feat(zebin): get extended args metadata on clGetKernelArgInfo API call

This commit adds support for retrieving extended args metadata passed in
.kernel_misc_info zeInfo's section on clGetKernelArgInfo call.

Related-To: NEO-7372
Signed-off-by: Kacper Nowak <kacper.nowak@intel.com>
This commit is contained in:
Kacper Nowak 2022-10-25 16:03:15 +00:00 committed by Compute-Runtime-Automation
parent b284b727e9
commit 709e322a4a
7 changed files with 275 additions and 15 deletions

View File

@ -483,6 +483,11 @@ cl_int Kernel::getArgInfo(cl_uint argIndex, cl_kernel_arg_info paramName, size_t
return retVal;
}
program->callPopulateZebinExtendedArgsMetadataOnce(clDevice.getRootDeviceIndex());
if (kernelInfo.kernelDescriptor.explicitArgsExtendedMetadata.empty()) {
return CL_KERNEL_ARG_INFO_NOT_AVAILABLE;
}
const auto &argTraits = args[argIndex].getTraits();
const auto &argMetadata = kernelInfo.kernelDescriptor.explicitArgsExtendedMetadata[argIndex];

View File

@ -6,6 +6,7 @@
*/
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/device_binary_format/zebin_decoder.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/ptr_math.h"
@ -248,6 +249,7 @@ cl_int Program::processProgramInfo(ProgramInfo &src, const ClDevice &clDevice) {
buildInfos[rootDeviceIndex].globalVarTotalSize = 0u;
}
}
buildInfos[rootDeviceIndex].kernelMiscInfoPos = src.kernelMiscInfoPos;
for (auto &kernelInfo : kernelInfoArray) {
cl_int retVal = CL_SUCCESS;
@ -346,4 +348,21 @@ void Program::notifyDebuggerWithDebugData(ClDevice *clDevice) {
}
}
}
void Program::callPopulateZebinExtendedArgsMetadataOnce(uint32_t rootDeviceIndex) {
auto &buildInfo = this->buildInfos[rootDeviceIndex];
auto extractAndDecodeMetadata = [&]() {
auto refBin = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(buildInfo.unpackedDeviceBinary.get()), buildInfo.unpackedDeviceBinarySize);
if (false == NEO::isDeviceBinaryFormat<NEO::DeviceBinaryFormat::Zebin>(refBin)) {
return;
}
std::string errors{}, warnings{};
auto metadataString = extractZeInfoMetadataStringFromZebin(refBin, errors, warnings);
auto decodeError = decodeAndPopulateKernelMiscInfo(buildInfo.kernelMiscInfoPos, buildInfo.kernelInfoArray, metadataString, errors, warnings);
if (NEO::DecodeError::Success != decodeError) {
PRINT_DEBUG_STRING(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr, "Error in decodeAndPopulateKernelMiscInfo: %s\n", errors.c_str());
}
};
std::call_once(extractAndDecodeMetadataOnce, extractAndDecodeMetadata);
}
} // namespace NEO

View File

@ -290,6 +290,7 @@ class Program : public BaseObject<_cl_program> {
void notifyDebuggerWithDebugData(ClDevice *clDevice);
MOCKABLE_VIRTUAL void createDebugZebin(uint32_t rootDeviceIndex);
Debug::Segments getZebinSegments(uint32_t rootDeviceIndex);
void callPopulateZebinExtendedArgsMetadataOnce(uint32_t rootDeviceIndex);
protected:
MOCKABLE_VIRTUAL cl_int createProgramFromBinary(const void *pBinary, size_t binarySize, ClDevice &clDevice);
@ -356,6 +357,7 @@ class Program : public BaseObject<_cl_program> {
std::unique_ptr<char[]> debugData;
size_t debugDataSize = 0U;
size_t kernelMiscInfoPos = std::string::npos;
};
std::vector<BuildInfo> buildInfos;
@ -375,6 +377,8 @@ class Program : public BaseObject<_cl_program> {
uint32_t maxRootDeviceIndex = std::numeric_limits<uint32_t>::max();
std::mutex lockMutex;
uint32_t exposedKernels = 0;
std::once_flag extractAndDecodeMetadataOnce;
};
} // namespace NEO

View File

@ -8,6 +8,7 @@
#include "shared/test/common/fixtures/memory_management_fixture.h"
#include "shared/test/common/helpers/kernel_binary_helper.h"
#include "shared/test/common/test_macros/test.h"
#include <shared/test/common/mocks/mock_modules_zebin.h>
#include "opencl/source/kernel/kernel.h"
#include "opencl/test/unit_test/fixtures/cl_device_fixture.h"
@ -208,3 +209,168 @@ TEST_F(KernelArgInfoTest, GivenParamWhenGettingKernelArgNameThenCorrectValueIsRe
EXPECT_EQ(0, strcmp(paramValue, expectedArgName));
delete[] paramValue;
}
TEST_F(KernelArgInfoTest, givenNonZebinBinaryAndNoExplicitArgsMetadataWhenQueryingArgsInfoThenReturnError) {
constexpr auto mockDeviceBinarySize = 0x10;
uint8_t mockDeviceBinary[mockDeviceBinarySize]{0};
auto &buildInfo = pProgram->buildInfos[rootDeviceIndex];
buildInfo.unpackedDeviceBinary.reset(reinterpret_cast<char *>(mockDeviceBinary));
buildInfo.unpackedDeviceBinarySize = mockDeviceBinarySize;
ASSERT_FALSE(NEO::isDeviceBinaryFormat<NEO::DeviceBinaryFormat::Zebin>(ArrayRef<uint8_t>::fromAny(mockDeviceBinary, mockDeviceBinarySize)));
auto &kernelDescriptor = const_cast<KernelDescriptor &>(pKernel->getDescriptor());
kernelDescriptor.explicitArgsExtendedMetadata.clear();
ASSERT_TRUE(kernelDescriptor.explicitArgsExtendedMetadata.empty());
retVal = pKernel->getArgInfo(
0,
CL_KERNEL_ARG_NAME,
0,
nullptr,
0);
EXPECT_EQ(CL_KERNEL_ARG_INFO_NOT_AVAILABLE, retVal);
buildInfo.unpackedDeviceBinary.release();
}
TEST_F(KernelArgInfoTest, givenZebinBinaryAndErrorOnRetrievingArgsMetadataFromKernelsMiscInfoWhenQueryingArgsInfoThenReturnError) {
ZebinTestData::ValidEmptyProgram zebin;
ASSERT_TRUE(isDeviceBinaryFormat<NEO::DeviceBinaryFormat::Zebin>(ArrayRef<const uint8_t>::fromAny(zebin.storage.data(), zebin.storage.size())));
auto &buildInfo = pProgram->buildInfos[rootDeviceIndex];
buildInfo.unpackedDeviceBinary.reset(reinterpret_cast<char *>(zebin.storage.data()));
buildInfo.unpackedDeviceBinarySize = zebin.storage.size();
ASSERT_EQ(std::string::npos, buildInfo.kernelMiscInfoPos);
auto &kernelDescriptor = const_cast<KernelDescriptor &>(pKernel->getDescriptor());
kernelDescriptor.explicitArgsExtendedMetadata.clear();
ASSERT_TRUE(kernelDescriptor.explicitArgsExtendedMetadata.empty());
retVal = pKernel->getArgInfo(
0,
CL_KERNEL_ARG_NAME,
0,
nullptr,
0);
EXPECT_EQ(CL_KERNEL_ARG_INFO_NOT_AVAILABLE, retVal);
buildInfo.unpackedDeviceBinary.release();
}
TEST_F(KernelArgInfoTest, givenZebinBinaryWithProperKernelsMiscInfoAndNoExplicitArgsMetadataWhenQueryingArgInfoThenRetrieveItFromKernelsMiscInfo) {
std::string zeInfo = R"===('
kernels:
- name: CopyBuffer
execution_env:
simd_size: 32
payload_arguments:
- arg_type: arg_bypointer
offset: 0
size: 0
arg_index: 0
addrmode: stateful
addrspace: global
access_type: readwrite
- arg_type: arg_bypointer
offset: 32
size: 8
arg_index: 0
addrmode: stateless
addrspace: global
access_type: readwrite
- arg_type: enqueued_local_size
offset: 40
size: 12
kernels_misc_info:
- name: CopyBuffer
args_info:
- index: 0
name: a
address_qualifier: __global
access_qualifier: NONE
type_name: 'int*;8'
type_qualifiers: NONE
)===";
std::vector<uint8_t> storage;
MockElfEncoder<> elfEncoder;
auto &elfHeader = elfEncoder.getElfFileHeader();
elfHeader.type = NEO::Elf::ET_ZEBIN_EXE;
elfHeader.machine = pProgram->getExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo()->platform.eProductFamily;
const uint8_t testKernelData[0x10] = {0u};
elfEncoder.appendSection(NEO::Elf::SHT_PROGBITS, NEO::Elf::SectionsNamesZebin::textPrefix.str() + "CopyBuffer", testKernelData);
elfEncoder.appendSection(NEO::Elf::SHT_ZEBIN_ZEINFO, NEO::Elf::SectionsNamesZebin::zeInfo, zeInfo);
storage = elfEncoder.encode();
elfHeader = *reinterpret_cast<NEO::Elf::ElfFileHeader<NEO::Elf::EI_CLASS_64> *>(storage.data());
auto &buildInfo = pProgram->buildInfos[rootDeviceIndex];
//set kernels_misc_info pos manually, as we are not invoking decodeZebin() or processProgramInfo() in this test
ProgramInfo programInfo;
setKernelMiscInfoPosition(zeInfo, programInfo);
buildInfo.kernelMiscInfoPos = programInfo.kernelMiscInfoPos;
buildInfo.unpackedDeviceBinary.reset(reinterpret_cast<char *>(storage.data()));
buildInfo.unpackedDeviceBinarySize = storage.size();
auto &kernelDescriptor = const_cast<KernelDescriptor &>(pKernel->getDescriptor());
kernelDescriptor.explicitArgsExtendedMetadata.clear();
ASSERT_TRUE(kernelDescriptor.explicitArgsExtendedMetadata.empty());
std::array<cl_kernel_arg_info, 5> paramNames = {
CL_KERNEL_ARG_NAME,
CL_KERNEL_ARG_ADDRESS_QUALIFIER,
CL_KERNEL_ARG_ACCESS_QUALIFIER,
CL_KERNEL_ARG_TYPE_NAME,
CL_KERNEL_ARG_TYPE_QUALIFIER,
};
cl_uint argInd = 0;
constexpr size_t maxParamValueSize{0x10};
size_t paramValueSize = 0;
size_t paramValueSizeRet = 0;
for (const auto &paramName : paramNames) {
char paramValue[maxParamValueSize]{0};
retVal = pKernel->getArgInfo(
argInd,
paramName,
paramValueSize,
nullptr,
&paramValueSizeRet);
EXPECT_NE(0u, paramValueSizeRet);
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_LT(paramValueSizeRet, maxParamValueSize);
paramValueSize = paramValueSizeRet;
retVal = pKernel->getArgInfo(
argInd,
paramName,
paramValueSize,
paramValue,
nullptr);
ASSERT_EQ(CL_SUCCESS, retVal);
switch (paramName) {
case (CL_KERNEL_ARG_NAME):
EXPECT_EQ(0, strcmp(paramValue, "a"));
break;
case (CL_KERNEL_ARG_ADDRESS_QUALIFIER):
EXPECT_EQ(*(reinterpret_cast<cl_kernel_arg_address_qualifier *>(paramValue)), static_cast<cl_uint>(CL_KERNEL_ARG_ADDRESS_GLOBAL));
break;
case (CL_KERNEL_ARG_ACCESS_QUALIFIER):
EXPECT_EQ(*(reinterpret_cast<cl_kernel_arg_access_qualifier *>(paramValue)), static_cast<cl_uint>(CL_KERNEL_ARG_ACCESS_NONE));
break;
case (CL_KERNEL_ARG_TYPE_NAME):
EXPECT_EQ(0, strcmp(paramValue, "'int*;8'"));
break;
case (CL_KERNEL_ARG_TYPE_QUALIFIER):
EXPECT_EQ(*(reinterpret_cast<cl_kernel_arg_type_qualifier *>(paramValue)), static_cast<cl_ulong>(CL_KERNEL_ARG_TYPE_NONE));
break;
default:
ASSERT_TRUE(false);
break;
}
}
buildInfo.unpackedDeviceBinary.release();
}

View File

@ -1609,12 +1609,12 @@ void populateKernelMiscInfo(KernelDescriptor &dst, KernelMiscArgInfos &kernelMis
}
}
NEO::DecodeError decodeAndPopulateKernelMiscInfo(ProgramInfo &dst, ConstStringRef metadataString, std::string &outErrReason, std::string &outWarning) {
if (std::string::npos == dst.kernelMiscInfoPos) {
NEO::DecodeError decodeAndPopulateKernelMiscInfo(size_t kernelMiscInfoOffset, std::vector<NEO::KernelInfo *> &kernelInfos, ConstStringRef metadataString, std::string &outErrReason, std::string &outWarning) {
if (std::string::npos == kernelMiscInfoOffset) {
outErrReason.append("DeviceBinaryFormat::Zebin : Position of " + Elf::ZebinKernelMetadata::Tags::kernelMiscInfo.str() + " not set - may be missing in zeInfo.\n");
return DecodeError::InvalidBinary;
}
ConstStringRef kernelMiscInfoString(reinterpret_cast<const char *>(metadataString.begin() + dst.kernelMiscInfoPos), metadataString.size() - dst.kernelMiscInfoPos);
ConstStringRef kernelMiscInfoString(reinterpret_cast<const char *>(metadataString.begin() + kernelMiscInfoOffset), metadataString.size() - kernelMiscInfoOffset);
NEO::KernelInfo *kernelInfo = nullptr;
NEO::Yaml::YamlParser parser;
@ -1651,7 +1651,7 @@ NEO::DecodeError decodeAndPopulateKernelMiscInfo(ProgramInfo &dst, ConstStringRe
return DecodeError::InvalidBinary;
}
for (auto &[kName, miscInfos] : kernelArgsMiscInfoVec) {
for (auto dstKernelInfo : dst.kernelInfos) {
for (auto dstKernelInfo : kernelInfos) {
if (dstKernelInfo->kernelDescriptor.kernelMetadata.kernelName == kName) {
kernelInfo = dstKernelInfo;
break;
@ -1810,4 +1810,22 @@ NEO::DecodeError decodeZebin(ProgramInfo &dst, NEO::Elf::Elf<numBits> &elf, std:
return DecodeError::Success;
}
template <Elf::ELF_IDENTIFIER_CLASS numBits>
ConstStringRef extractZeInfoMetadataString(const ArrayRef<const uint8_t> zebin, std::string &outErrReason, std::string &outWarning) {
auto decodedElf = NEO::Elf::decodeElf<numBits>(zebin, outErrReason, outWarning);
for (const auto &sectionHeader : decodedElf.sectionHeaders) {
if (sectionHeader.header->type == NEO::Elf::SHT_ZEBIN_ZEINFO) {
auto zeInfoData = sectionHeader.data;
return ConstStringRef{reinterpret_cast<const char *>(zeInfoData.begin()), zeInfoData.size()};
}
}
return ConstStringRef{};
}
ConstStringRef extractZeInfoMetadataStringFromZebin(const ArrayRef<const uint8_t> zebin, std::string &outErrReason, std::string &outWarning) {
return Elf::isElf<Elf::EI_CLASS_32>(zebin)
? extractZeInfoMetadataString<Elf::EI_CLASS_32>(zebin, outErrReason, outWarning)
: extractZeInfoMetadataString<Elf::EI_CLASS_64>(zebin, outErrReason, outWarning);
}
} // namespace NEO

View File

@ -12,6 +12,7 @@
#include "shared/source/device_binary_format/elf/zebin_elf.h"
#include "shared/source/device_binary_format/yaml/yaml_parser.h"
#include "shared/source/kernel/kernel_descriptor.h"
#include "shared/source/program/kernel_info.h"
#include "shared/source/utilities/stackvec.h"
#include <string>
@ -153,6 +154,8 @@ NEO::DecodeError readKernelMiscArgumentInfos(const NEO::Yaml::YamlParser &parser
void populateKernelMiscInfo(KernelDescriptor &dst, KernelMiscArgInfos &kernelMiscArgInfosVec, std::string &outErrReason, std::string &outWarning);
NEO::DecodeError decodeAndPopulateKernelMiscInfo(ProgramInfo &dst, ConstStringRef metadataString, std::string &outErrReason, std::string &outWarning);
NEO::DecodeError decodeAndPopulateKernelMiscInfo(size_t kernelMiscInfoOffset, std::vector<NEO::KernelInfo *> &kernelInfos, ConstStringRef metadataString, std::string &outErrReason, std::string &outWarning);
ConstStringRef extractZeInfoMetadataStringFromZebin(const ArrayRef<const uint8_t> zebin, std::string &outErrReason, std::string &outWarning);
} // namespace NEO

View File

@ -583,7 +583,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernel2Info);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, zeInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, zeInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::Success, res);
EXPECT_TRUE(outErrors.empty());
EXPECT_TRUE(outWarnings.empty());
@ -648,7 +648,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernelInfo);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfoUnrecognized, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfoUnrecognized, outErrors, outWarnings);
EXPECT_EQ(DecodeError::Success, res);
EXPECT_TRUE(outErrors.empty());
@ -678,7 +678,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernelInfo);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfoUnrecognizedArgInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfoUnrecognizedArgInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::Success, res);
EXPECT_TRUE(outErrors.empty());
@ -715,7 +715,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernelInfo);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfoUnrecognizedArgInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfoUnrecognizedArgInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::InvalidBinary, res);
EXPECT_NE(std::string::npos, outErrors.find("DeviceBinaryFormat::Zebin::.ze_info : could not read name from : [-] in context of : kernels_misc_info\n"));
@ -751,7 +751,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernelInfo);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfoUnrecognizedArgInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfoUnrecognizedArgInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::InvalidBinary, res);
EXPECT_NE(std::string::npos, outErrors.find("DeviceBinaryFormat::Zebin::.ze_info : could not read address_qualifier from : [-] in context of : kernels_misc_info\n"));
@ -775,7 +775,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernelInfo);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfoEmptyArgsInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfoEmptyArgsInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::Success, res);
EXPECT_TRUE(outErrors.empty());
std::array<std::string, 5> missingMembers = {
@ -801,7 +801,7 @@ kernels_misc_info:
programInfo.kernelMiscInfoPos = 0u;
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::InvalidBinary, res);
}
@ -821,7 +821,7 @@ kernels_misc_info:
programInfo.kernelMiscInfoPos = 0u;
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::InvalidBinary, res);
auto expectedError{"DeviceBinaryFormat::Zebin : Error : Missing kernel name in kernels_misc_info section.\n"};
@ -848,7 +848,7 @@ kernels_misc_info:
programInfo.kernelInfos.push_back(kernelInfo);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, kernelMiscInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, kernelMiscInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::InvalidBinary, res);
auto expectedError{"DeviceBinaryFormat::Zebin : Error : Cannot find kernel info for kernel some_kernel.\n"};
@ -872,7 +872,7 @@ kernels:
setKernelMiscInfoPosition(zeInfo, programInfo);
EXPECT_EQ(std::string::npos, programInfo.kernelMiscInfoPos);
std::string outWarnings, outErrors;
auto res = decodeAndPopulateKernelMiscInfo(programInfo, zeInfo, outErrors, outWarnings);
auto res = decodeAndPopulateKernelMiscInfo(programInfo.kernelMiscInfoPos, programInfo.kernelInfos, zeInfo, outErrors, outWarnings);
EXPECT_EQ(DecodeError::InvalidBinary, res);
auto expectedError{"DeviceBinaryFormat::Zebin : Position of kernels_misc_info not set - may be missing in zeInfo.\n"};
@ -6733,3 +6733,48 @@ kernels:
EXPECT_FALSE(warnings.empty());
EXPECT_TRUE(errors.empty()) << errors;
}
TEST(ZeInfoMetadataExtractionFromElf, givenValidElfContainingZeInfoSectionWhenExtractingZeInfoMetadataStringThenProperMetadataIsReturnedForEachElfType) {
ConstStringRef zeInfoData{"mockZeInfoData\n"};
constexpr auto mockSectionDataSize = 0x10;
uint8_t mockSectionData[mockSectionDataSize]{0};
NEO::Elf::ElfEncoder<Elf::EI_CLASS_32> elfEncoder32B;
NEO::Elf::ElfEncoder<Elf::EI_CLASS_64> elfEncoder64B;
elfEncoder32B.appendSection(NEO::Elf::SHT_ZEBIN_ZEINFO, NEO::Elf::SectionsNamesZebin::zeInfo, ArrayRef<const uint8_t>::fromAny(zeInfoData.data(), zeInfoData.size()));
elfEncoder32B.appendSection(NEO::Elf::SHT_PROGBITS, "someOtherSection", ArrayRef<const uint8_t>::fromAny(mockSectionData, mockSectionDataSize));
auto encoded32BElf = elfEncoder32B.encode();
elfEncoder64B.appendSection(NEO::Elf::SHT_ZEBIN_ZEINFO, NEO::Elf::SectionsNamesZebin::zeInfo, ArrayRef<const uint8_t>::fromAny(zeInfoData.data(), zeInfoData.size()));
elfEncoder64B.appendSection(NEO::Elf::SHT_PROGBITS, "someOtherSection", ArrayRef<const uint8_t>::fromAny(mockSectionData, mockSectionDataSize));
auto encoded64BElf = elfEncoder64B.encode();
std::string outErrors{}, outWarnings{};
auto zeInfoStr32B = extractZeInfoMetadataStringFromZebin(ArrayRef<const uint8_t>::fromAny(encoded32BElf.data(), encoded32BElf.size()), outErrors, outWarnings);
auto zeInfoStr64B = extractZeInfoMetadataStringFromZebin(ArrayRef<const uint8_t>::fromAny(encoded64BElf.data(), encoded64BElf.size()), outErrors, outWarnings);
EXPECT_STREQ(zeInfoStr32B.data(), zeInfoData.data());
EXPECT_STREQ(zeInfoStr64B.data(), zeInfoData.data());
}
TEST(ZeInfoMetadataExtractionFromElf, givenValidElfNotContainingZeInfoSectionWhenExtractingZeInfoMetadataStringThenEmptyDataIsReturnedForEachElfType) {
constexpr auto mockSectionDataSize = 0x10;
uint8_t mockSectionData[mockSectionDataSize]{0};
NEO::Elf::ElfEncoder<Elf::EI_CLASS_32> elfEncoder32B;
NEO::Elf::ElfEncoder<Elf::EI_CLASS_64> elfEncoder64B;
elfEncoder32B.appendSection(NEO::Elf::SHT_ZEBIN_SPIRV, "notZeInfoSection", ArrayRef<const uint8_t>::fromAny(mockSectionData, mockSectionDataSize));
elfEncoder32B.appendSection(NEO::Elf::SHT_PROGBITS, "alsoNotZeInfoSection", ArrayRef<const uint8_t>::fromAny(mockSectionData, mockSectionDataSize));
auto encoded32BElf = elfEncoder32B.encode();
elfEncoder64B.appendSection(NEO::Elf::SHT_ZEBIN_SPIRV, "notZeInfoSection", ArrayRef<const uint8_t>::fromAny(mockSectionData, mockSectionDataSize));
elfEncoder64B.appendSection(NEO::Elf::SHT_PROGBITS, "alsoNotZeInfoSection", ArrayRef<const uint8_t>::fromAny(mockSectionData, mockSectionDataSize));
auto encoded64BElf = elfEncoder64B.encode();
std::string outErrors{}, outWarnings{};
auto zeInfoStr32B = extractZeInfoMetadataStringFromZebin(ArrayRef<const uint8_t>::fromAny(encoded32BElf.data(), encoded32BElf.size()), outErrors, outWarnings);
auto zeInfoStr64B = extractZeInfoMetadataStringFromZebin(ArrayRef<const uint8_t>::fromAny(encoded64BElf.data(), encoded64BElf.size()), outErrors, outWarnings);
EXPECT_EQ(nullptr, zeInfoStr32B.data());
EXPECT_EQ(nullptr, zeInfoStr64B.data());
}