Enhance HeapAllocator with custom alignments

Related-To: NEO-5750
Signed-off-by: Maciej Dziuban <maciej.dziuban@intel.com>
This commit is contained in:
Maciej Dziuban 2021-04-26 11:30:02 +00:00 committed by Compute-Runtime-Automation
parent 0285bab7cf
commit 32025efafb
2 changed files with 394 additions and 10 deletions

View File

@ -40,6 +40,11 @@ class HeapAllocator {
} }
uint64_t allocate(size_t &sizeToAllocate) { uint64_t allocate(size_t &sizeToAllocate) {
return allocateWithCustomAlignment(sizeToAllocate, this->allocationAlignment);
}
uint64_t allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
UNRECOVERABLE_IF(alignment % allocationAlignment != 0); // custom alignment have to be a multiple of allocator alignment
sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment); sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment);
std::lock_guard<std::mutex> lock(mtx); std::lock_guard<std::mutex> lock(mtx);
@ -53,16 +58,26 @@ class HeapAllocator {
for (;;) { for (;;) {
size_t sizeOfFreedChunk = 0; size_t sizeOfFreedChunk = 0;
uint64_t ptrReturn = getFromFreedChunks(sizeToAllocate, freedChunks, sizeOfFreedChunk); uint64_t ptrReturn = getFromFreedChunks(sizeToAllocate, freedChunks, sizeOfFreedChunk, alignment);
if (ptrReturn == 0llu) { if (ptrReturn == 0llu) {
if (sizeToAllocate > sizeThreshold) { if (sizeToAllocate > sizeThreshold) {
if (pLeftBound + sizeToAllocate <= pRightBound) { const uint64_t misalignment = alignUp(pLeftBound, alignment) - pLeftBound;
if (pLeftBound + misalignment + sizeToAllocate <= pRightBound) {
if (misalignment) {
storeInFreedChunks(pLeftBound, static_cast<size_t>(misalignment), freedChunks);
pLeftBound += misalignment;
}
ptrReturn = pLeftBound; ptrReturn = pLeftBound;
pLeftBound += sizeToAllocate; pLeftBound += sizeToAllocate;
} }
} else { } else {
if (pRightBound - sizeToAllocate >= pLeftBound) { const uint64_t misalignment = pRightBound - alignDown(pRightBound, alignment);
if (pLeftBound + sizeToAllocate + misalignment <= pRightBound) {
if (misalignment) {
pRightBound -= misalignment;
storeInFreedChunks(pRightBound, static_cast<size_t>(misalignment), freedChunks);
}
pRightBound -= sizeToAllocate; pRightBound -= sizeToAllocate;
ptrReturn = pRightBound; ptrReturn = pRightBound;
} }
@ -76,6 +91,7 @@ class HeapAllocator {
} else { } else {
availableSize -= sizeToAllocate; availableSize -= sizeToAllocate;
} }
DEBUG_BREAK_IF(!isAligned(ptrReturn, alignment));
return ptrReturn; return ptrReturn;
} }
@ -133,13 +149,18 @@ class HeapAllocator {
std::vector<HeapChunk> freedChunksBig; std::vector<HeapChunk> freedChunksBig;
std::mutex mtx; std::mutex mtx;
uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk) { uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk, size_t requiredAlignment) {
size_t elements = freedChunks.size(); size_t elements = freedChunks.size();
size_t bestFitIndex = -1; size_t bestFitIndex = -1;
size_t bestFitSize = 0; size_t bestFitSize = 0;
sizeOfFreedChunk = 0; sizeOfFreedChunk = 0;
for (size_t i = 0; i < elements; i++) { for (size_t i = 0; i < elements; i++) {
const bool chunkAligned = isAligned(freedChunks[i].ptr, requiredAlignment);
if (!chunkAligned) {
continue;
}
if (freedChunks[i].size == size) { if (freedChunks[i].size == size) {
auto ptr = freedChunks[i].ptr; auto ptr = freedChunks[i].ptr;
freedChunks.erase(freedChunks.begin() + i); freedChunks.erase(freedChunks.begin() + i);

View File

@ -31,9 +31,9 @@ class HeapAllocatorUnderTest : public HeapAllocator {
size_t getThresholdSize() const { return this->sizeThreshold; } size_t getThresholdSize() const { return this->sizeThreshold; }
using HeapAllocator::defragment; using HeapAllocator::defragment;
uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &vec) { uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &vec, size_t requiredAlignment) {
size_t sizeOfFreedChunk; size_t sizeOfFreedChunk;
return HeapAllocator::getFromFreedChunks(size, vec, sizeOfFreedChunk); return HeapAllocator::getFromFreedChunks(size, vec, sizeOfFreedChunk, requiredAlignment);
} }
void storeInFreedChunks(uint64_t ptr, size_t size, std::vector<HeapChunk> &vec) { return HeapAllocator::storeInFreedChunks(ptr, size, vec); } void storeInFreedChunks(uint64_t ptr, size_t size, std::vector<HeapChunk> &vec) { return HeapAllocator::storeInFreedChunks(ptr, size, vec); }
@ -84,7 +84,7 @@ TEST(HeapAllocatorTest, GivenExactSizeChunkInFreedChunksWhenGetIsCalledThenChunk
size_t sizeFreed = MemoryConstants::pageSize * 2; size_t sizeFreed = MemoryConstants::pageSize * 2;
freedChunks.emplace_back(ptrFreed, sizeFreed); freedChunks.emplace_back(ptrFreed, sizeFreed);
auto ptrReturned = heapAllocator->getFromFreedChunks(sizeFreed, freedChunks); auto ptrReturned = heapAllocator->getFromFreedChunks(sizeFreed, freedChunks, allocationAlignment);
EXPECT_EQ(ptrFreed, ptrReturned); // ptr returned is the one that was stored EXPECT_EQ(ptrFreed, ptrReturned); // ptr returned is the one that was stored
EXPECT_EQ(0u, freedChunks.size()); // entry in freed container is removed EXPECT_EQ(0u, freedChunks.size()); // entry in freed container is removed
@ -107,7 +107,7 @@ TEST(HeapAllocatorTest, GivenOnlySmallerSizeChunksInFreedChunksWhenGetIsCalledTh
EXPECT_EQ(7u, freedChunks.size()); EXPECT_EQ(7u, freedChunks.size());
auto ptrReturned = heapAllocator->getFromFreedChunks(4 * 4096, freedChunks); auto ptrReturned = heapAllocator->getFromFreedChunks(4 * 4096, freedChunks, allocationAlignment);
EXPECT_EQ(0llu, ptrReturned); EXPECT_EQ(0llu, ptrReturned);
EXPECT_EQ(7u, freedChunks.size()); EXPECT_EQ(7u, freedChunks.size());
@ -138,7 +138,7 @@ TEST(HeapAllocatorTest, GivenOnlyBiggerSizeChunksInFreedChunksWhenGetIsCalledThe
EXPECT_EQ(5u, freedChunks.size()); EXPECT_EQ(5u, freedChunks.size());
auto ptrReturned = heapAllocator->getFromFreedChunks(3 * 4096, freedChunks); auto ptrReturned = heapAllocator->getFromFreedChunks(3 * 4096, freedChunks, allocationAlignment);
EXPECT_EQ(ptrExpected, ptrReturned); EXPECT_EQ(ptrExpected, ptrReturned);
EXPECT_EQ(4u, freedChunks.size()); EXPECT_EQ(4u, freedChunks.size());
@ -166,7 +166,7 @@ TEST(HeapAllocatorTest, GivenOnlyMoreThanTwiceBiggerSizeChunksInFreedChunksWhenG
EXPECT_EQ(3u, freedChunks.size()); EXPECT_EQ(3u, freedChunks.size());
auto ptrReturned = heapAllocator->getFromFreedChunks(requestedSize, freedChunks); auto ptrReturned = heapAllocator->getFromFreedChunks(requestedSize, freedChunks, allocationAlignment);
EXPECT_EQ(ptrExpected, ptrReturned); EXPECT_EQ(ptrExpected, ptrReturned);
EXPECT_EQ(3u, freedChunks.size()); EXPECT_EQ(3u, freedChunks.size());
@ -1000,3 +1000,366 @@ TEST(HeapAllocatorTest, Given10SmallAllocationsWhenMergedToBigAllocatedAsSmallNo
EXPECT_EQ(0u, freedChunksSmall.size()); EXPECT_EQ(0u, freedChunksSmall.size());
EXPECT_EQ(0u, freedChunksBig.size()); EXPECT_EQ(0u, freedChunksBig.size());
} }
TEST(HeapAllocatorTest, givenAlignedBoundWhenAllocatingMemoryWithCustomAlignmentFromLeftThenReturnAllocations) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
const size_t customAlignment = 32 * MemoryConstants::pageSize;
size_t ptrSize = 32 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + heapSize, heapAllocator.getRightBound());
EXPECT_EQ(heapBase + ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(32 * MemoryConstants::pageSize, ptrSize);
EXPECT_EQ(heapBase, ptr);
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
ptrSize = 32 * MemoryConstants::pageSize;
ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + heapSize, heapAllocator.getRightBound());
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(32 * MemoryConstants::pageSize, ptrSize);
EXPECT_EQ(heapBase + ptrSize, ptr);
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
}
TEST(HeapAllocatorTest, givenAlignedBoundWhenAllocatingMemoryWithCustomAlignmentFromRightThenReturnAllocations) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
const size_t customAlignment = 8 * MemoryConstants::pageSize;
size_t ptrSize = 8 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + heapSize - ptrSize, heapAllocator.getRightBound());
EXPECT_EQ(heapBase, heapAllocator.getLeftBound());
EXPECT_EQ(8 * MemoryConstants::pageSize, ptrSize);
EXPECT_EQ(heapBase + heapSize - ptrSize, ptr);
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize, heapAllocator.getavailableSize());
ptrSize = 8 * MemoryConstants::pageSize;
ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + heapSize - 2 * ptrSize, heapAllocator.getRightBound());
EXPECT_EQ(heapBase, heapAllocator.getLeftBound());
EXPECT_EQ(8 * MemoryConstants::pageSize, ptrSize);
EXPECT_EQ(heapBase + heapSize - 2 * ptrSize, ptr);
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - 2 * ptrSize, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenUnalignedBoundWhenAllocatingWithCustomAlignmentFromLeftThenAlignBoundBeforeAllocation) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, 0);
// Misalign the left bound
const size_t misaligningAllocationSize = 2 * MemoryConstants::pageSize;
size_t ptrSize = misaligningAllocationSize;
uint64_t ptr = heapAllocator.allocate(ptrSize);
EXPECT_EQ(heapBase, ptr);
EXPECT_EQ(misaligningAllocationSize, ptrSize);
EXPECT_EQ(heapBase + ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(heapSize - misaligningAllocationSize, heapAllocator.getavailableSize());
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
// Allocate with alignment
const size_t customAlignment = 8 * MemoryConstants::pageSize;
const size_t alignedAllocationSize = 16 * MemoryConstants::pageSize;
ptrSize = alignedAllocationSize;
ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(alignedAllocationSize, ptrSize);
EXPECT_EQ(heapBase + customAlignment, ptr);
EXPECT_EQ(heapBase + customAlignment + alignedAllocationSize, heapAllocator.getLeftBound());
EXPECT_EQ(heapSize - misaligningAllocationSize - alignedAllocationSize, heapAllocator.getavailableSize());
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
// Try to use w hole, we just created by aligning
const size_t additionalAllocationSize = customAlignment - misaligningAllocationSize;
ptrSize = additionalAllocationSize;
ptr = heapAllocator.allocate(ptrSize);
EXPECT_EQ(heapBase + misaligningAllocationSize, ptr);
EXPECT_EQ(additionalAllocationSize, ptrSize);
EXPECT_EQ(heapBase + customAlignment + alignedAllocationSize, heapAllocator.getLeftBound());
EXPECT_EQ(heapSize - customAlignment - alignedAllocationSize, heapAllocator.getavailableSize());
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
}
TEST(HeapAllocatorTest, givenUnalignedBoundWhenAllocatingWithCustomAlignmentFromRightThenAlignBoundBeforeAllocation) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, std::numeric_limits<size_t>::max());
// Misalign the right bound
const size_t misaligningAllocationSize = 2 * MemoryConstants::pageSize;
size_t ptrSize = misaligningAllocationSize;
uint64_t ptr = heapAllocator.allocate(ptrSize);
EXPECT_EQ(misaligningAllocationSize, ptrSize);
EXPECT_EQ(heapBase + heapSize - misaligningAllocationSize, ptr);
EXPECT_EQ(heapBase + heapSize - misaligningAllocationSize, heapAllocator.getRightBound());
EXPECT_EQ(heapSize - misaligningAllocationSize, heapAllocator.getavailableSize());
EXPECT_EQ(0u, heapAllocator.getFreedChunksSmall().size());
// Allocate with alignment
const size_t customAlignment = 8 * MemoryConstants::pageSize;
const size_t alignedAllocationSize = 16 * MemoryConstants::pageSize;
ptrSize = alignedAllocationSize;
ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(alignedAllocationSize, ptrSize);
EXPECT_EQ(heapBase + heapSize - customAlignment - alignedAllocationSize, ptr);
EXPECT_EQ(heapBase + heapSize - customAlignment - alignedAllocationSize, heapAllocator.getRightBound());
EXPECT_EQ(heapSize - misaligningAllocationSize - alignedAllocationSize, heapAllocator.getavailableSize());
EXPECT_EQ(1u, heapAllocator.getFreedChunksSmall().size());
// Try to use w hole, we just created by aligning
const size_t additionalAllocationSize = customAlignment - misaligningAllocationSize;
ptrSize = additionalAllocationSize;
ptr = heapAllocator.allocate(ptrSize);
EXPECT_EQ(heapBase + heapSize - customAlignment, ptr);
EXPECT_EQ(additionalAllocationSize, ptrSize);
EXPECT_EQ(heapBase + heapSize - customAlignment - alignedAllocationSize, heapAllocator.getRightBound());
EXPECT_EQ(heapSize - customAlignment - alignedAllocationSize, heapAllocator.getavailableSize());
EXPECT_EQ(0u, heapAllocator.getFreedChunksSmall().size());
}
TEST(HeapAllocatorTest, givenNoSpaceLeftWhenAllocatingWithCustomAlignmentFromLeftThenReturnZero) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, 0);
const size_t customAlignment = 256 * MemoryConstants::pageSize;
const size_t alignedAllocationSize = 256 * MemoryConstants::pageSize;
size_t ptrSize = alignedAllocationSize;
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + alignedAllocationSize, heapAllocator.getLeftBound());
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + 2 * alignedAllocationSize, heapAllocator.getLeftBound());
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + 3 * alignedAllocationSize, heapAllocator.getLeftBound());
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + 4 * alignedAllocationSize, heapAllocator.getLeftBound());
EXPECT_EQ(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + 4 * alignedAllocationSize, heapAllocator.getLeftBound());
}
TEST(HeapAllocatorTest, givenNoSpaceLeftWhenAllocatingWithCustomAlignmentFromRightThenReturnZero) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, std::numeric_limits<size_t>::max());
const size_t customAlignment = 256 * MemoryConstants::pageSize;
const size_t alignedAllocationSize = 256 * MemoryConstants::pageSize;
size_t ptrSize = alignedAllocationSize;
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + heapSize - alignedAllocationSize, heapAllocator.getRightBound());
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + heapSize - 2 * alignedAllocationSize, heapAllocator.getRightBound());
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + heapSize - 3 * alignedAllocationSize, heapAllocator.getRightBound());
EXPECT_NE(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + heapSize - 4 * alignedAllocationSize, heapAllocator.getRightBound());
EXPECT_EQ(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment));
EXPECT_EQ(heapBase + heapSize - 4 * alignedAllocationSize, heapAllocator.getRightBound());
}
TEST(HeapAllocatorTest, givenNoSpaceLeftAfterAligningWhenAllocatingWithCustomAlignmentFromLeftThenReturnZero) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
const size_t alignedAllocationSize = 64 * MemoryConstants::pageSize;
// First create a state, where we have desired size free, but not aligned
size_t ptrSize = 16 * MemoryConstants::pageSize;
EXPECT_NE(0ull, heapAllocator.allocate(ptrSize));
EXPECT_EQ(heapBase + heapSize - 16 * MemoryConstants::pageSize, heapAllocator.getRightBound());
ptrSize = heapSize - alignedAllocationSize - ptrSize;
EXPECT_NE(0ull, heapAllocator.allocate(ptrSize));
EXPECT_EQ(heapBase + ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(alignedAllocationSize, heapAllocator.getavailableSize());
// Aligned allocation should fail
ptrSize = alignedAllocationSize;
EXPECT_EQ(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, ptrSize));
EXPECT_EQ(alignedAllocationSize, heapAllocator.getavailableSize());
// Unaligned allocation can be done
ptrSize = alignedAllocationSize;
EXPECT_NE(0ull, heapAllocator.allocate(ptrSize));
EXPECT_EQ(0ull, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenNoSpaceLeftAfterAligningWhenAllocatingWithCustomAlignmentFromRightThenReturnZero) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
const size_t alignedAllocationSize = 8 * MemoryConstants::pageSize;
// First create a state, where we have desired size free, but not aligned
size_t ptrSize = 4 * MemoryConstants::pageSize;
EXPECT_NE(0ull, heapAllocator.allocate(ptrSize));
EXPECT_EQ(heapBase + heapSize - 4 * MemoryConstants::pageSize, heapAllocator.getRightBound());
ptrSize = heapSize - alignedAllocationSize - ptrSize;
EXPECT_NE(0ull, heapAllocator.allocate(ptrSize));
EXPECT_EQ(heapBase + ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(alignedAllocationSize, heapAllocator.getavailableSize());
// Aligned allocation should fail
ptrSize = alignedAllocationSize;
EXPECT_EQ(0ull, heapAllocator.allocateWithCustomAlignment(ptrSize, ptrSize));
EXPECT_EQ(alignedAllocationSize, heapAllocator.getavailableSize());
// Unaligned allocation can be done
ptrSize = alignedAllocationSize;
EXPECT_NE(0ull, heapAllocator.allocate(ptrSize));
EXPECT_EQ(0ull, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenSizeNotAlignedToCustomAlignmentWhenAllocatingMemoryWithCustomAlignmentThenDoNotAlignToCustomAlignment) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
const size_t customAlignment = 32 * MemoryConstants::pageSize;
size_t ptrSize = 49 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + heapSize, heapAllocator.getRightBound());
EXPECT_EQ(heapBase + ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(49 * MemoryConstants::pageSize, ptrSize);
EXPECT_EQ(heapBase, ptr);
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenSizeNotAlignedToBaseAllocatorAlignmentWhenAllocatingMemoryWithCustomAlignmentThenDoNotAlignToBaseAlignment) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, 0);
const size_t customAlignment = 32 * MemoryConstants::pageSize;
size_t ptrSize = 1;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + heapSize, heapAllocator.getRightBound());
EXPECT_EQ(heapBase + ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(MemoryConstants::pageSize, ptrSize);
EXPECT_EQ(heapBase, ptr);
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenAlignedFreedChunkAvailableWhenAllocatingMemoryWithCustomAlignmentFromLeftThenReturnUseFreedChunk) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
// First create an aligned freed chunk
size_t ptrSize = 32 * MemoryConstants::pageSize;
const uint64_t freeChunkAddress = heapAllocator.allocate(ptrSize);
heapAllocator.allocate(ptrSize);
heapAllocator.free(freeChunkAddress, ptrSize);
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize, heapAllocator.getavailableSize());
// Allocate with custom alignment using the freed chunk
const size_t customAlignment = 32 * MemoryConstants::pageSize;
ptrSize = 32 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(freeChunkAddress, ptr);
EXPECT_EQ(heapSize - 2 * ptrSize, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenAlignedFreedChunkSlightlyBiggerThanAllocationeWhenAllocatingMemoryWithCustomAlignmentFromLeftThenUseEntireFreedChunk) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
// First create an aligned freed chunk
size_t ptrSize = 48 * MemoryConstants::pageSize;
const uint64_t freeChunkAddress = heapAllocator.allocate(ptrSize);
heapAllocator.allocate(ptrSize);
heapAllocator.free(freeChunkAddress, ptrSize);
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize, heapAllocator.getavailableSize());
// Allocate with custom alignment using the freed chunk
const size_t customAlignment = 32 * MemoryConstants::pageSize;
size_t ptrSize2 = 32 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize2, customAlignment);
EXPECT_EQ(ptrSize, ptrSize2);
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(0u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(freeChunkAddress, ptr);
EXPECT_EQ(heapSize - 2 * ptrSize, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenAlignedFreedChunkTwoTimesBiggerThanAllocationeWhenAllocatingMemoryWithCustomAlignmentFromLeftThenUseAPortionOfTheFreedChunk) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, sizeThreshold);
// First create an aligned freed chunk
size_t ptrSize = 64 * MemoryConstants::pageSize;
const uint64_t freeChunkAddress = heapAllocator.allocate(ptrSize);
heapAllocator.allocate(ptrSize);
heapAllocator.free(freeChunkAddress, ptrSize);
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize, heapAllocator.getavailableSize());
// Allocate with custom alignment using the freed chunk
const size_t customAlignment = 32 * MemoryConstants::pageSize;
size_t ptrSize2 = 32 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize2, customAlignment);
EXPECT_EQ(32 * MemoryConstants::pageSize, ptrSize2);
EXPECT_EQ(heapBase + 2 * ptrSize, heapAllocator.getLeftBound());
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(freeChunkAddress + 32 * MemoryConstants::pageSize, ptr);
EXPECT_EQ(heapSize - ptrSize - ptrSize2, heapAllocator.getavailableSize());
}
TEST(HeapAllocatorTest, givenUnalignedFreedChunkAvailableWhenAllocatingMemoryWithCustomAlignmentFromLeftThenDoNotUseFreedChunk) {
const uint64_t heapBase = 0x100000llu;
const size_t heapSize = 1024u * 4096u;
HeapAllocatorUnderTest heapAllocator(heapBase, heapSize, allocationAlignment, 1);
// First create an unaligned freed chunk
size_t ptrSize = MemoryConstants::pageSize;
heapAllocator.allocate(ptrSize);
ptrSize = 32 * MemoryConstants::pageSize;
const uint64_t freeChunkAddress = heapAllocator.allocate(ptrSize);
heapAllocator.allocate(ptrSize);
heapAllocator.free(freeChunkAddress, ptrSize);
EXPECT_EQ(heapBase + 65 * MemoryConstants::pageSize, heapAllocator.getLeftBound());
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - ptrSize - MemoryConstants::pageSize, heapAllocator.getavailableSize());
// Allocate with custom alignment, the freed chunk cannot be used
const size_t customAlignment = 32 * MemoryConstants::pageSize;
ptrSize = 32 * MemoryConstants::pageSize;
uint64_t ptr = heapAllocator.allocateWithCustomAlignment(ptrSize, customAlignment);
EXPECT_EQ(heapBase + 128 * MemoryConstants::pageSize, heapAllocator.getLeftBound());
EXPECT_EQ(heapBase + 96 * MemoryConstants::pageSize, ptr);
EXPECT_EQ(2u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - 2 * ptrSize - MemoryConstants::pageSize, heapAllocator.getavailableSize());
// Allocate without custom alignment, the freed chunk can be used
ptrSize = 32 * MemoryConstants::pageSize;
ptr = heapAllocator.allocate(ptrSize);
EXPECT_EQ(heapBase + 128 * MemoryConstants::pageSize, heapAllocator.getLeftBound());
EXPECT_EQ(freeChunkAddress, ptr);
EXPECT_EQ(1u, heapAllocator.getFreedChunksBig().size());
EXPECT_EQ(heapSize - 3 * ptrSize - MemoryConstants::pageSize, heapAllocator.getavailableSize());
}