBuffersEnabledWhenAllocationTypeIsQueriedThenBufferHostMemoryTypeIsReturned) {
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(0, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = true;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, true, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, type);
}
TEST(Buffer, givenUseHostPtrFlagAndLocalMemoryDisabledWhenAllocationTypeIsQueriedThenBufferHostMemoryTypeIsReturned) {
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, false, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, type);
}
TEST(Buffer, givenUseHostPtrFlagAndLocalMemoryEnabledWhenAllocationTypeIsQueriedThenBufferTypeIsReturned) {
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, false, true, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER, type);
}
TEST(Buffer, givenAllocHostPtrFlagWhenAllocationTypeIsQueriedThenBufferTypeIsReturned) {
cl_mem_flags flags = CL_MEM_ALLOC_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, false, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER, type);
}
TEST(Buffer, givenUseHostPtrFlagAndLocalMemoryDisabledAndRenderCompressedBuffersEnabledWhenAllocationTypeIsQueriedThenBufferMemoryTypeIsReturned) {
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, true, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, type);
}
TEST(Buffer, givenUseHostPtrFlagAndLocalMemoryEnabledAndRenderCompressedBuffersEnabledWhenAllocationTypeIsQueriedThenBufferMemoryTypeIsReturned) {
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, true, true, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_COMPRESSED, type);
}
TEST(Buffer, givenUseHostPointerFlagAndForceSharedPhysicalStorageWhenLocalMemoryIsEnabledThenBufferHostMemoryTypeIsReturned) {
cl_mem_flags flags = CL_MEM_USE_HOST_PTR | CL_MEM_FORCE_SHARED_PHYSICAL_MEMORY_INTEL;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, true, true, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY, type);
}
TEST(Buffer, givenAllocHostPtrFlagAndRenderCompressedBuffersEnabledWhenAllocationTypeIsQueriedThenBufferCompressedTypeIsReturned) {
cl_mem_flags flags = CL_MEM_ALLOC_HOST_PTR;
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(flags, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, true, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER_COMPRESSED, type);
}
TEST(Buffer, givenZeroFlagsNoSharedContextAndRenderCompressedBuffersDisabledWhenAllocationTypeIsQueriedThenBufferTypeIsReturned) {
MemoryPropertiesFlags memoryProperties = MemoryPropertiesFlagsParser::createMemoryPropertiesFlags(0, 0);
MockContext context;
context.contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
context.isSharedContext = false;
auto type = MockPublicAccessBuffer::getGraphicsAllocationType(memoryProperties, context, false, false, true);
EXPECT_EQ(GraphicsAllocation::AllocationType::BUFFER, type);
}
TEST(Buffer, givenClMemCopyHostPointerPassedToBufferCreateWhenAllocationIsNotInSystemMemoryPoolThenAllocationIsWrittenByEnqueueWriteBuffer) {
ExecutionEnvironment *executionEnvironment = platformImpl->peekExecutionEnvironment();
auto *memoryManager = new ::testing::NiceMock<GMockMemoryManagerFailFirstAllocation>(*executionEnvironment);
executionEnvironment->memoryManager.reset(memoryManager);
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillRepeatedly(::testing::Invoke(memoryManager, &GMockMemoryManagerFailFirstAllocation::baseAllocateGraphicsMemoryInDevicePool));
std::unique_ptr<MockDevice> device(MockDevice::create<MockDevice>(executionEnvironment, 0));
MockContext ctx(device.get());
EXPECT_CALL(*memoryManager, allocateGraphicsMemoryInDevicePool(::testing::_, ::testing::_))
.WillOnce(::testing::Invoke(memoryManager, &GMockMemoryManagerFailFirstAllocation::allocateNonSystemGraphicsMemoryInDevicePool))
.WillRepeatedly(::testing::Invoke(memoryManager, &GMockMemoryManagerFailFirstAllocation::baseAllocateGraphicsMemoryInDevicePool));
cl_int retVal = 0;
cl_mem_flags flags = CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR;
char memory[] = {1, 2, 3, 4, 5, 6, 7, 8};
auto taskCount = device->getGpgpuCommandStreamReceiver().peekLatestFlushedTaskCount();
std::unique_ptr<Buffer> buffer(Buffer::create(&ctx, flags, sizeof(memory), memory, retVal));
ASSERT_NE(nullptr, buffer.get());
auto taskCountSent = device->getGpgpuCommandStreamReceiver().peekLatestFlushedTaskCount();
EXPECT_LT(taskCount, taskCountSent);
}
struct RenderCompressedBuffersTests : public ::testing::Test {
void SetUp() override {
ExecutionEnvironment *executionEnvironment = platformImpl->peekExecutionEnvironment();
hwInfo = executionEnvironment->getMutableHardwareInfo();
device.reset(Device::create<MockDevice>(executionEnvironment, 0u));
context = std::make_unique<MockContext>(device.get(), true);
context->contextType = ContextType::CONTEXT_TYPE_UNRESTRICTIVE;
}
cl_int retVal = CL_SUCCESS;
HardwareInfo *hwInfo = nullptr;
std::unique_ptr<MockDevice> device;
std::unique_ptr<MockContext> context;
std::unique_ptr<Buffer> buffer;
uint32_t hostPtr[2048];
size_t bufferSize = sizeof(hostPtr);
};
TEST_F(RenderCompressedBuffersTests, givenBufferCompressedAllocationAndZeroCopyHostPtrWhenCheckingMemoryPropertiesThenUseHostPtrAndDontAllocateStorage) {
hwInfo->capabilityTable.ftrRenderCompressedBuffers = false;
void *cacheAlignedHostPtr = alignedMalloc(MemoryConstants::cacheLineSize, MemoryConstants::cacheLineSize);
buffer.reset(Buffer::create(context.get(), CL_MEM_FORCE_SHARED_PHYSICAL_MEMORY_INTEL | CL_MEM_USE_HOST_PTR, MemoryConstants::cacheLineSize, cacheAlignedHostPtr, retVal));
EXPECT_EQ(cacheAlignedHostPtr, buffer->getGraphicsAllocation()->getUnderlyingBuffer());
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
uint32_t pattern[2] = {0, 0};
pattern[0] = 0xdeadbeef;
pattern[1] = 0xdeadbeef;
static_assert(sizeof(pattern) <= MemoryConstants::cacheLineSize, "Incorrect pattern size");
uint32_t *dest = reinterpret_cast<uint32_t *>(cacheAlignedHostPtr);
for (size_t i = 0; i < arrayCount(pattern); i++) {
dest[i] = pattern[i];
}
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
buffer.reset(Buffer::create(context.get(), CL_MEM_FORCE_SHARED_PHYSICAL_MEMORY_INTEL | CL_MEM_USE_HOST_PTR, MemoryConstants::cacheLineSize, cacheAlignedHostPtr, retVal));
EXPECT_EQ(cacheAlignedHostPtr, buffer->getGraphicsAllocation()->getUnderlyingBuffer());
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
EXPECT_THAT(buffer->getGraphicsAllocation()->getUnderlyingBuffer(), MemCompare(&pattern[0], sizeof(pattern)));
alignedFree(cacheAlignedHostPtr);
}
TEST_F(RenderCompressedBuffersTests, givenAllocationCreatedWithForceSharedPhysicalMemoryWhenItIsCreatedItIsZeroCopy) {
buffer.reset(Buffer::create(context.get(), CL_MEM_FORCE_SHARED_PHYSICAL_MEMORY_INTEL, 1u, nullptr, retVal));
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ(1u, buffer->getSize());
}
TEST_F(RenderCompressedBuffersTests, givenRenderCompressedBuffersAndAllocationCreatedWithForceSharedPhysicalMemoryWhenItIsCreatedItIsZeroCopy) {
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
buffer.reset(Buffer::create(context.get(), CL_MEM_FORCE_SHARED_PHYSICAL_MEMORY_INTEL, 1u, nullptr, retVal));
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ(1u, buffer->getSize());
}
TEST_F(RenderCompressedBuffersTests, givenBufferNotCompressedAllocationAndNoHostPtrWhenCheckingMemoryPropertiesThenForceDisableZeroCopy) {
hwInfo->capabilityTable.ftrRenderCompressedBuffers = false;
buffer.reset(Buffer::create(context.get(), 0, bufferSize, nullptr, retVal));
EXPECT_TRUE(buffer->isMemObjZeroCopy());
if (MemoryPool::isSystemMemoryPool(buffer->getGraphicsAllocation()->getMemoryPool())) {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
} else {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER);
}
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
buffer.reset(Buffer::create(context.get(), 0, bufferSize, nullptr, retVal));
if (HwHelper::get(context->getDevice(0)->getHardwareInfo().platform.eRenderCoreFamily).obtainRenderBufferCompressionPreference(context->getDevice(0)->getHardwareInfo(), bufferSize)) {
EXPECT_FALSE(buffer->isMemObjZeroCopy());
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
} else {
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
}
}
TEST_F(RenderCompressedBuffersTests, givenBufferCompressedAllocationWhenSharedContextIsUsedThenForceDisableCompression) {
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
context->isSharedContext = false;
buffer.reset(Buffer::create(context.get(), CL_MEM_READ_WRITE, bufferSize, nullptr, retVal));
if (HwHelper::get(context->getDevice(0)->getHardwareInfo().platform.eRenderCoreFamily).obtainRenderBufferCompressionPreference(context->getDevice(0)->getHardwareInfo(), bufferSize)) {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
} else {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
}
context->isSharedContext = true;
buffer.reset(Buffer::create(context.get(), CL_MEM_USE_HOST_PTR, bufferSize, hostPtr, retVal));
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
}
TEST_F(RenderCompressedBuffersTests, givenDebugVariableSetWhenHwFlagIsNotSetThenSelectOptionFromDebugFlag) {
DebugManagerStateRestore restore;
hwInfo->capabilityTable.ftrRenderCompressedBuffers = false;
DebugManager.flags.RenderCompressedBuffersEnabled.set(1);
buffer.reset(Buffer::create(context.get(), 0, bufferSize, nullptr, retVal));
if (HwHelper::get(context->getDevice(0)->getHardwareInfo().platform.eRenderCoreFamily).obtainRenderBufferCompressionPreference(context->getDevice(0)->getHardwareInfo(), bufferSize)) {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
} else {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
}
DebugManager.flags.RenderCompressedBuffersEnabled.set(0);
buffer.reset(Buffer::create(context.get(), 0, bufferSize, nullptr, retVal));
EXPECT_NE(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
}
struct RenderCompressedBuffersSvmTests : public RenderCompressedBuffersTests {
void SetUp() override {
ExecutionEnvironment *executionEnvironment = platformImpl->peekExecutionEnvironment();
hwInfo = executionEnvironment->getMutableHardwareInfo();
hwInfo->capabilityTable.gpuAddressSpace = MemoryConstants::max48BitAddress;
RenderCompressedBuffersTests::SetUp();
}
};
TEST_F(RenderCompressedBuffersSvmTests, givenSvmAllocationWhenCreatingBufferThenForceDisableCompression) {
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
auto svmPtr = context->getSVMAllocsManager()->createSVMAlloc(device->getRootDeviceIndex(), sizeof(uint32_t), {});
auto expectedAllocationType = context->getSVMAllocsManager()->getSVMAlloc(svmPtr)->gpuAllocation->getAllocationType();
buffer.reset(Buffer::create(context.get(), CL_MEM_USE_HOST_PTR, sizeof(uint32_t), svmPtr, retVal));
EXPECT_EQ(expectedAllocationType, buffer->getGraphicsAllocation()->getAllocationType());
context->getSVMAllocsManager()->freeSVMAlloc(svmPtr);
}
struct RenderCompressedBuffersCopyHostMemoryTests : public RenderCompressedBuffersTests {
void SetUp() override {
RenderCompressedBuffersTests::SetUp();
device->injectMemoryManager(new MockMemoryManager(true, false, *platformImpl->peekExecutionEnvironment()));
context->memoryManager = device->getMemoryManager();
mockCmdQ = new MockCommandQueue();
context->setSpecialQueue(mockCmdQ);
}
MockCommandQueue *mockCmdQ = nullptr;
};
TEST_F(RenderCompressedBuffersCopyHostMemoryTests, givenRenderCompressedBufferWhenCopyFromHostPtrIsRequiredThenCallWriteBuffer) {
if (is32bit) {
return;
}
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
buffer.reset(Buffer::create(context.get(), CL_MEM_COPY_HOST_PTR, bufferSize, hostPtr, retVal));
if (HwHelper::get(context->getDevice(0)->getHardwareInfo().platform.eRenderCoreFamily).obtainRenderBufferCompressionPreference(context->getDevice(0)->getHardwareInfo(), bufferSize)) {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
EXPECT_EQ(1u, mockCmdQ->writeBufferCounter);
EXPECT_TRUE(mockCmdQ->writeBufferBlocking);
EXPECT_EQ(0u, mockCmdQ->writeBufferOffset);
EXPECT_EQ(bufferSize, mockCmdQ->writeBufferSize);
EXPECT_EQ(hostPtr, mockCmdQ->writeBufferPtr);
} else {
EXPECT_EQ(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
EXPECT_EQ(0u, mockCmdQ->writeBufferCounter);
EXPECT_FALSE(mockCmdQ->writeBufferBlocking);
EXPECT_EQ(0u, mockCmdQ->writeBufferOffset);
EXPECT_EQ(0u, mockCmdQ->writeBufferSize);
EXPECT_EQ(nullptr, mockCmdQ->writeBufferPtr);
}
EXPECT_EQ(CL_SUCCESS, retVal);
}
struct BcsBufferTests : public ::testing::Test {
class BcsMockContext : public MockContext {
public:
BcsMockContext(Device *device) : MockContext(device) {
bcsOsContext.reset(OsContext::create(nullptr, 0, 0, aub_stream::ENGINE_BCS, PreemptionMode::Disabled, false));
bcsCsr.reset(createCommandStream(*device->getExecutionEnvironment(), device->getRootDeviceIndex()));
bcsCsr->setupContext(*bcsOsContext);
bcsCsr->initializeTagAllocation();
}
CommandStreamReceiver *getCommandStreamReceiverForBlitOperation(MemObj &memObj) const override {
return bcsCsr.get();
}
BlitOperationResult blitMemoryToAllocation(MemObj &memObj, GraphicsAllocation *memory, void *hostPtr, size_t size) const override {
auto blitProperties = BlitProperties::constructPropertiesForReadWriteBuffer(BlitterConstants::BlitDirection::HostPtrToBuffer,
*bcsCsr, memory, 0, nullptr,
hostPtr, 0, 0, size);
BlitPropertiesContainer container;
container.push_back(blitProperties);
bcsCsr->blitBuffer(container, true);
return BlitOperationResult::Success;
}
std::unique_ptr<OsContext> bcsOsContext;
std::unique_ptr<CommandStreamReceiver> bcsCsr;
};
template <typename FamilyType>
class MyMockCsr : public UltCommandStreamReceiver<FamilyType> {
public:
using UltCommandStreamReceiver<FamilyType>::UltCommandStreamReceiver;
void waitForTaskCountWithKmdNotifyFallback(uint32_t taskCountToWait, FlushStamp flushStampToWait,
bool useQuickKmdSleep, bool forcePowerSavingMode) override {
EXPECT_EQ(this->latestFlushedTaskCount, taskCountToWait);
EXPECT_EQ(0u, flushStampToWait);
EXPECT_FALSE(useQuickKmdSleep);
EXPECT_FALSE(forcePowerSavingMode);
waitForTaskCountWithKmdNotifyFallbackCalled++;
}
void waitForTaskCountAndCleanAllocationList(uint32_t requiredTaskCount, uint32_t allocationUsage) override {
EXPECT_EQ(1u, waitForTaskCountWithKmdNotifyFallbackCalled);
EXPECT_EQ(this->latestFlushedTaskCount, requiredTaskCount);
waitForTaskCountAndCleanAllocationListCalled++;
}
uint32_t waitForTaskCountAndCleanAllocationListCalled = 0;
uint32_t waitForTaskCountWithKmdNotifyFallbackCalled = 0;
CommandStreamReceiver *gpgpuCsr = nullptr;
};
template <typename FamilyType>
void SetUpT() {
if (is32bit) {
GTEST_SKIP();
}
DebugManager.flags.EnableTimestampPacket.set(1);
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(1);
device.reset(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
auto &capabilityTable = device->getExecutionEnvironment()->getMutableHardwareInfo()->capabilityTable;
bool createBcsEngine = !capabilityTable.blitterOperationsSupported;
capabilityTable.blitterOperationsSupported = true;
if (createBcsEngine) {
auto &engine = device->getEngine(HwHelperHw<FamilyType>::lowPriorityEngineType, true);
bcsOsContext.reset(OsContext::create(nullptr, 1, 0, aub_stream::ENGINE_BCS, PreemptionMode::Disabled, false));
engine.osContext = bcsOsContext.get();
engine.commandStreamReceiver->setupContext(*bcsOsContext);
}
bcsMockContext = std::make_unique<BcsMockContext>(device.get());
commandQueue.reset(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
}
template <typename FamilyType>
void TearDownT() {}
DebugManagerStateRestore restore;
std::unique_ptr<OsContext> bcsOsContext;
std::unique_ptr<MockDevice> device;
std::unique_ptr<BcsMockContext> bcsMockContext;
std::unique_ptr<CommandQueue> commandQueue;
uint32_t hostPtr = 0;
cl_int retVal = CL_SUCCESS;
};
HWTEST_TEMPLATED_F(BcsBufferTests, givenBufferWithInitializationDataAndBcsCsrWhenCreatingThenUseBlitOperation) {
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(bcsMockContext->bcsCsr.get());
auto newMemoryManager = new MockMemoryManager(true, true, *device->getExecutionEnvironment());
device->getExecutionEnvironment()->memoryManager.reset(newMemoryManager);
bcsMockContext->memoryManager = newMemoryManager;
EXPECT_EQ(0u, bcsCsr->blitBufferCalled);
auto bufferForBlt = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_COPY_HOST_PTR, 2000, &hostPtr, retVal));
EXPECT_EQ(1u, bcsCsr->blitBufferCalled);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBcsSupportedWhenEnqueueBufferOperationIsCalledThenUseBcsCsr) {
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(0);
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(commandQueue->getBcsCommandStreamReceiver());
auto bufferForBlt0 = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
auto bufferForBlt1 = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
bufferForBlt0->forceDisallowCPUCopy = true;
bufferForBlt1->forceDisallowCPUCopy = true;
auto *hwInfo = device->getExecutionEnvironment()->getMutableHardwareInfo();
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(0);
hwInfo->capabilityTable.blitterOperationsSupported = false;
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueReadBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(1);
hwInfo->capabilityTable.blitterOperationsSupported = false;
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueReadBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(0);
hwInfo->capabilityTable.blitterOperationsSupported = true;
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueReadBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(-1);
hwInfo->capabilityTable.blitterOperationsSupported = true;
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueReadBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
EXPECT_EQ(3u, bcsCsr->blitBufferCalled);
DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.set(1);
hwInfo->capabilityTable.blitterOperationsSupported = true;
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(4u, bcsCsr->blitBufferCalled);
commandQueue->enqueueReadBuffer(bufferForBlt0.get(), CL_TRUE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(5u, bcsCsr->blitBufferCalled);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
EXPECT_EQ(6u, bcsCsr->blitBufferCalled);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBcsSupportedWhenQueueIsBlockedThenDispatchBlitWhenUnblocked) {
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(commandQueue->getBcsCommandStreamReceiver());
auto bufferForBlt0 = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
auto bufferForBlt1 = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
bufferForBlt0->forceDisallowCPUCopy = true;
bufferForBlt1->forceDisallowCPUCopy = true;
UserEvent userEvent(bcsMockContext.get());
cl_event waitlist = &userEvent;
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_FALSE, 0, 1, &hostPtr, nullptr, 1, &waitlist, nullptr);
commandQueue->enqueueReadBuffer(bufferForBlt1.get(), CL_FALSE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
EXPECT_EQ(0u, bcsCsr->blitBufferCalled);
userEvent.setStatus(CL_COMPLETE);
EXPECT_EQ(3u, bcsCsr->blitBufferCalled);
commandQueue->enqueueWriteBuffer(bufferForBlt0.get(), CL_FALSE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(4u, bcsCsr->blitBufferCalled);
commandQueue->enqueueReadBuffer(bufferForBlt0.get(), CL_FALSE, 0, 1, &hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(5u, bcsCsr->blitBufferCalled);
commandQueue->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 1, 1, 0, nullptr, nullptr);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBuffersWhenCopyBufferCalledThenUseBcs) {
using XY_COPY_BLT = typename FamilyType::XY_COPY_BLT;
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
auto bufferForBlt0 = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
auto bufferForBlt1 = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
bufferForBlt0->forceDisallowCPUCopy = true;
bufferForBlt1->forceDisallowCPUCopy = true;
cmdQ->enqueueCopyBuffer(bufferForBlt0.get(), bufferForBlt1.get(), 0, 0, 1, 0, nullptr, nullptr);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(commandQueue->getBcsCommandStreamReceiver()->getCS(0));
auto commandItor = find<XY_COPY_BLT *>(hwParser.cmdList.begin(), hwParser.cmdList.end());
EXPECT_NE(hwParser.cmdList.end(), commandItor);
auto copyBltCmd = genCmdCast<XY_COPY_BLT *>(*commandItor);
EXPECT_EQ(bufferForBlt0->getGraphicsAllocation()->getGpuAddress(), copyBltCmd->getSourceBaseAddress());
EXPECT_EQ(bufferForBlt1->getGraphicsAllocation()->getGpuAddress(), copyBltCmd->getDestinationBaseAddress());
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBlockedBlitEnqueueWhenUnblockingThenMakeResidentAllTimestampPackets) {
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(commandQueue->getBcsCommandStreamReceiver());
bcsCsr->storeMakeResidentAllocations = true;
auto mockCmdQ = static_cast<MockCommandQueueHw<FamilyType> *>(commandQueue.get());
auto bufferForBlt = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
bufferForBlt->forceDisallowCPUCopy = true;
TimestampPacketContainer previousTimestampPackets;
mockCmdQ->obtainNewTimestampPacketNodes(1, previousTimestampPackets, false);
auto dependencyFromPreviousEnqueue = mockCmdQ->timestampPacketContainer->peekNodes()[0];
auto event = make_releaseable<Event>(mockCmdQ, CL_COMMAND_READ_BUFFER, 0, 0);
MockTimestampPacketContainer eventDependencyContainer(*bcsCsr->getTimestampPacketAllocator(), 1);
auto eventDependency = eventDependencyContainer.getNode(0);
event->addTimestampPacketNodes(eventDependencyContainer);
auto userEvent = make_releaseable<UserEvent>(bcsMockContext.get());
cl_event waitlist[] = {userEvent.get(), event.get()};
commandQueue->enqueueReadBuffer(bufferForBlt.get(), CL_FALSE, 0, 1, &hostPtr, nullptr, 2, waitlist, nullptr);
auto outputDependency = mockCmdQ->timestampPacketContainer->peekNodes()[0];
EXPECT_NE(outputDependency, dependencyFromPreviousEnqueue);
EXPECT_FALSE(bcsCsr->isMadeResident(dependencyFromPreviousEnqueue->getBaseGraphicsAllocation()));
EXPECT_FALSE(bcsCsr->isMadeResident(outputDependency->getBaseGraphicsAllocation()));
EXPECT_FALSE(bcsCsr->isMadeResident(eventDependency->getBaseGraphicsAllocation()));
userEvent->setStatus(CL_COMPLETE);
EXPECT_TRUE(bcsCsr->isMadeResident(dependencyFromPreviousEnqueue->getBaseGraphicsAllocation(), bcsCsr->taskCount));
EXPECT_TRUE(bcsCsr->isMadeResident(outputDependency->getBaseGraphicsAllocation(), bcsCsr->taskCount));
EXPECT_TRUE(bcsCsr->isMadeResident(eventDependency->getBaseGraphicsAllocation(), bcsCsr->taskCount));
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenMapAllocationWhenEnqueueingReadOrWriteBufferThenStoreMapAllocationInDispatchParameters) {
DebugManager.flags.DisableZeroCopyForBuffers.set(true);
auto mockCmdQ = static_cast<MockCommandQueueHw<FamilyType> *>(commandQueue.get());
uint8_t hostPtr[64] = {};
auto bufferForBlt = clUniquePtr(Buffer::create(bcsMockContext.get(), CL_MEM_USE_HOST_PTR, 1, hostPtr, retVal));
bufferForBlt->forceDisallowCPUCopy = true;
auto mapAllocation = bufferForBlt->getMapAllocation();
EXPECT_NE(nullptr, mapAllocation);
mockCmdQ->kernelParams.transferAllocation = nullptr;
auto mapPtr = clEnqueueMapBuffer(mockCmdQ, bufferForBlt.get(), true, 0, 0, 1, 0, nullptr, nullptr, &retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(mapAllocation, mockCmdQ->kernelParams.transferAllocation);
mockCmdQ->kernelParams.transferAllocation = nullptr;
retVal = clEnqueueUnmapMemObject(mockCmdQ, bufferForBlt.get(), mapPtr, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(mapAllocation, mockCmdQ->kernelParams.transferAllocation);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenWriteBufferEnqueueWhenProgrammingCommandStreamThenAddSemaphoreWait) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
using MI_ATOMIC = typename FamilyType::MI_ATOMIC;
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
auto queueCsr = cmdQ->gpgpuEngine->commandStreamReceiver;
auto initialTaskCount = queueCsr->peekTaskCount();
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
auto timestampPacketNode = cmdQ->timestampPacketContainer->peekNodes().at(0);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(*cmdQ->peekCommandStream());
uint32_t semaphoresCount = 0;
uint32_t miAtomicsCount = 0;
for (auto &cmd : hwParser.cmdList) {
if (auto semaphoreCmd = genCmdCast<MI_SEMAPHORE_WAIT *>(cmd)) {
semaphoresCount++;
auto dataAddress = timestampPacketNode->getGpuAddress() + offsetof(TimestampPacketStorage, packets[0].contextEnd);
EXPECT_EQ(dataAddress, semaphoreCmd->getSemaphoreGraphicsAddress());
EXPECT_EQ(0u, miAtomicsCount);
} else if (auto miAtomicCmd = genCmdCast<MI_ATOMIC *>(cmd)) {
miAtomicsCount++;
auto dataAddress = timestampPacketNode->getGpuAddress() + offsetof(TimestampPacketStorage, implicitDependenciesCount);
EXPECT_EQ(MI_ATOMIC::ATOMIC_OPCODES::ATOMIC_4B_DECREMENT, miAtomicCmd->getAtomicOpcode());
EXPECT_EQ(dataAddress, UnitTestHelper<FamilyType>::getMemoryAddress(*miAtomicCmd));
EXPECT_EQ(1u, semaphoresCount);
}
}
EXPECT_EQ(1u, semaphoresCount);
EXPECT_EQ(1u, miAtomicsCount);
EXPECT_EQ(initialTaskCount + 1, queueCsr->peekTaskCount());
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenReadBufferEnqueueWhenProgrammingCommandStreamThenAddSemaphoreWait) {
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
using MI_ATOMIC = typename FamilyType::MI_ATOMIC;
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
auto queueCsr = cmdQ->gpgpuEngine->commandStreamReceiver;
auto initialTaskCount = queueCsr->peekTaskCount();
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
auto timestampPacketNode = cmdQ->timestampPacketContainer->peekNodes().at(0);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(*cmdQ->peekCommandStream());
uint32_t semaphoresCount = 0;
uint32_t miAtomicsCount = 0;
for (auto &cmd : hwParser.cmdList) {
if (auto semaphoreCmd = genCmdCast<MI_SEMAPHORE_WAIT *>(cmd)) {
semaphoresCount++;
auto dataAddress = timestampPacketNode->getGpuAddress() + offsetof(TimestampPacketStorage, packets[0].contextEnd);
EXPECT_EQ(dataAddress, semaphoreCmd->getSemaphoreGraphicsAddress());
EXPECT_EQ(0u, miAtomicsCount);
} else if (auto miAtomicCmd = genCmdCast<MI_ATOMIC *>(cmd)) {
miAtomicsCount++;
auto dataAddress = timestampPacketNode->getGpuAddress() + offsetof(TimestampPacketStorage, implicitDependenciesCount);
EXPECT_EQ(MI_ATOMIC::ATOMIC_OPCODES::ATOMIC_4B_DECREMENT, miAtomicCmd->getAtomicOpcode());
EXPECT_EQ(dataAddress, UnitTestHelper<FamilyType>::getMemoryAddress(*miAtomicCmd));
EXPECT_EQ(1u, semaphoresCount);
}
}
EXPECT_EQ(1u, semaphoresCount);
EXPECT_EQ(1u, miAtomicsCount);
EXPECT_EQ(initialTaskCount + 1, queueCsr->peekTaskCount());
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenPipeControlRequestWhenDispatchingBlitEnqueueThenWaitPipeControlOnBcsEngine) {
using PIPE_CONTROL = typename FamilyType::PIPE_CONTROL;
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(cmdQ->getBcsCommandStreamReceiver());
auto queueCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(cmdQ->gpgpuEngine->commandStreamReceiver);
queueCsr->stallingPipeControlOnNextFlushRequired = true;
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(queueCsr->commandStream);
uint64_t pipeControlWriteAddress = 0;
for (auto &cmd : hwParser.cmdList) {
if (auto pipeControlCmd = genCmdCast<PIPE_CONTROL *>(cmd)) {
if (pipeControlCmd->getPostSyncOperation() != PIPE_CONTROL::POST_SYNC_OPERATION::POST_SYNC_OPERATION_WRITE_IMMEDIATE_DATA) {
continue;
}
EXPECT_TRUE(pipeControlCmd->getCommandStreamerStallEnable());
auto addressLow = static_cast<uint64_t>(pipeControlCmd->getAddress());
auto addressHigh = static_cast<uint64_t>(pipeControlCmd->getAddressHigh());
pipeControlWriteAddress = (addressHigh << 32) | addressLow;
break;
}
}
EXPECT_NE(0u, pipeControlWriteAddress);
HardwareParse bcsHwParser;
bcsHwParser.parseCommands<FamilyType>(bcsCsr->commandStream);
auto semaphores = findAll<MI_SEMAPHORE_WAIT *>(bcsHwParser.cmdList.begin(), bcsHwParser.cmdList.end());
EXPECT_EQ(1u, semaphores.size());
EXPECT_EQ(pipeControlWriteAddress, genCmdCast<MI_SEMAPHORE_WAIT *>(*(semaphores[0]))->getSemaphoreGraphicsAddress());
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBarrierWhenReleasingMultipleBlockedEnqueuesThenProgramBarrierOnce) {
using PIPE_CONTROL = typename FamilyType::PIPE_CONTROL;
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
UserEvent userEvent0, userEvent1;
cl_event waitlist0[] = {&userEvent0};
cl_event waitlist1[] = {&userEvent1};
cmdQ->enqueueBarrierWithWaitList(0, nullptr, nullptr);
cmdQ->enqueueWriteBuffer(buffer.get(), false, 0, 1, hostPtr, nullptr, 1, waitlist0, nullptr);
cmdQ->enqueueWriteBuffer(buffer.get(), false, 0, 1, hostPtr, nullptr, 1, waitlist1, nullptr);
auto pipeControlLookup = [](LinearStream &stream, size_t offset) {
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(stream, offset);
bool stallingPipeControlFound = false;
for (auto &cmd : hwParser.cmdList) {
if (auto pipeControlCmd = genCmdCast<PIPE_CONTROL *>(cmd)) {
if (pipeControlCmd->getPostSyncOperation() != PIPE_CONTROL::POST_SYNC_OPERATION::POST_SYNC_OPERATION_WRITE_IMMEDIATE_DATA) {
continue;
}
stallingPipeControlFound = true;
EXPECT_TRUE(pipeControlCmd->getCommandStreamerStallEnable());
break;
}
}
return stallingPipeControlFound;
};
auto &csrStream = cmdQ->getGpgpuCommandStreamReceiver().getCS(0);
EXPECT_TRUE(cmdQ->getGpgpuCommandStreamReceiver().isStallingPipeControlOnNextFlushRequired());
userEvent0.setStatus(CL_COMPLETE);
EXPECT_FALSE(cmdQ->getGpgpuCommandStreamReceiver().isStallingPipeControlOnNextFlushRequired());
EXPECT_TRUE(pipeControlLookup(csrStream, 0));
auto csrOffset = csrStream.getUsed();
userEvent1.setStatus(CL_COMPLETE);
EXPECT_FALSE(pipeControlLookup(csrStream, csrOffset));
cmdQ->isQueueBlocked();
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenPipeControlRequestWhenDispatchingBlockedBlitEnqueueThenWaitPipeControlOnBcsEngine) {
using PIPE_CONTROL = typename FamilyType::PIPE_CONTROL;
using MI_SEMAPHORE_WAIT = typename FamilyType::MI_SEMAPHORE_WAIT;
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(cmdQ->getBcsCommandStreamReceiver());
auto queueCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(cmdQ->gpgpuEngine->commandStreamReceiver);
queueCsr->stallingPipeControlOnNextFlushRequired = true;
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
UserEvent userEvent;
cl_event waitlist = &userEvent;
cmdQ->enqueueWriteBuffer(buffer.get(), false, 0, 1, hostPtr, nullptr, 1, &waitlist, nullptr);
userEvent.setStatus(CL_COMPLETE);
HardwareParse bcsHwParser;
bcsHwParser.parseCommands<FamilyType>(bcsCsr->commandStream);
auto semaphores = findAll<MI_SEMAPHORE_WAIT *>(bcsHwParser.cmdList.begin(), bcsHwParser.cmdList.end());
EXPECT_EQ(1u, semaphores.size());
cmdQ->isQueueBlocked();
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBufferOperationWithoutKernelWhenEstimatingCommandsSizeThenReturnCorrectValue) {
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
CsrDependencies csrDependencies;
MultiDispatchInfo multiDispatchInfo;
auto readBufferCmdsSize = EnqueueOperation<FamilyType>::getTotalSizeRequiredCS(CL_COMMAND_READ_BUFFER, csrDependencies, false, false,
true, *cmdQ, multiDispatchInfo);
auto writeBufferCmdsSize = EnqueueOperation<FamilyType>::getTotalSizeRequiredCS(CL_COMMAND_WRITE_BUFFER, csrDependencies, false, false,
true, *cmdQ, multiDispatchInfo);
auto copyBufferCmdsSize = EnqueueOperation<FamilyType>::getTotalSizeRequiredCS(CL_COMMAND_COPY_BUFFER, csrDependencies, false, false,
true, *cmdQ, multiDispatchInfo);
auto expectedSize = TimestampPacketHelper::getRequiredCmdStreamSizeForNodeDependencyWithBlitEnqueue<FamilyType>();
EXPECT_EQ(expectedSize, readBufferCmdsSize);
EXPECT_EQ(expectedSize, writeBufferCmdsSize);
EXPECT_EQ(expectedSize, copyBufferCmdsSize);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenOutputTimestampPacketWhenBlitCalledThenProgramMiFlushDwWithDataWrite) {
using MI_FLUSH_DW = typename FamilyType::MI_FLUSH_DW;
auto csr = static_cast<UltCommandStreamReceiver<FamilyType> *>(commandQueue->getBcsCommandStreamReceiver());
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
auto outputTimestampPacket = cmdQ->timestampPacketContainer->peekNodes().at(0);
auto timestampPacketGpuWriteAddress = outputTimestampPacket->getGpuAddress() + offsetof(TimestampPacketStorage, packets[0].contextEnd);
HardwareParse hwParser;
hwParser.parseCommands<FamilyType>(csr->commandStream);
uint32_t miFlushDwCmdsCount = 0;
bool blitCmdFound = false;
for (auto &cmd : hwParser.cmdList) {
if (auto miFlushDwCmd = genCmdCast<MI_FLUSH_DW *>(cmd)) {
EXPECT_TRUE(blitCmdFound);
EXPECT_EQ(miFlushDwCmdsCount == 0,
timestampPacketGpuWriteAddress == miFlushDwCmd->getDestinationAddress());
EXPECT_EQ(miFlushDwCmdsCount == 0,
0u == miFlushDwCmd->getImmediateData());
miFlushDwCmdsCount++;
} else if (genCmdCast<typename FamilyType::XY_COPY_BLT *>(cmd)) {
blitCmdFound = true;
EXPECT_EQ(0u, miFlushDwCmdsCount);
}
}
EXPECT_EQ(2u, miFlushDwCmdsCount);
EXPECT_TRUE(blitCmdFound);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenInputAndOutputTimestampPacketWhenBlitCalledThenMakeThemResident) {
auto bcsCsr = static_cast<UltCommandStreamReceiver<FamilyType> *>(commandQueue->getBcsCommandStreamReceiver());
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
cl_int retVal = CL_SUCCESS;
auto &cmdQueueCsr = static_cast<UltCommandStreamReceiver<FamilyType> &>(cmdQ->getGpgpuCommandStreamReceiver());
auto memoryManager = cmdQueueCsr.getMemoryManager();
cmdQueueCsr.timestampPacketAllocator = std::make_unique<TagAllocator<TimestampPacketStorage>>(device->getRootDeviceIndex(), memoryManager, 1,
MemoryConstants::cacheLineSize);
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
// first enqueue to create IOQ dependency
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
auto inputTimestampPacketAllocation = cmdQ->timestampPacketContainer->peekNodes().at(0)->getBaseGraphicsAllocation();
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
auto outputTimestampPacketAllocation = cmdQ->timestampPacketContainer->peekNodes().at(0)->getBaseGraphicsAllocation();
EXPECT_NE(outputTimestampPacketAllocation, inputTimestampPacketAllocation);
EXPECT_EQ(cmdQ->taskCount, inputTimestampPacketAllocation->getTaskCount(bcsCsr->getOsContext().getContextId()));
EXPECT_EQ(cmdQ->taskCount, outputTimestampPacketAllocation->getTaskCount(bcsCsr->getOsContext().getContextId()));
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBlockingWriteBufferWhenUsingBcsThenCallWait) {
auto myMockCsr = new MyMockCsr<FamilyType>(*device->getExecutionEnvironment(), device->getRootDeviceIndex());
myMockCsr->taskCount = 1234;
myMockCsr->initializeTagAllocation();
myMockCsr->setupContext(*bcsMockContext->bcsOsContext);
bcsMockContext->bcsCsr.reset(myMockCsr);
EngineControl bcsEngineControl = {myMockCsr, bcsMockContext->bcsOsContext.get()};
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
cmdQ->bcsEngine = &bcsEngineControl;
auto &gpgpuCsr = cmdQ->getGpgpuCommandStreamReceiver();
myMockCsr->gpgpuCsr = &gpgpuCsr;
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
cmdQ->enqueueWriteBuffer(buffer.get(), false, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(0u, myMockCsr->waitForTaskCountAndCleanAllocationListCalled);
EXPECT_TRUE(gpgpuCsr.getTemporaryAllocations().peekIsEmpty());
EXPECT_FALSE(myMockCsr->getTemporaryAllocations().peekIsEmpty());
bool tempAllocationFound = false;
auto tempAllocation = myMockCsr->getTemporaryAllocations().peekHead();
while (tempAllocation) {
if (tempAllocation->getUnderlyingBuffer() == hostPtr) {
tempAllocationFound = true;
break;
}
tempAllocation = tempAllocation->next;
}
EXPECT_TRUE(tempAllocationFound);
cmdQ->enqueueWriteBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(1u, myMockCsr->waitForTaskCountAndCleanAllocationListCalled);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBlockingReadBufferWhenUsingBcsThenCallWait) {
auto myMockCsr = new MyMockCsr<FamilyType>(*device->getExecutionEnvironment(), device->getRootDeviceIndex());
myMockCsr->taskCount = 1234;
myMockCsr->initializeTagAllocation();
myMockCsr->setupContext(*bcsMockContext->bcsOsContext);
bcsMockContext->bcsCsr.reset(myMockCsr);
EngineControl bcsEngineControl = {myMockCsr, bcsMockContext->bcsOsContext.get()};
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
cmdQ->bcsEngine = &bcsEngineControl;
auto &gpgpuCsr = cmdQ->getGpgpuCommandStreamReceiver();
myMockCsr->gpgpuCsr = &gpgpuCsr;
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
cmdQ->enqueueReadBuffer(buffer.get(), false, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(0u, myMockCsr->waitForTaskCountAndCleanAllocationListCalled);
EXPECT_TRUE(gpgpuCsr.getTemporaryAllocations().peekIsEmpty());
EXPECT_FALSE(myMockCsr->getTemporaryAllocations().peekIsEmpty());
bool tempAllocationFound = false;
auto tempAllocation = myMockCsr->getTemporaryAllocations().peekHead();
while (tempAllocation) {
if (tempAllocation->getUnderlyingBuffer() == hostPtr) {
tempAllocationFound = true;
break;
}
tempAllocation = tempAllocation->next;
}
EXPECT_TRUE(tempAllocationFound);
cmdQ->enqueueReadBuffer(buffer.get(), true, 0, 1, hostPtr, nullptr, 0, nullptr, nullptr);
EXPECT_EQ(1u, myMockCsr->waitForTaskCountAndCleanAllocationListCalled);
}
HWTEST_TEMPLATED_F(BcsBufferTests, givenBlockedEnqueueWhenUsingBcsThenWaitForValidTaskCountOnBlockingCall) {
auto myMockCsr = new MyMockCsr<FamilyType>(*device->getExecutionEnvironment(), device->getRootDeviceIndex());
myMockCsr->taskCount = 1234;
myMockCsr->initializeTagAllocation();
myMockCsr->setupContext(*bcsMockContext->bcsOsContext);
bcsMockContext->bcsCsr.reset(myMockCsr);
EngineControl bcsEngineControl = {myMockCsr, bcsMockContext->bcsOsContext.get()};
auto cmdQ = clUniquePtr(new MockCommandQueueHw<FamilyType>(bcsMockContext.get(), device.get(), nullptr));
cmdQ->bcsEngine = &bcsEngineControl;
auto &gpgpuCsr = cmdQ->getGpgpuCommandStreamReceiver();
myMockCsr->gpgpuCsr = &gpgpuCsr;
cl_int retVal = CL_SUCCESS;
auto buffer = clUniquePtr<Buffer>(Buffer::create(bcsMockContext.get(), CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->forceDisallowCPUCopy = true;
void *hostPtr = reinterpret_cast<void *>(0x12340000);
UserEvent userEvent;
cl_event waitlist = &userEvent;
cmdQ->enqueueWriteBuffer(buffer.get(), false, 0, 1, hostPtr, nullptr, 1, &waitlist, nullptr);
userEvent.setStatus(CL_COMPLETE);
EXPECT_EQ(0u, myMockCsr->waitForTaskCountAndCleanAllocationListCalled);
cmdQ->finish();
EXPECT_EQ(1u, myMockCsr->waitForTaskCountAndCleanAllocationListCalled);
}
TEST_F(RenderCompressedBuffersCopyHostMemoryTests, givenNonRenderCompressedBufferWhenCopyFromHostPtrIsRequiredThenDontCallWriteBuffer) {
hwInfo->capabilityTable.ftrRenderCompressedBuffers = false;
buffer.reset(Buffer::create(context.get(), CL_MEM_COPY_HOST_PTR, sizeof(uint32_t), &hostPtr, retVal));
EXPECT_NE(buffer->getGraphicsAllocation()->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(0u, mockCmdQ->writeBufferCounter);
}
TEST_F(RenderCompressedBuffersCopyHostMemoryTests, givenRenderCompressedBufferWhenWriteBufferFailsThenReturnErrorCode) {
if (is32bit || !HwHelper::get(context->getDevice(0)->getHardwareInfo().platform.eRenderCoreFamily).obtainRenderBufferCompressionPreference(context->getDevice(0)->getHardwareInfo(), bufferSize)) {
return;
}
hwInfo->capabilityTable.ftrRenderCompressedBuffers = true;
mockCmdQ->writeBufferRetValue = CL_INVALID_VALUE;
buffer.reset(Buffer::create(context.get(), CL_MEM_COPY_HOST_PTR, bufferSize, hostPtr, retVal));
EXPECT_EQ(CL_OUT_OF_RESOURCES, retVal);
EXPECT_EQ(nullptr, buffer.get());
}
class BufferTest : public DeviceFixture,
public testing::TestWithParam<uint64_t /*cl_mem_flags*/> {
public:
BufferTest() {
}
protected:
void SetUp() override {
flags = GetParam();
DeviceFixture::SetUp();
context.reset(new MockContext(pDevice));
}
void TearDown() override {
context.reset();
DeviceFixture::TearDown();
}
cl_int retVal = CL_SUCCESS;
std::unique_ptr<MockContext> context;
MemoryManager *contextMemoryManager;
cl_mem_flags flags = 0;
unsigned char pHostPtr[g_scTestBufferSizeInBytes];
};
typedef BufferTest NoHostPtr;
TEST_P(NoHostPtr, ValidFlags) {
auto buffer = Buffer::create(
context.get(),
flags,
g_scTestBufferSizeInBytes,
nullptr,
retVal);
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(nullptr, buffer);
auto address = buffer->getCpuAddress();
EXPECT_NE(nullptr, address);
delete buffer;
}
TEST_P(NoHostPtr, GivenNoHostPtrWhenHwBufferCreationFailsThenReturnNullptr) {
BufferFuncs BufferFuncsBackup[IGFX_MAX_CORE];
for (uint32_t i = 0; i < IGFX_MAX_CORE; i++) {
BufferFuncsBackup[i] = bufferFactory[i];
bufferFactory[i].createBufferFunction =
[](Context *,
MemoryPropertiesFlags,
cl_mem_flags,
cl_mem_flags_intel,
size_t,
void *,
void *,
GraphicsAllocation *,
bool,
bool,
bool)
-> NEO::Buffer * { return nullptr; };
}
auto buffer = Buffer::create(
context.get(),
flags,
g_scTestBufferSizeInBytes,
nullptr,
retVal);
EXPECT_EQ(nullptr, buffer);
for (uint32_t i = 0; i < IGFX_MAX_CORE; i++) {
bufferFactory[i] = BufferFuncsBackup[i];
}
}
TEST_P(NoHostPtr, WithUseHostPtr_returnsError) {
auto buffer = Buffer::create(
context.get(),
flags | CL_MEM_USE_HOST_PTR,
g_scTestBufferSizeInBytes,
nullptr,
retVal);
EXPECT_EQ(CL_INVALID_HOST_PTR, retVal);
EXPECT_EQ(nullptr, buffer);
delete buffer;
}
TEST_P(NoHostPtr, WithCopyHostPtr_returnsError) {
auto buffer = Buffer::create(
context.get(),
flags | CL_MEM_COPY_HOST_PTR,
g_scTestBufferSizeInBytes,
nullptr,
retVal);
EXPECT_EQ(CL_INVALID_HOST_PTR, retVal);
EXPECT_EQ(nullptr, buffer);
delete buffer;
}
TEST_P(NoHostPtr, withBufferGraphicsAllocationReportsBufferType) {
auto buffer = Buffer::create(
context.get(),
flags,
g_scTestBufferSizeInBytes,
nullptr,
retVal);
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(nullptr, buffer);
auto allocation = buffer->getGraphicsAllocation();
if (MemoryPool::isSystemMemoryPool(allocation->getMemoryPool())) {
EXPECT_EQ(allocation->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY);
} else {
EXPECT_EQ(allocation->getAllocationType(), GraphicsAllocation::AllocationType::BUFFER);
}
auto isBufferWritable = !(flags & (CL_MEM_READ_ONLY | CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS));
EXPECT_EQ(isBufferWritable, allocation->isMemObjectsAllocationWithWritableFlags());
delete buffer;
}
// Parameterized test that tests buffer creation with all flags
// that should be valid with a nullptr host ptr
cl_mem_flags NoHostPtrFlags[] = {
CL_MEM_READ_WRITE,
CL_MEM_WRITE_ONLY,
CL_MEM_READ_ONLY,
CL_MEM_HOST_READ_ONLY,
CL_MEM_HOST_WRITE_ONLY,
CL_MEM_HOST_NO_ACCESS};
INSTANTIATE_TEST_CASE_P(
BufferTest_Create,
NoHostPtr,
testing::ValuesIn(NoHostPtrFlags));
struct ValidHostPtr
: public BufferTest,
public MemoryManagementFixture {
typedef BufferTest BaseClass;
using BufferTest::SetUp;
using MemoryManagementFixture::SetUp;
ValidHostPtr() {
}
void SetUp() override {
MemoryManagementFixture::SetUp();
BaseClass::SetUp();
ASSERT_NE(nullptr, pDevice);
}
void TearDown() override {
delete buffer;
BaseClass::TearDown();
MemoryManagementFixture::TearDown();
}
Buffer *createBuffer() {
return Buffer::create(
context.get(),
flags,
g_scTestBufferSizeInBytes,
pHostPtr,
retVal);
}
cl_int retVal = CL_INVALID_VALUE;
Buffer *buffer = nullptr;
};
TEST_P(ValidHostPtr, isResident_defaultsToFalseAfterCreate) {
buffer = createBuffer();
ASSERT_NE(nullptr, buffer);
EXPECT_FALSE(buffer->getGraphicsAllocation()->isResident(pDevice->getDefaultEngine().osContext->getContextId()));
}
TEST_P(ValidHostPtr, getAddress) {
buffer = createBuffer();
ASSERT_NE(nullptr, buffer);
auto address = buffer->getCpuAddress();
EXPECT_NE(nullptr, address);
if (flags & CL_MEM_USE_HOST_PTR && buffer->isMemObjZeroCopy()) {
// Buffer should use host ptr
EXPECT_EQ(pHostPtr, address);
EXPECT_EQ(pHostPtr, buffer->getHostPtr());
} else {
// Buffer should have a different ptr
EXPECT_NE(pHostPtr, address);
}
if (flags & CL_MEM_COPY_HOST_PTR) {
// Buffer should contain a copy of host memory
EXPECT_EQ(0, memcmp(pHostPtr, address, sizeof(g_scTestBufferSizeInBytes)));
EXPECT_EQ(nullptr, buffer->getHostPtr());
}
}
TEST_P(ValidHostPtr, getSize) {
buffer = createBuffer();
ASSERT_NE(nullptr, buffer);
EXPECT_EQ(g_scTestBufferSizeInBytes, buffer->getSize());
}
TEST_P(ValidHostPtr, givenValidHostPtrParentFlagsWhenSubBufferIsCreatedWithZeroFlagsThenItCreatesSuccesfuly) {
auto retVal = CL_SUCCESS;
auto clBuffer = clCreateBuffer(context.get(),
flags,
g_scTestBufferSizeInBytes,
pHostPtr,
&retVal);
ASSERT_NE(nullptr, clBuffer);
cl_buffer_region region = {0, g_scTestBufferSizeInBytes};
auto subBuffer = clCreateSubBuffer(clBuffer,
0,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(subBuffer);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(clBuffer);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_P(ValidHostPtr, givenValidHostPtrParentFlagsWhenSubBufferIsCreatedWithParentFlagsThenItIsCreatedSuccesfuly) {
auto retVal = CL_SUCCESS;
auto clBuffer = clCreateBuffer(context.get(),
flags,
g_scTestBufferSizeInBytes,
pHostPtr,
&retVal);
ASSERT_NE(nullptr, clBuffer);
cl_buffer_region region = {0, g_scTestBufferSizeInBytes};
const cl_mem_flags allValidFlags =
CL_MEM_READ_WRITE | CL_MEM_WRITE_ONLY | CL_MEM_READ_ONLY |
CL_MEM_HOST_WRITE_ONLY | CL_MEM_HOST_READ_ONLY | CL_MEM_HOST_NO_ACCESS;
cl_mem_flags unionFlags = flags & allValidFlags;
auto subBuffer = clCreateSubBuffer(clBuffer,
unionFlags,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, subBuffer);
retVal = clReleaseMemObject(subBuffer);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clReleaseMemObject(clBuffer);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_P(ValidHostPtr, givenValidHostPtrParentFlagsWhenSubBufferIsCreatedWithInvalidParentFlagsThenCreationFails) {
auto retVal = CL_SUCCESS;
cl_mem_flags invalidFlags = 0;
if (flags & CL_MEM_READ_ONLY) {
invalidFlags |= CL_MEM_WRITE_ONLY;
}
if (flags & CL_MEM_WRITE_ONLY) {
invalidFlags |= CL_MEM_READ_ONLY;
}
if (flags & CL_MEM_HOST_NO_ACCESS) {
invalidFlags |= CL_MEM_HOST_READ_ONLY;
}
if (flags & CL_MEM_HOST_READ_ONLY) {
invalidFlags |= CL_MEM_HOST_WRITE_ONLY;
}
if (flags & CL_MEM_HOST_WRITE_ONLY) {
invalidFlags |= CL_MEM_HOST_READ_ONLY;
}
if (invalidFlags == 0) {
return;
}
auto clBuffer = clCreateBuffer(context.get(),
flags,
g_scTestBufferSizeInBytes,
pHostPtr,
&retVal);
ASSERT_NE(nullptr, clBuffer);
cl_buffer_region region = {0, g_scTestBufferSizeInBytes};
auto subBuffer = clCreateSubBuffer(clBuffer,
invalidFlags,
CL_BUFFER_CREATE_TYPE_REGION,
&region,
&retVal);
EXPECT_NE(CL_SUCCESS, retVal);
EXPECT_EQ(nullptr, subBuffer);
retVal = clReleaseMemObject(clBuffer);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_P(ValidHostPtr, failedAllocationInjection) {
InjectedFunction method = [this](size_t failureIndex) {
delete buffer;
buffer = nullptr;
// System under test
buffer = createBuffer();
if (MemoryManagement::nonfailingAllocation == failureIndex) {
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, buffer);
}
};
injectFailures(method);
}
TEST_P(ValidHostPtr, SvmHostPtr) {
const DeviceInfo &devInfo = pDevice->getDeviceInfo();
if (devInfo.svmCapabilities != 0) {
auto ptr = context->getSVMAllocsManager()->createSVMAlloc(pDevice->getRootDeviceIndex(), 64, {});
auto bufferSvm = Buffer::create(context.get(), CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, 64, ptr, retVal);
EXPECT_NE(nullptr, bufferSvm);
EXPECT_TRUE(bufferSvm->isMemObjWithHostPtrSVM());
auto svmData = context->getSVMAllocsManager()->getSVMAlloc(ptr);
ASSERT_NE(nullptr, svmData);
EXPECT_EQ(svmData->gpuAllocation, bufferSvm->getGraphicsAllocation());
EXPECT_EQ(CL_SUCCESS, retVal);
context->getSVMAllocsManager()->freeSVMAlloc(ptr);
delete bufferSvm;
}
}
// Parameterized test that tests buffer creation with all flags that should be
// valid with a valid host ptr
cl_mem_flags ValidHostPtrFlags[] = {
0 | CL_MEM_USE_HOST_PTR,
CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR,
CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
CL_MEM_HOST_READ_ONLY | CL_MEM_USE_HOST_PTR,
CL_MEM_HOST_WRITE_ONLY | CL_MEM_USE_HOST_PTR,
CL_MEM_HOST_NO_ACCESS | CL_MEM_USE_HOST_PTR,
0 | CL_MEM_COPY_HOST_PTR,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
CL_MEM_WRITE_ONLY | CL_MEM_COPY_HOST_PTR,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
CL_MEM_HOST_READ_ONLY | CL_MEM_COPY_HOST_PTR,
CL_MEM_HOST_WRITE_ONLY | CL_MEM_COPY_HOST_PTR,
CL_MEM_HOST_NO_ACCESS | CL_MEM_COPY_HOST_PTR};
INSTANTIATE_TEST_CASE_P(
BufferTest_Create,
ValidHostPtr,
testing::ValuesIn(ValidHostPtrFlags));
class BufferCalculateHostPtrSize : public testing::TestWithParam<std::tuple<size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t>> {
public:
BufferCalculateHostPtrSize(){};
protected:
void SetUp() override {
std::tie(origin[0], origin[1], origin[2], region[0], region[1], region[2], rowPitch, slicePitch, hostPtrSize) = GetParam();
}
void TearDown() override {
}
size_t origin[3];
size_t region[3];
size_t rowPitch;
size_t slicePitch;
size_t hostPtrSize;
};
/* origin, region, rowPitch, slicePitch, hostPtrSize*/
static std::tuple<size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t, size_t> Inputs[] = {std::make_tuple(0, 0, 0, 1, 1, 1, 10, 1, 1),
std::make_tuple(0, 0, 0, 7, 1, 1, 10, 1, 7),
std::make_tuple(0, 0, 0, 7, 3, 1, 10, 1, 27),
std::make_tuple(0, 0, 0, 7, 1, 3, 10, 10, 27),
std::make_tuple(0, 0, 0, 7, 2, 3, 10, 20, 57),
std::make_tuple(0, 0, 0, 7, 1, 3, 10, 30, 67),
std::make_tuple(0, 0, 0, 7, 2, 3, 10, 30, 77),
std::make_tuple(9, 0, 0, 1, 1, 1, 10, 1, 10),
std::make_tuple(0, 2, 0, 7, 3, 1, 10, 1, 27 + 20),
std::make_tuple(0, 0, 1, 7, 1, 3, 10, 10, 27 + 10),
std::make_tuple(0, 2, 1, 7, 2, 3, 10, 20, 57 + 40),
std::make_tuple(1, 1, 1, 7, 1, 3, 10, 30, 67 + 41),
std::make_tuple(2, 0, 2, 7, 2, 3, 10, 30, 77 + 62)};
TEST_P(BufferCalculateHostPtrSize, CheckReturnedSize) {
size_t calculatedSize = Buffer::calculateHostPtrSize(origin, region, rowPitch, slicePitch);
EXPECT_EQ(hostPtrSize, calculatedSize);
}
INSTANTIATE_TEST_CASE_P(
BufferCalculateHostPtrSizes,
BufferCalculateHostPtrSize,
testing::ValuesIn(Inputs));
TEST(Buffers64on32Tests, given32BitBufferCreatedWithUseHostPtrFlagThatIsZeroCopyWhenAskedForStorageThenHostPtrIsReturned) {
DebugManagerStateRestore dbgRestorer;
{
DebugManager.flags.Force32bitAddressing.set(true);
MockContext context;
auto size = MemoryConstants::pageSize;
void *ptr = (void *)0x1000;
auto ptrOffset = MemoryConstants::cacheLineSize;
uintptr_t offsetedPtr = (uintptr_t)ptr + ptrOffset;
auto retVal = CL_SUCCESS;
auto buffer = Buffer::create(
&context,
CL_MEM_USE_HOST_PTR,
size,
(void *)offsetedPtr,
retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ((void *)offsetedPtr, buffer->getCpuAddressForMapping());
EXPECT_EQ((void *)offsetedPtr, buffer->getCpuAddressForMemoryTransfer());
delete buffer;
DebugManager.flags.Force32bitAddressing.set(false);
}
}
TEST(Buffers64on32Tests, given32BitBufferCreatedWithAllocHostPtrFlagThatIsZeroCopyWhenAskedForStorageThenStorageIsEqualToMemoryStorage) {
DebugManagerStateRestore dbgRestorer;
{
DebugManager.flags.Force32bitAddressing.set(true);
MockContext context;
auto size = MemoryConstants::pageSize;
auto retVal = CL_SUCCESS;
auto buffer = Buffer::create(
&context,
CL_MEM_ALLOC_HOST_PTR,
size,
nullptr,
retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(buffer->isMemObjZeroCopy());
EXPECT_EQ(buffer->getCpuAddress(), buffer->getCpuAddressForMapping());
EXPECT_EQ(buffer->getCpuAddress(), buffer->getCpuAddressForMemoryTransfer());
delete buffer;
DebugManager.flags.Force32bitAddressing.set(false);
}
}
TEST(Buffers64on32Tests, given32BitBufferThatIsCreatedWithUseHostPtrButIsNotZeroCopyThenProperPointersAreReturned) {
DebugManagerStateRestore dbgRestorer;
{
DebugManager.flags.Force32bitAddressing.set(true);
MockContext context;
auto size = MemoryConstants::pageSize;
void *ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
auto ptrOffset = 1;
uintptr_t offsetedPtr = (uintptr_t)ptr + ptrOffset;
auto retVal = CL_SUCCESS;
auto buffer = Buffer::create(
&context,
CL_MEM_USE_HOST_PTR,
size,
(void *)offsetedPtr,
retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(buffer->isMemObjZeroCopy());
EXPECT_EQ((void *)offsetedPtr, buffer->getCpuAddressForMapping());
EXPECT_EQ(buffer->getCpuAddress(), buffer->getCpuAddressForMemoryTransfer());
delete buffer;
DebugManager.flags.Force32bitAddressing.set(false);
alignedFree(ptr);
}
}
TEST(SharedBuffersTest, whenBuffersIsCreatedWithSharingHandlerThenItIsSharedBuffer) {
MockContext context;
auto memoryManager = context.getDevice(0)->getMemoryManager();
auto handler = new SharingHandler();
auto graphicsAlloaction = memoryManager->allocateGraphicsMemoryWithProperties(MockAllocationProperties{MemoryConstants::pageSize});
auto buffer = Buffer::createSharedBuffer(&context, CL_MEM_READ_ONLY, handler, graphicsAlloaction);
ASSERT_NE(nullptr, buffer);
EXPECT_EQ(handler, buffer->peekSharingHandler());
buffer->release();
}
class BufferTests : public ::testing::Test {
protected:
void SetUp() override {
device.reset(MockDevice::createWithNewExecutionEnvironment<MockDevice>(*platformDevices));
}
void TearDown() override {
}
std::unique_ptr<Device> device;
};
typedef BufferTests BufferSetSurfaceTests;
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemoryPtrAndSizeIsAlignedToCachelineThenL3CacheShouldBeOn) {
auto size = MemoryConstants::pageSize;
auto ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
size,
ptr);
auto mocs = surfaceState.getMemoryObjectControlState();
auto gmmHelper = device->getGmmHelper();
EXPECT_EQ(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER), mocs);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemoryPtrIsUnalignedToCachelineThenL3CacheShouldBeOff) {
auto size = MemoryConstants::pageSize;
auto ptr = alignedMalloc(size * 2, MemoryConstants::pageSize);
auto ptrOffset = 1;
auto offsetedPtr = (void *)((uintptr_t)ptr + ptrOffset);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
size,
offsetedPtr);
auto mocs = surfaceState.getMemoryObjectControlState();
auto gmmHelper = device->getGmmHelper();
EXPECT_EQ(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CACHELINE_MISALIGNED), mocs);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemorySizeIsUnalignedToCachelineThenL3CacheShouldBeOff) {
auto size = MemoryConstants::pageSize;
auto ptr = alignedMalloc(size * 2, MemoryConstants::pageSize);
auto sizeOffset = 1;
auto offsetedSize = size + sizeOffset;
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
offsetedSize,
ptr);
auto mocs = surfaceState.getMemoryObjectControlState();
auto gmmHelper = device->getGmmHelper();
EXPECT_EQ(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CACHELINE_MISALIGNED), mocs);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemoryIsUnalignedToCachelineButReadOnlyThenL3CacheShouldBeStillOn) {
auto size = MemoryConstants::pageSize;
auto ptr = alignedMalloc(size * 2, MemoryConstants::pageSize);
auto sizeOffset = 1;
auto offsetedSize = size + sizeOffset;
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
offsetedSize,
ptr,
nullptr,
CL_MEM_READ_ONLY);
auto mocs = surfaceState.getMemoryObjectControlState();
auto gmmHelper = device->getGmmHelper();
EXPECT_EQ(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER), mocs);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemorySizeIsUnalignedThenSurfaceSizeShouldBeAlignedToFour) {
auto size = MemoryConstants::pageSize;
auto ptr = alignedMalloc(size * 2, MemoryConstants::pageSize);
auto sizeOffset = 1;
auto offsetedSize = size + sizeOffset;
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
offsetedSize,
ptr);
auto width = surfaceState.getWidth();
EXPECT_EQ(alignUp(width, 4), width);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemoryPtrIsNotNullThenBufferSurfaceShouldBeUsed) {
auto size = MemoryConstants::pageSize;
auto ptr = alignedMalloc(size * 2, MemoryConstants::pageSize);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
size,
ptr);
auto surfType = surfaceState.getSurfaceType();
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_TYPE_SURFTYPE_BUFFER, surfType);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatMemoryPtrIsNullThenNullSurfaceShouldBeUsed) {
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
Buffer::setSurfaceState(
device.get(),
&surfaceState,
0,
nullptr);
auto surfType = surfaceState.getSurfaceType();
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_TYPE_SURFTYPE_NULL, surfType);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferSetSurfaceThatAddressIsForcedTo32bitWhenSetArgStatefulIsCalledThenSurfaceBaseAddressIsPopulatedWithGpuAddress) {
DebugManagerStateRestore dbgRestorer;
{
DebugManager.flags.Force32bitAddressing.set(true);
MockContext context;
auto size = MemoryConstants::pageSize;
auto ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
auto retVal = CL_SUCCESS;
auto buffer = Buffer::create(
&context,
CL_MEM_USE_HOST_PTR,
size,
ptr,
retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(is64bit ? buffer->getGraphicsAllocation()->is32BitAllocation() : true);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
buffer->setArgStateful(&surfaceState, false, false, false, false);
auto surfBaseAddress = surfaceState.getSurfaceBaseAddress();
auto bufferAddress = buffer->getGraphicsAllocation()->getGpuAddress();
EXPECT_EQ(bufferAddress, surfBaseAddress);
delete buffer;
alignedFree(ptr);
DebugManager.flags.Force32bitAddressing.set(false);
}
}
HWTEST_F(BufferSetSurfaceTests, givenBufferWithOffsetWhenSetArgStatefulIsCalledThenSurfaceBaseAddressIsProperlyOffseted) {
MockContext context;
auto size = MemoryConstants::pageSize;
auto ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
auto retVal = CL_SUCCESS;
auto buffer = Buffer::create(
&context,
CL_MEM_USE_HOST_PTR,
size,
ptr,
retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
cl_buffer_region region = {4, 8};
retVal = -1;
auto subBuffer = buffer->createSubBuffer(CL_MEM_READ_WRITE, 0, &region, retVal);
ASSERT_NE(nullptr, subBuffer);
ASSERT_EQ(CL_SUCCESS, retVal);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
subBuffer->setArgStateful(&surfaceState, false, false, false, false);
auto surfBaseAddress = surfaceState.getSurfaceBaseAddress();
auto bufferAddress = buffer->getGraphicsAllocation()->getGpuAddress();
EXPECT_EQ(bufferAddress + region.origin, surfBaseAddress);
subBuffer->release();
delete buffer;
alignedFree(ptr);
DebugManager.flags.Force32bitAddressing.set(false);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferWhenSetArgStatefulWithL3ChacheDisabledIsCalledThenL3CacheShouldBeOffAndSizeIsAlignedTo512) {
MockContext context;
auto size = 128;
auto retVal = CL_SUCCESS;
auto buffer = std::unique_ptr<Buffer>(Buffer::create(
&context,
CL_MEM_READ_WRITE,
size,
nullptr,
retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
buffer->setArgStateful(&surfaceState, false, true, true, false);
auto mocs = surfaceState.getMemoryObjectControlState();
auto gmmHelper = device->getGmmHelper();
EXPECT_EQ(gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CACHELINE_MISALIGNED), mocs);
EXPECT_EQ(128u, surfaceState.getWidth());
EXPECT_EQ(4u, surfaceState.getHeight());
}
HWTEST_F(BufferSetSurfaceTests, givenBufferThatIsMisalignedButIsAReadOnlyArgumentWhenSurfaceStateIsSetThenL3IsOn) {
MockContext context;
auto size = 128;
auto retVal = CL_SUCCESS;
auto buffer = std::unique_ptr<Buffer>(Buffer::create(
&context,
CL_MEM_READ_WRITE,
size,
nullptr,
retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
buffer->getGraphicsAllocation()->setSize(127);
buffer->setArgStateful(&surfaceState, false, false, false, true);
auto mocs = surfaceState.getMemoryObjectControlState();
auto gmmHelper = device->getGmmHelper();
auto expectedMocs = gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER);
auto expectedMocs2 = gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CONST);
EXPECT_TRUE(expectedMocs == mocs || expectedMocs2 == mocs);
}
HWTEST_F(BufferSetSurfaceTests, givenAlignedCacheableReadOnlyBufferThenChoseOclBufferPolicy) {
MockContext context;
const auto size = MemoryConstants::pageSize;
const auto ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
const auto flags = CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY;
auto retVal = CL_SUCCESS;
auto buffer = std::unique_ptr<Buffer>(Buffer::create(
&context,
flags,
size,
ptr,
retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
typename FamilyType::RENDER_SURFACE_STATE surfaceState = {};
buffer->setArgStateful(&surfaceState, false, false, false, false);
const auto expectedMocs = device->getGmmHelper()->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER);
const auto actualMocs = surfaceState.getMemoryObjectControlState();
EXPECT_EQ(expectedMocs, actualMocs);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenAlignedCacheableNonReadOnlyBufferThenChooseOclBufferPolicy) {
MockContext context;
const auto size = MemoryConstants::pageSize;
const auto ptr = (void *)alignedMalloc(size * 2, MemoryConstants::pageSize);
const auto flags = CL_MEM_USE_HOST_PTR;
auto retVal = CL_SUCCESS;
auto buffer = std::unique_ptr<Buffer>(Buffer::create(
&context,
flags,
size,
ptr,
retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
typename FamilyType::RENDER_SURFACE_STATE surfaceState = {};
buffer->setArgStateful(&surfaceState, false, false, false, false);
const auto expectedMocs = device->getGmmHelper()->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER);
const auto actualMocs = surfaceState.getMemoryObjectControlState();
EXPECT_EQ(expectedMocs, actualMocs);
alignedFree(ptr);
}
HWTEST_F(BufferSetSurfaceTests, givenRenderCompressedGmmResourceWhenSurfaceStateIsProgrammedThenSetAuxParams) {
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
using AUXILIARY_SURFACE_MODE = typename RENDER_SURFACE_STATE::AUXILIARY_SURFACE_MODE;
RENDER_SURFACE_STATE surfaceState = {};
MockContext context;
auto retVal = CL_SUCCESS;
std::unique_ptr<Buffer> buffer(Buffer::create(&context, CL_MEM_READ_WRITE, 1, nullptr, retVal));
buffer->getGraphicsAllocation()->setAllocationType(GraphicsAllocation::AllocationType::BUFFER_COMPRESSED);
auto gmm = new Gmm(nullptr, 1, false);
buffer->getGraphicsAllocation()->setDefaultGmm(gmm);
gmm->isRenderCompressed = true;
buffer->setArgStateful(&surfaceState, false, false, false, false);
EXPECT_EQ(0u, surfaceState.getAuxiliarySurfaceBaseAddress());
EXPECT_TRUE(AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_CCS_E == surfaceState.getAuxiliarySurfaceMode());
EXPECT_TRUE(RENDER_SURFACE_STATE::COHERENCY_TYPE_GPU_COHERENT == surfaceState.getCoherencyType());
buffer->getGraphicsAllocation()->setAllocationType(GraphicsAllocation::AllocationType::BUFFER);
buffer->setArgStateful(&surfaceState, false, false, false, false);
EXPECT_TRUE(AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_NONE == surfaceState.getAuxiliarySurfaceMode());
}
HWTEST_F(BufferSetSurfaceTests, givenNonRenderCompressedGmmResourceWhenSurfaceStateIsProgrammedThenDontSetAuxParams) {
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
using AUXILIARY_SURFACE_MODE = typename RENDER_SURFACE_STATE::AUXILIARY_SURFACE_MODE;
RENDER_SURFACE_STATE surfaceState = {};
MockContext context;
auto retVal = CL_SUCCESS;
std::unique_ptr<Buffer> buffer(Buffer::create(&context, CL_MEM_READ_WRITE, 1, nullptr, retVal));
auto gmm = new Gmm(nullptr, 1, false);
buffer->getGraphicsAllocation()->setDefaultGmm(gmm);
gmm->isRenderCompressed = false;
buffer->setArgStateful(&surfaceState, false, false, false, false);
EXPECT_EQ(0u, surfaceState.getAuxiliarySurfaceBaseAddress());
EXPECT_TRUE(AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_NONE == surfaceState.getAuxiliarySurfaceMode());
EXPECT_TRUE(RENDER_SURFACE_STATE::COHERENCY_TYPE_IA_COHERENT == surfaceState.getCoherencyType());
}
HWTEST_F(BufferSetSurfaceTests, givenMisalignedPointerWhenSurfaceStateIsProgrammedThenBaseAddressAndLengthAreAlignedToDword) {
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
using AUXILIARY_SURFACE_MODE = typename RENDER_SURFACE_STATE::AUXILIARY_SURFACE_MODE;
RENDER_SURFACE_STATE surfaceState = {};
MockContext context;
void *svmPtr = reinterpret_cast<void *>(0x1005);
Buffer::setSurfaceState(device.get(),
&surfaceState,
5,
svmPtr,
nullptr,
0);
EXPECT_EQ(0x1004u, surfaceState.getSurfaceBaseAddress());
SURFACE_STATE_BUFFER_LENGTH length = {};
length.SurfaceState.Width = surfaceState.getWidth() - 1;
length.SurfaceState.Height = surfaceState.getHeight() - 1;
length.SurfaceState.Depth = surfaceState.getDepth() - 1;
EXPECT_EQ(alignUp(5u, 4u), length.Length + 1);
}
HWTEST_F(BufferSetSurfaceTests, givenBufferThatIsMisalignedWhenSurfaceStateIsBeingProgrammedThenL3CacheIsOff) {
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
RENDER_SURFACE_STATE surfaceState = {};
MockContext context;
void *svmPtr = reinterpret_cast<void *>(0x1005);
Buffer::setSurfaceState(device.get(),
&surfaceState,
5,
svmPtr,
nullptr,
0);
EXPECT_EQ(0u, surfaceState.getMemoryObjectControlState());
}
class BufferL3CacheTests : public ::testing::TestWithParam<uint64_t> {
public:
void SetUp() override {
hostPtr = reinterpret_cast<void *>(GetParam());
}
MockContext ctx;
const size_t region[3] = {3, 3, 1};
const size_t origin[3] = {0, 0, 0};
void *hostPtr;
};
HWTEST_P(BufferL3CacheTests, givenMisalignedAndAlignedBufferWhenClEnqueueWriteImageThenL3CacheIsOn) {
if (ctx.getDevice(0)->areSharedSystemAllocationsAllowed()) {
GTEST_SKIP();
}
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
CommandQueueHw<FamilyType> cmdQ(&ctx, ctx.getDevice(0), nullptr);
auto surfaceState = reinterpret_cast<RENDER_SURFACE_STATE *>(cmdQ.getGpgpuCommandStreamReceiver().getIndirectHeap(IndirectHeap::Type::SURFACE_STATE, 0).getSpace(0));
cl_image_format imageFormat;
cl_image_desc imageDesc;
imageFormat.image_channel_order = CL_RGBA;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
imageDesc.image_width = 3;
imageDesc.image_height = 3;
imageDesc.image_depth = 1;
imageDesc.image_array_size = 1;
imageDesc.image_row_pitch = 0;
imageDesc.image_slice_pitch = 0;
imageDesc.num_mip_levels = 0;
imageDesc.num_samples = 0;
imageDesc.mem_object = nullptr;
auto image = clCreateImage(&ctx, CL_MEM_READ_WRITE, &imageFormat, &imageDesc, nullptr, nullptr);
clEnqueueWriteImage(&cmdQ, image, false, origin, region, 0, 0, hostPtr, 0, nullptr, nullptr);
auto expect = ctx.getDevice(0)->getExecutionEnvironment()->getGmmHelper()->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER);
auto expect2 = ctx.getDevice(0)->getExecutionEnvironment()->getGmmHelper()->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CONST);
EXPECT_NE(NULL, surfaceState->getMemoryObjectControlState());
EXPECT_TRUE(expect == surfaceState->getMemoryObjectControlState() || expect2 == surfaceState->getMemoryObjectControlState());
clReleaseMemObject(image);
}
HWTEST_P(BufferL3CacheTests, givenMisalignedAndAlignedBufferWhenClEnqueueWriteBufferRectThenL3CacheIsOn) {
if (ctx.getDevice(0)->areSharedSystemAllocationsAllowed()) {
GTEST_SKIP();
}
using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE;
CommandQueueHw<FamilyType> cmdQ(&ctx, ctx.getDevice(0), nullptr);
auto surfaceState = reinterpret_cast<RENDER_SURFACE_STATE *>(cmdQ.getGpgpuCommandStreamReceiver().getIndirectHeap(IndirectHeap::Type::SURFACE_STATE, 0).getSpace(0));
auto buffer = clCreateBuffer(&ctx, CL_MEM_READ_WRITE, 36, nullptr, nullptr);
clEnqueueWriteBufferRect(&cmdQ, buffer, false, origin, origin, region, 0, 0, 0, 0, hostPtr, 0, nullptr, nullptr);
auto expect = ctx.getDevice(0)->getExecutionEnvironment()->getGmmHelper()->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER);
auto expect2 = ctx.getDevice(0)->getExecutionEnvironment()->getGmmHelper()->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CONST);
EXPECT_NE(NULL, surfaceState->getMemoryObjectControlState());
EXPECT_TRUE(expect == surfaceState->getMemoryObjectControlState() || expect2 == surfaceState->getMemoryObjectControlState());
clReleaseMemObject(buffer);
}
static uint64_t pointers[] = {
0x1005,
0x2000};
INSTANTIATE_TEST_CASE_P(
pointers,
BufferL3CacheTests,
testing::ValuesIn(pointers));
struct BufferUnmapTest : public DeviceFixture, public ::testing::Test {
void SetUp() override {
DeviceFixture::SetUp();
}
void TearDown() override {
DeviceFixture::TearDown();
}
};
HWTEST_F(BufferUnmapTest, givenBufferWithSharingHandlerWhenUnmappingThenUseEnqueueWriteBuffer) {
MockContext context(pDevice);
MockCommandQueueHw<FamilyType> cmdQ(&context, pDevice, nullptr);
auto retVal = CL_SUCCESS;
std::unique_ptr<Buffer> buffer(Buffer::create(&context, CL_MEM_ALLOC_HOST_PTR, 123, nullptr, retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
buffer->setSharingHandler(new SharingHandler());
EXPECT_NE(nullptr, buffer->peekSharingHandler());
auto mappedPtr = clEnqueueMapBuffer(&cmdQ, buffer.get(), CL_TRUE, CL_MAP_WRITE, 0, 1, 0, nullptr, nullptr, &retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(0u, cmdQ.EnqueueWriteBufferCounter);
retVal = clEnqueueUnmapMemObject(&cmdQ, buffer.get(), mappedPtr, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(1u, cmdQ.EnqueueWriteBufferCounter);
EXPECT_TRUE(cmdQ.blockingWriteBuffer);
}
HWTEST_F(BufferUnmapTest, givenBufferWithoutSharingHandlerWhenUnmappingThenDontUseEnqueueWriteBuffer) {
MockContext context(pDevice);
MockCommandQueueHw<FamilyType> cmdQ(&context, pDevice, nullptr);
auto retVal = CL_SUCCESS;
std::unique_ptr<Buffer> buffer(Buffer::create(&context, CL_MEM_ALLOC_HOST_PTR, 123, nullptr, retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(nullptr, buffer->peekSharingHandler());
auto mappedPtr = clEnqueueMapBuffer(&cmdQ, buffer.get(), CL_TRUE, CL_MAP_READ, 0, 1, 0, nullptr, nullptr, &retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = clEnqueueUnmapMemObject(&cmdQ, buffer.get(), mappedPtr, 0, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(0u, cmdQ.EnqueueWriteBufferCounter);
}
using BufferTransferTests = BufferUnmapTest;
TEST_F(BufferTransferTests, givenBufferWhenTransferToHostPtrCalledThenCopyRequestedSizeAndOffsetOnly) {
MockContext context(pDevice);
auto retVal = CL_SUCCESS;
const size_t bufferSize = 100;
size_t ignoredParam = 123;
MemObjOffsetArray copyOffset = {{20, ignoredParam, ignoredParam}};
MemObjSizeArray copySize = {{10, ignoredParam, ignoredParam}};
uint8_t hostPtr[bufferSize] = {};
uint8_t expectedHostPtr[bufferSize] = {};
std::unique_ptr<Buffer> buffer(Buffer::create(&context, CL_MEM_USE_HOST_PTR, bufferSize, hostPtr, retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
auto srcPtr = buffer->getCpuAddress();
EXPECT_NE(srcPtr, hostPtr);
memset(srcPtr, 123, bufferSize);
memset(ptrOffset(expectedHostPtr, copyOffset[0]), 123, copySize[0]);
buffer->transferDataToHostPtr(copySize, copyOffset);
EXPECT_TRUE(memcmp(hostPtr, expectedHostPtr, copySize[0]) == 0);
}
TEST_F(BufferTransferTests, givenBufferWhenTransferFromHostPtrCalledThenCopyRequestedSizeAndOffsetOnly) {
MockContext context(pDevice);
auto retVal = CL_SUCCESS;
const size_t bufferSize = 100;
size_t ignoredParam = 123;
MemObjOffsetArray copyOffset = {{20, ignoredParam, ignoredParam}};
MemObjSizeArray copySize = {{10, ignoredParam, ignoredParam}};
uint8_t hostPtr[bufferSize] = {};
uint8_t expectedBufferMemory[bufferSize] = {};
std::unique_ptr<Buffer> buffer(Buffer::create(&context, CL_MEM_USE_HOST_PTR, bufferSize, hostPtr, retVal));
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(buffer->getCpuAddress(), hostPtr);
memset(hostPtr, 123, bufferSize);
memset(ptrOffset(expectedBufferMemory, copyOffset[0]), 123, copySize[0]);
buffer->transferDataFromHostPtr(copySize, copyOffset);
EXPECT_TRUE(memcmp(expectedBufferMemory, buffer->getCpuAddress(), copySize[0]) == 0);
}