New Sysman black box test

Sysman test to exercise Sysman APIs and show system info

Change-Id: I16c1d93eb73d54925a113bc6035100654764779c
Signed-off-by: Matias A. Cabral <matias.a.cabral@intel.com>
This commit is contained in:
Matias A. Cabral 2020-09-03 11:37:20 -07:00 committed by sys_ocldev
parent 831e87eef8
commit 0f020b6da7
3 changed files with 658 additions and 1 deletions

View File

@ -4,4 +4,6 @@
# SPDX-License-Identifier: MIT
#
add_subdirectories()
if(NOT SKIP_L0_UNIT_TESTS)
add_subdirectories()
endif()

View File

@ -0,0 +1,33 @@
#
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
#
if("${CMAKE_BUILD_TYPE}" STREQUAL "Debug")
if(UNIX)
set(L0_BLACK_BOX_TEST_PROJECT_FOLDER "ze_intel_gpu/black_box_tests")
set(TEST_TARGETS
zello_sysman
)
foreach(TEST_NAME ${TEST_TARGETS})
add_executable(${TEST_NAME} ${TEST_NAME}.cpp)
set_target_properties(${TEST_NAME}
PROPERTIES
VS_DEBUGGER_COMMAND "$(TargetPath)"
VS_DEBUGGER_COMMAND_ARGUMENTS ""
VS_DEBUGGER_WORKING_DIRECTORY "$(OutputPath)"
)
if(BUILD_LEVEL_ZERO_LOADER)
add_dependencies(${TEST_NAME} ze_loader)
target_link_libraries(${TEST_NAME} ${NEO_BINARY_DIR}/lib/libze_loader.so)
else()
target_link_libraries(${TEST_NAME} PUBLIC ${TARGET_NAME_L0})
endif()
set_target_properties(${TEST_NAME} PROPERTIES FOLDER ${L0_BLACK_BOX_TEST_PROJECT_FOLDER})
endforeach()
endif()
endif()

View File

@ -0,0 +1,622 @@
/*
* Copyright (C) 2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include <level_zero/zes_api.h>
#include <algorithm>
#include <getopt.h>
#include <iostream>
#include <string.h>
#include <unistd.h>
#include <vector>
bool verbose = true;
#define VALIDATECALL(myZeCall) \
do { \
if (myZeCall != ZE_RESULT_SUCCESS) { \
std::cout << "Error at " \
<< #myZeCall << ": " \
<< __FUNCTION__ << ": " \
<< __LINE__ << "\n"; \
} \
} while (0);
void usage() {
std::cout << "\n set Env variable ZES_ENABLE_SYSMAN=1"
"\n"
"\n zello_sysman [OPTIONS]"
"\n"
"\n OPTIONS:"
"\n -p, --pci selectively run pci black box test"
"\n -f, --frequency selectively run frequency black box test"
"\n -s, --standby selectively run standby black box test"
"\n -e, --engine selectively run engine black box test"
"\n -c, --scheduler selectively run scheduler black box test"
"\n -t, --temperature selectively run temperature black box test"
"\n -o, --power selectively run power black box test"
"\n -m, --memory selectively run memory black box test"
"\n -g, --global selectively run device/global operations black box test"
"\n -h, --help display help message"
"\n"
"\n All L0 Syman APIs that set values require root privileged execution"
"\n"
"\n";
}
void getDeviceHandles(std::vector<ze_device_handle_t> &devices, int argc, char *argv[]) {
VALIDATECALL(zeInit(ZE_INIT_FLAG_GPU_ONLY));
uint32_t driverCount = 0;
VALIDATECALL(zeDriverGet(&driverCount, nullptr));
if (driverCount == 0) {
std::cout << "Error could not retrieve driver" << std::endl;
std::terminate();
}
ze_driver_handle_t driverHandle;
VALIDATECALL(zeDriverGet(&driverCount, &driverHandle));
uint32_t deviceCount = 0;
VALIDATECALL(zeDeviceGet(driverHandle, &deviceCount, nullptr));
if (deviceCount == 0) {
std::cout << "Error could not retrieve device" << std::endl;
std::terminate();
}
devices.resize(deviceCount);
VALIDATECALL(zeDeviceGet(driverHandle, &deviceCount, devices.data()));
ze_device_properties_t deviceProperties = {};
for (auto device : devices) {
VALIDATECALL(zeDeviceGetProperties(device, &deviceProperties));
if (verbose) {
std::cout << "Device Name = " << deviceProperties.name << std::endl;
}
}
}
void testSysmanPower(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Power tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumPowerDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Power domains" << std::endl;
return;
}
std::vector<zes_pwr_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumPowerDomains(device, &count, handles.data()));
for (auto handle : handles) {
zes_power_energy_counter_t energyCounter;
VALIDATECALL(zesPowerGetEnergyCounter(handle, &energyCounter));
if (verbose) {
std::cout << "energyCounter.energy = " << energyCounter.energy << std::endl;
std::cout << "energyCounter.timestamp = " << energyCounter.timestamp << std::endl;
}
}
}
void testSysmanTemperature(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Temperature tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumTemperatureSensors(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Temperature domains" << std::endl;
return;
}
std::vector<zes_temp_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumTemperatureSensors(device, &count, handles.data()));
for (auto handle : handles) {
double temperature;
VALIDATECALL(zesTemperatureGetState(handle, &temperature));
if (verbose) {
std::cout << "temperature current state is: " << temperature << std::endl;
}
}
}
void testSysmanPci(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- PCI tests ---- " << std::endl;
zes_pci_properties_t properties = {};
VALIDATECALL(zesDevicePciGetProperties(device, &properties));
if (verbose) {
std::cout << "properties.address.domain = " << properties.address.domain << std::endl;
std::cout << "properties.address.bus = " << properties.address.bus << std::endl;
std::cout << "properties.address.device = " << properties.address.device << std::endl;
std::cout << "properties.maxSpeed.gen = " << properties.maxSpeed.gen << std::endl;
std::cout << "properties.maxSpeed.width = " << properties.maxSpeed.width << std::endl;
std::cout << "properties.maxSpeed.maxBandwidth = " << properties.maxSpeed.maxBandwidth << std::endl;
}
uint32_t count = 0;
VALIDATECALL(zesDevicePciGetBars(device, &count, nullptr));
if (verbose) {
std::cout << "Bar count = " << count << std::endl;
}
std::vector<zes_pci_bar_properties_t> pciBarProps(count);
VALIDATECALL(zesDevicePciGetBars(device, &count, pciBarProps.data()));
if (verbose) {
for (uint32_t i = 0; i < count; i++) {
std::cout << "pciBarProps.type = " << std::hex << pciBarProps[i].type << std::endl;
std::cout << "pciBarProps.index = " << std::hex << pciBarProps[i].index << std::endl;
std::cout << "pciBarProps.base = " << std::hex << pciBarProps[i].base << std::endl;
std::cout << "pciBarProps.size = " << std::hex << pciBarProps[i].size << std::endl;
}
}
}
void testSysmanFrequency(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Frequency tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumFrequencyDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve frequency domains" << std::endl;
return;
}
std::vector<zes_freq_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumFrequencyDomains(device, &count, handles.data()));
for (auto handle : handles) {
zes_freq_properties_t freqProperties = {};
zes_freq_range_t freqRange = {};
zes_freq_range_t testFreqRange = {};
zes_freq_state_t freqState = {};
VALIDATECALL(zesFrequencyGetProperties(handle, &freqProperties));
if (verbose) {
std::cout << "freqProperties.type = " << freqProperties.type << std::endl;
std::cout << "freqProperties.canControl = " << freqProperties.canControl << std::endl;
std::cout << "freqProperties.isThrottleEventSupported = " << freqProperties.isThrottleEventSupported << std::endl;
std::cout << "freqProperties.min = " << freqProperties.min << std::endl;
std::cout << "freqProperties.max = " << freqProperties.max << std::endl;
if (freqProperties.onSubdevice) {
std::cout << "freqProperties.subdeviceId = " << freqProperties.subdeviceId << std::endl;
}
}
VALIDATECALL(zesFrequencyGetState(handle, &freqState));
if (verbose) {
std::cout << "freqState.currentVoltage = " << freqState.currentVoltage << std::endl;
std::cout << "freqState.request = " << freqState.request << std::endl;
std::cout << "freqState.tdp = " << freqState.tdp << std::endl;
std::cout << "freqState.efficient = " << freqState.efficient << std::endl;
std::cout << "freqState.actual = " << freqState.actual << std::endl;
std::cout << "freqState.throttleReasons = " << freqState.throttleReasons << std::endl;
}
VALIDATECALL(zesFrequencyGetRange(handle, &freqRange));
if (verbose) {
std::cout << "freqRange.min = " << freqRange.min << std::endl;
std::cout << "freqRange.max = " << freqRange.max << std::endl;
}
count = 0;
VALIDATECALL(zesFrequencyGetAvailableClocks(handle, &count, nullptr));
std::vector<double> frequency(count);
VALIDATECALL(zesFrequencyGetAvailableClocks(handle, &count, frequency.data()));
if (verbose) {
for (auto freq : frequency) {
std::cout << " frequency = " << freq << std::endl;
}
}
if (iamroot) {
// Test setting min and max frequency the same, then restore originals
testFreqRange.min = freqRange.min;
testFreqRange.max = freqRange.min;
if (verbose) {
std::cout << "Setting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "Setting Frequency Range . max " << testFreqRange.max << std::endl;
}
VALIDATECALL(zesFrequencySetRange(handle, &testFreqRange));
VALIDATECALL(zesFrequencyGetRange(handle, &testFreqRange));
if (verbose) {
std::cout << "After Setting Getting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "After Setting Getting Frequency Range . max " << testFreqRange.max << std::endl;
}
testFreqRange.min = freqRange.min;
testFreqRange.max = freqRange.max;
if (verbose) {
std::cout << "Setting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "Setting Frequency Range . max " << testFreqRange.max << std::endl;
}
VALIDATECALL(zesFrequencySetRange(handle, &testFreqRange));
VALIDATECALL(zesFrequencyGetRange(handle, &testFreqRange));
if (verbose) {
std::cout << "After Setting Getting Frequency Range . min " << testFreqRange.min << std::endl;
std::cout << "After Setting Getting Frequency Range . max " << testFreqRange.max << std::endl;
}
} else {
std::cout << "Not running as Root. Skipping zetSysmanFrequencySetRange test." << std::endl;
}
}
}
std::string getStandbyType(zes_standby_type_t standbyType) {
if (standbyType == ZES_STANDBY_TYPE_GLOBAL)
return "ZES_STANDBY_TYPE_GLOBAL";
else
return "NOT SUPPORTED Standby Type ";
}
std::string getStandbyMode(zes_standby_promo_mode_t standbyMode) {
if (standbyMode == ZES_STANDBY_PROMO_MODE_DEFAULT)
return "ZES_STANDBY_PROMO_MODE_DEFAULT";
else if (standbyMode == ZES_STANDBY_PROMO_MODE_NEVER)
return "ZES_STANDBY_PROMO_MODE_NEVER";
else
return "NOT SUPPORTED Standby Type ";
}
void testSysmanStandby(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Standby tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumStandbyDomains(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Standby domains" << std::endl;
return;
}
std::vector<zes_standby_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumStandbyDomains(device, &count, handles.data()));
for (auto handle : handles) {
zes_standby_properties_t standbyProperties = {};
zes_standby_promo_mode_t standbyMode = ZES_STANDBY_PROMO_MODE_FORCE_UINT32;
VALIDATECALL(zesStandbyGetProperties(handle, &standbyProperties));
if (verbose) {
std::cout << "standbyProperties.type = " << getStandbyType(standbyProperties.type) << std::endl;
if (standbyProperties.onSubdevice) {
std::cout << "standbyProperties.subdeviceId = " << standbyProperties.subdeviceId << std::endl;
}
}
VALIDATECALL(zesStandbyGetMode(handle, &standbyMode));
if (verbose) {
std::cout << "standbyMode.type = " << getStandbyMode(standbyMode) << std::endl;
}
if (iamroot) {
std::cout << "Setting Standby Mode Default" << std::endl;
VALIDATECALL(zesStandbySetMode(handle, ZES_STANDBY_PROMO_MODE_DEFAULT));
std::cout << "Setting Standby Mode Never" << std::endl;
VALIDATECALL(zesStandbySetMode(handle, ZES_STANDBY_PROMO_MODE_NEVER));
// Restore the original mode after the test.
std::cout << "Restore Standby Mode" << std::endl;
VALIDATECALL(zesStandbyGetMode(handle, &standbyMode));
} else {
std::cout << "Not running as Root. Skipping zetSysmanStandbySetMode test." << std::endl;
}
}
}
std::string getEngineType(zes_engine_group_t engineGroup) {
if (engineGroup == ZES_ENGINE_GROUP_COMPUTE_SINGLE)
return "ZES_ENGINE_GROUP_COMPUTE_SINGLE";
else if (engineGroup == ZES_ENGINE_GROUP_RENDER_SINGLE)
return "ZES_ENGINE_GROUP_RENDER_SINGLE";
else if (engineGroup == ZES_ENGINE_GROUP_MEDIA_DECODE_SINGLE)
return "ZES_ENGINE_GROUP_MEDIA_DECODE_SINGLE";
else if (engineGroup == ZES_ENGINE_GROUP_MEDIA_ENCODE_SINGLE)
return "ZES_ENGINE_GROUP_MEDIA_ENCODE_SINGLE";
else if (engineGroup == ZES_ENGINE_GROUP_COPY_SINGLE)
return "ZES_ENGINE_GROUP_COPY_SINGLE";
else
return "NOT SUPPORTED MODE Engine avalialbe";
}
void testSysmanEngine(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Engine tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumEngineGroups(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Engine domains" << std::endl;
return;
}
std::vector<zes_engine_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumEngineGroups(device, &count, handles.data()));
for (auto handle : handles) {
zes_engine_properties_t engineProperties = {};
zes_engine_stats_t engineStats = {};
VALIDATECALL(zesEngineGetProperties(handle, &engineProperties));
if (verbose) {
std::cout << "Engine Type = " << getEngineType(engineProperties.type) << std::endl;
if (engineProperties.onSubdevice) {
std::cout << "Subdevice Id = " << engineProperties.subdeviceId << std::endl;
}
}
VALIDATECALL(zesEngineGetActivity(handle, &engineStats));
if (verbose) {
std::cout << "Active Time = " << engineStats.activeTime << std::endl;
std::cout << "Timestamp = " << engineStats.timestamp << std::endl;
}
}
}
std::string getSchedulerModeName(zes_sched_mode_t mode) {
if (mode == ZES_SCHED_MODE_TIMEOUT)
return "ZES_SCHED_MODE_TIMEOUT";
else if (mode == ZES_SCHED_MODE_TIMESLICE)
return "ZES_SCHED_MODE_TIMESLICE";
else if (mode == ZES_SCHED_MODE_EXCLUSIVE)
return "ZES_SCHED_MODE_EXCLUSIVE";
else if (mode == ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG)
return "ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG";
else
return "NOT SUPPORTED MODE SET";
}
void testSysmanScheduler(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Scheduler tests ---- " << std::endl;
bool iamroot = (geteuid() == 0);
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumSchedulers(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve scheduler domains" << std::endl;
return;
}
std::vector<zes_sched_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumSchedulers(device, &count, handles.data()));
for (auto handle : handles) {
zes_sched_mode_t currentMode = {};
VALIDATECALL(zesSchedulerGetCurrentMode(handle, &currentMode));
if (verbose) {
std::cout << "Current Mode = " << getSchedulerModeName(currentMode) << std::endl;
}
zes_sched_timeout_properties_t timeoutProperties = {};
zes_sched_timeslice_properties_t timesliceProperties = {};
VALIDATECALL(zesSchedulerGetTimeoutModeProperties(handle, false, &timeoutProperties));
if (verbose) {
std::cout << "Timeout Mode Watchdog Timeout = " << timeoutProperties.watchdogTimeout << std::endl;
}
VALIDATECALL(zesSchedulerGetTimesliceModeProperties(handle, false, &timesliceProperties));
if (verbose) {
std::cout << "Timeslice Mode Interval = " << timesliceProperties.interval << std::endl;
std::cout << "Timeslice Mode Yield Timeout = " << timesliceProperties.yieldTimeout << std::endl;
}
ze_bool_t needReload = 0;
if (iamroot) {
std::cout << "Setting Scheduler Timeout Mode" << std::endl;
VALIDATECALL(zesSchedulerSetTimeoutMode(handle, &timeoutProperties, &needReload));
std::cout << "Setting Scheduler TimeSlice Mode" << std::endl;
VALIDATECALL(zesSchedulerSetTimesliceMode(handle, &timesliceProperties, &needReload));
std::cout << "Setting Scheduler Exclusive Mode" << std::endl;
VALIDATECALL(zesSchedulerSetExclusiveMode(handle, &needReload));
std::cout << "Restoring Scheduler Mode" << std::endl;
// Restore the original mode after the test.
if (currentMode == ZES_SCHED_MODE_TIMEOUT) {
VALIDATECALL(zesSchedulerSetTimeoutMode(handle, &timeoutProperties, &needReload));
} else if (currentMode == ZES_SCHED_MODE_TIMESLICE) {
VALIDATECALL(zesSchedulerSetTimesliceMode(handle, &timesliceProperties, &needReload));
} else if (currentMode == ZES_SCHED_MODE_EXCLUSIVE) {
VALIDATECALL(zesSchedulerSetExclusiveMode(handle, &needReload));
}
} else {
std::cout << "Not running as Root. Skipping zetSysmanSchedulerSetTimeoutMode test." << std::endl;
std::cout << "Not running as Root. Skipping zetSysmanSchedulerSetTimesliceMode test." << std::endl;
std::cout << "Not running as Root. Skipping zetSysmanSchedulerSetExclusiveMode test." << std::endl;
}
}
}
std::string getMemoryType(zes_mem_type_t memType) {
if (memType == ZES_MEM_TYPE_HBM) {
return "ZES_MEM_TYPE_HBM";
} else if (memType == ZES_MEM_TYPE_DDR) {
return "ZES_MEM_TYPE_DDR";
} else if (memType == ZES_MEM_TYPE_DDR3) {
return "ZES_MEM_TYPE_DDR3";
} else if (memType == ZES_MEM_TYPE_DDR4) {
return "ZES_MEM_TYPE_DDR4";
} else if (memType == ZES_MEM_TYPE_DDR5) {
return "ZES_MEM_TYPE_DDR5";
} else if (memType == ZES_MEM_TYPE_LPDDR) {
return "ZES_MEM_TYPE_LPDDR";
} else if (memType == ZES_MEM_TYPE_LPDDR3) {
return "ZES_MEM_TYPE_LPDDR3";
} else if (memType == ZES_MEM_TYPE_LPDDR4) {
return "ZES_MEM_TYPE_LPDDR4";
} else if (memType == ZES_MEM_TYPE_LPDDR5) {
return "ZES_MEM_TYPE_LPDDR5";
} else if (memType == ZES_MEM_TYPE_SRAM) {
return "ZES_MEM_TYPE_SRAM";
} else if (memType == ZES_MEM_TYPE_L1) {
return "ZES_MEM_TYPE_L1";
} else if (memType == ZES_MEM_TYPE_L3) {
return "ZES_MEM_TYPE_L3";
} else if (memType == ZES_MEM_TYPE_GRF) {
return "ZES_MEM_TYPE_GRF";
} else if (memType == ZES_MEM_TYPE_SLM) {
return "ZES_MEM_TYPE_SLM";
} else {
return "NOT SUPPORTED MEMORY TYPE SET";
}
}
std::string getMemoryHealth(zes_mem_health_t memHealth) {
if (memHealth == ZES_MEM_HEALTH_UNKNOWN) {
return "ZES_MEM_HEALTH_UNKNOWN";
} else if (memHealth == ZES_MEM_HEALTH_OK) {
return "ZES_MEM_HEALTH_OK";
} else if (memHealth == ZES_MEM_HEALTH_DEGRADED) {
return "ZES_MEM_HEALTH_DEGRADED";
} else if (memHealth == ZES_MEM_HEALTH_CRITICAL) {
return "ZES_MEM_HEALTH_CRITICAL";
} else if (memHealth == ZES_MEM_HEALTH_REPLACE) {
return "ZES_MEM_HEALTH_REPLACE";
} else {
return "NOT SUPPORTED MEMORY HEALTH SET";
}
}
void testSysmanMemory(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Memory tests ---- " << std::endl;
uint32_t count = 0;
VALIDATECALL(zesDeviceEnumMemoryModules(device, &count, nullptr));
if (count == 0) {
std::cout << "Could not retrieve Memory domains" << std::endl;
return;
}
std::vector<zes_mem_handle_t> handles(count, nullptr);
VALIDATECALL(zesDeviceEnumMemoryModules(device, &count, handles.data()));
for (auto handle : handles) {
zes_mem_properties_t memoryProperties = {};
zes_mem_state_t memoryState = {};
zes_mem_bandwidth_t memoryBandwidth = {};
VALIDATECALL(zesMemoryGetProperties(handle, &memoryProperties));
if (verbose) {
std::cout << "Memory Type = " << getMemoryType(memoryProperties.type) << std::endl;
std::cout << "On Subdevice = " << memoryProperties.onSubdevice << std::endl;
std::cout << "Subdevice Id = " << memoryProperties.subdeviceId << std::endl;
std::cout << "Memory Size = " << memoryProperties.physicalSize << std::endl;
}
VALIDATECALL(zesMemoryGetState(handle, &memoryState));
if (verbose) {
std::cout << "Memory Health = " << getMemoryHealth(memoryState.health) << std::endl;
std::cout << "The total allocatable memory in bytes = " << memoryState.size << std::endl;
std::cout << "The free memory in bytes = " << memoryState.free << std::endl;
}
VALIDATECALL(zesMemoryGetBandwidth(handle, &memoryBandwidth));
if (verbose) {
std::cout << "Memory Read Counter = " << memoryBandwidth.readCounter << std::endl;
std::cout << "Memory Write Counter = " << memoryBandwidth.writeCounter << std::endl;
std::cout << "Memory Maximum Bandwidth = " << memoryBandwidth.maxBandwidth << std::endl;
std::cout << "Memory Timestamp = " << memoryBandwidth.timestamp << std::endl;
}
}
}
void testSysmanGlobalOperations(ze_device_handle_t &device) {
std::cout << std::endl
<< " ---- Global Operations tests ---- " << std::endl;
zes_device_properties_t properties = {};
VALIDATECALL(zesDeviceGetProperties(device, &properties));
if (verbose) {
std::cout << "properties.numSubdevices = " << properties.numSubdevices << std::endl;
std::cout << "properties.serialNumber = " << properties.serialNumber << std::endl;
std::cout << "properties.boardNumber = " << properties.boardNumber << std::endl;
std::cout << "properties.brandName = " << properties.brandName << std::endl;
std::cout << "properties.modelName = " << properties.modelName << std::endl;
std::cout << "properties.vendorName = " << properties.vendorName << std::endl;
std::cout << "properties.driverVersion= " << properties.driverVersion << std::endl;
}
uint32_t count = 0;
VALIDATECALL(zesDeviceProcessesGetState(device, &count, nullptr));
std::vector<zes_process_state_t> processes(count);
VALIDATECALL(zesDeviceProcessesGetState(device, &count, processes.data()));
if (verbose) {
for (auto process : processes) {
std::cout << "processes.processId = " << process.processId << std::endl;
std::cout << "processes.memSize = " << process.memSize << std::endl;
std::cout << "processes.sharedSize = " << process.sharedSize << std::endl;
std::cout << "processes.engines = " << process.engines << std::endl;
}
}
}
bool validateGetenv(const char *name) {
const char *env = getenv(name);
if ((nullptr == env) || (0 == strcmp("0", env)))
return false;
return (0 == strcmp("1", env));
}
int main(int argc, char *argv[]) {
std::vector<ze_device_handle_t> devices;
if (!validateGetenv("ZES_ENABLE_SYSMAN")) {
std::cout << "Must set environment variable ZES_ENABLE_SYSMAN=1" << std::endl;
exit(0);
}
getDeviceHandles(devices, argc, argv);
int opt;
static struct option long_opts[] = {
{"help", no_argument, nullptr, 'h'},
{"pci", no_argument, nullptr, 'p'},
{"frequency", no_argument, nullptr, 'f'},
{"standby", no_argument, nullptr, 's'},
{"engine", no_argument, nullptr, 'e'},
{"scheduler", no_argument, nullptr, 'c'},
{"temperature", no_argument, nullptr, 't'},
{"power", no_argument, nullptr, 'o'},
{"global", no_argument, nullptr, 'g'},
{"memory", no_argument, nullptr, 'm'},
{nullptr, no_argument, nullptr, 0},
};
while ((opt = getopt_long(argc, argv, "hpfsectogm", long_opts, nullptr)) != -1) {
switch (opt) {
case 'h':
usage();
exit(0);
break;
case 'p':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanPci(device);
});
break;
case 'f':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanFrequency(device);
});
break;
case 's':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanStandby(device);
});
break;
case 'e':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanEngine(device);
});
break;
case 'c':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanScheduler(device);
});
break;
case 't':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanTemperature(device);
});
break;
case 'o':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanPower(device);
});
break;
case 'g':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanGlobalOperations(device);
});
break;
case 'm':
std::for_each(devices.begin(), devices.end(), [&](auto device) {
testSysmanMemory(device);
});
break;
default:
usage();
exit(0);
}
}
return 0;
}