/* * Copyright (c) 2017, Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "hw_cmds.h" #include "runtime/device/device.h" #include "runtime/helpers/aligned_memory.h" #include "runtime/helpers/dispatch_info.h" #include "runtime/helpers/ptr_math.h" #include "runtime/mem_obj/buffer.h" #include "runtime/mem_obj/image.h" #include "runtime/kernel/kernel.h" #include "runtime/sampler/sampler.h" #include "runtime/helpers/string.h" #include #include #include #include #include namespace OCLRT { const uint32_t WorkloadInfo::undefinedOffset = (uint32_t)-1; const uint32_t WorkloadInfo::invalidParentEvent = (uint32_t)-1; std::unordered_map accessQualifierMap = { {"", CL_KERNEL_ARG_ACCESS_NONE}, {"NONE", CL_KERNEL_ARG_ACCESS_NONE}, {"read_only", CL_KERNEL_ARG_ACCESS_READ_ONLY}, {"__read_only", CL_KERNEL_ARG_ACCESS_READ_ONLY}, {"write_only", CL_KERNEL_ARG_ACCESS_WRITE_ONLY}, {"__write_only", CL_KERNEL_ARG_ACCESS_WRITE_ONLY}, {"read_write", CL_KERNEL_ARG_ACCESS_READ_WRITE}, {"__read_write", CL_KERNEL_ARG_ACCESS_READ_WRITE}, }; std::unordered_map addressQualifierMap = { {"", CL_KERNEL_ARG_ADDRESS_GLOBAL}, {"__global", CL_KERNEL_ARG_ADDRESS_GLOBAL}, {"__local", CL_KERNEL_ARG_ADDRESS_LOCAL}, {"__private", CL_KERNEL_ARG_ADDRESS_PRIVATE}, {"__constant", CL_KERNEL_ARG_ADDRESS_CONSTANT}, {"not_specified", CL_KERNEL_ARG_ADDRESS_PRIVATE}, }; struct KernelArgumentType { const char *argTypeQualifier; uint64_t argTypeQualifierValue; }; constexpr KernelArgumentType typeQualifiers[] = { {"const", CL_KERNEL_ARG_TYPE_CONST}, {"volatile", CL_KERNEL_ARG_TYPE_VOLATILE}, {"restrict", CL_KERNEL_ARG_TYPE_RESTRICT}, {"pipe", CL_KERNEL_ARG_TYPE_PIPE}, }; std::map typeSizeMap = { {"char", sizeof(cl_char)}, {"char2", sizeof(cl_char2)}, {"char3", sizeof(cl_char3)}, {"char4", sizeof(cl_char4)}, {"char8", sizeof(cl_char8)}, {"char16", sizeof(cl_char16)}, {"uchar", sizeof(cl_uchar)}, {"uchar2", sizeof(cl_uchar2)}, {"uchar3", sizeof(cl_uchar3)}, {"uchar4", sizeof(cl_uchar4)}, {"uchar8", sizeof(cl_uchar8)}, {"uchar16", sizeof(cl_uchar16)}, {"short", sizeof(cl_short)}, {"short2", sizeof(cl_short2)}, {"short3", sizeof(cl_short3)}, {"short4", sizeof(cl_short4)}, {"short8", sizeof(cl_short8)}, {"short16", sizeof(cl_short16)}, {"ushort", sizeof(cl_ushort)}, {"ushort2", sizeof(cl_ushort2)}, {"ushort3", sizeof(cl_ushort3)}, {"ushort4", sizeof(cl_ushort4)}, {"ushort8", sizeof(cl_ushort8)}, {"ushort16", sizeof(cl_ushort16)}, {"int", sizeof(cl_int)}, {"int2", sizeof(cl_int2)}, {"int3", sizeof(cl_int3)}, {"int4", sizeof(cl_int4)}, {"int8", sizeof(cl_int8)}, {"int16", sizeof(cl_int16)}, {"uint", sizeof(cl_uint)}, {"uint2", sizeof(cl_uint2)}, {"uint3", sizeof(cl_uint3)}, {"uint4", sizeof(cl_uint4)}, {"uint8", sizeof(cl_uint8)}, {"uint16", sizeof(cl_uint16)}, {"long", sizeof(cl_long)}, {"long2", sizeof(cl_long2)}, {"long3", sizeof(cl_long3)}, {"long4", sizeof(cl_long4)}, {"long8", sizeof(cl_long8)}, {"long16", sizeof(cl_long16)}, {"ulong", sizeof(cl_ulong)}, {"ulong2", sizeof(cl_ulong2)}, {"ulong3", sizeof(cl_ulong3)}, {"ulong4", sizeof(cl_ulong4)}, {"ulong8", sizeof(cl_ulong8)}, {"ulong16", sizeof(cl_ulong16)}, {"half", sizeof(cl_half)}, {"float", sizeof(cl_float)}, {"float2", sizeof(cl_float2)}, {"float3", sizeof(cl_float3)}, {"float4", sizeof(cl_float4)}, {"float8", sizeof(cl_float8)}, {"float16", sizeof(cl_float16)}, #ifdef cl_khr_fp16 {"half2", sizeof(cl_half2)}, {"half3", sizeof(cl_half3)}, {"half4", sizeof(cl_half4)}, {"half8", sizeof(cl_half8)}, {"half16", sizeof(cl_half16)}, #endif {"double", sizeof(cl_double)}, {"double2", sizeof(cl_double2)}, {"double3", sizeof(cl_double3)}, {"double4", sizeof(cl_double4)}, {"double8", sizeof(cl_double8)}, {"double16", sizeof(cl_double16)}, }; WorkSizeInfo::WorkSizeInfo(uint32_t maxWorkGroupSize, bool hasBarriers, uint32_t simdSize, uint32_t slmTotalSize, GFXCORE_FAMILY coreFamily, uint32_t numThreadsPerSubSlice, uint32_t localMemSize, bool imgUsed, bool yTiledSurface) { this->maxWorkGroupSize = maxWorkGroupSize; this->hasBarriers = hasBarriers; this->simdSize = simdSize; this->slmTotalSize = slmTotalSize; this->coreFamily = coreFamily; this->numThreadsPerSubSlice = numThreadsPerSubSlice; this->localMemSize = localMemSize; this->imgUsed = imgUsed; this->yTiledSurfaces = yTiledSurface; setMinWorkGroupSize(); } WorkSizeInfo::WorkSizeInfo(const DispatchInfo &dispatchInfo) { this->maxWorkGroupSize = (uint32_t)dispatchInfo.getKernel()->getDevice().getDeviceInfo().maxWorkGroupSize; this->hasBarriers = !!dispatchInfo.getKernel()->getKernelInfo().patchInfo.executionEnvironment->HasBarriers; this->simdSize = (uint32_t)dispatchInfo.getKernel()->getKernelInfo().getMaxSimdSize(); this->slmTotalSize = (uint32_t)dispatchInfo.getKernel()->slmTotalSize; this->coreFamily = dispatchInfo.getKernel()->getDevice().getHardwareInfo().pPlatform->eRenderCoreFamily; this->numThreadsPerSubSlice = (uint32_t)dispatchInfo.getKernel()->getDevice().getDeviceInfo().maxNumEUsPerSubSlice * dispatchInfo.getKernel()->getDevice().getDeviceInfo().numThreadsPerEU; this->localMemSize = (uint32_t)dispatchInfo.getKernel()->getDevice().getDeviceInfo().localMemSize; setIfUseImg(dispatchInfo.getKernel()); setMinWorkGroupSize(); } void WorkSizeInfo::setIfUseImg(Kernel *pKernel) { auto ParamsCount = pKernel->getKernelArgsNumber(); for (auto i = 0u; i < ParamsCount; i++) { if (pKernel->getKernelInfo().kernelArgInfo[i].isImage) { imgUsed = true; yTiledSurfaces = true; } } } void WorkSizeInfo::setMinWorkGroupSize() { minWorkGroupSize = 0; if (hasBarriers) { uint32_t maxBarriersPerHSlice = (coreFamily >= IGFX_GEN9_CORE) ? 32 : 16; minWorkGroupSize = numThreadsPerSubSlice * simdSize / maxBarriersPerHSlice; } if (slmTotalSize > 0) { minWorkGroupSize = std::max(maxWorkGroupSize / ((localMemSize / slmTotalSize)), minWorkGroupSize); } } void WorkSizeInfo::checkRatio(const size_t workItems[3]) { if (slmTotalSize > 0) { useRatio = true; targetRatio = log((float)workItems[0]) - log((float)workItems[1]); useStrictRatio = false; } else if (yTiledSurfaces == true) { useRatio = true; targetRatio = YTilingRatioValue; useStrictRatio = true; } } KernelInfo *KernelInfo::create() { return new KernelInfo(); } KernelInfo::~KernelInfo() { kernelArgInfo.clear(); for (auto &stringData : patchInfo.stringDataMap) { delete[] stringData.second.pStringData; } patchInfo.stringDataMap.clear(); delete[] crossThreadData; } cl_int KernelInfo::storeArgInfo(const SPatchKernelArgumentInfo *pkernelArgInfo) { cl_int retVal = CL_SUCCESS; if (pkernelArgInfo == nullptr) { retVal = CL_INVALID_BINARY; } else { uint32_t argNum = pkernelArgInfo->ArgumentNumber; auto pCurArgAttrib = ptrOffset( reinterpret_cast(pkernelArgInfo), sizeof(SPatchKernelArgumentInfo)); resizeKernelArgInfoAndRegisterParameter(argNum); kernelArgInfo[argNum].addressQualifierStr = pCurArgAttrib; pCurArgAttrib += pkernelArgInfo->AddressQualifierSize; kernelArgInfo[argNum].accessQualifierStr = pCurArgAttrib; pCurArgAttrib += pkernelArgInfo->AccessQualifierSize; kernelArgInfo[argNum].name = pCurArgAttrib; pCurArgAttrib += pkernelArgInfo->ArgumentNameSize; { auto argType = strchr(pCurArgAttrib, ';'); DEBUG_BREAK_IF(argType == nullptr); kernelArgInfo[argNum].typeStr.assign(pCurArgAttrib, argType - pCurArgAttrib); pCurArgAttrib += pkernelArgInfo->TypeNameSize; ++argType; } kernelArgInfo[argNum].typeQualifierStr = pCurArgAttrib; patchInfo.kernelArgumentInfo.push_back(pkernelArgInfo); } return retVal; } void KernelInfo::storeKernelArgument( const SPatchDataParameterBuffer *pDataParameterKernelArg) { uint32_t argNum = pDataParameterKernelArg->ArgumentNumber; uint32_t dataSize = pDataParameterKernelArg->DataSize; uint32_t offset = pDataParameterKernelArg->Offset; uint32_t sourceOffset = pDataParameterKernelArg->SourceOffset; storeKernelArgPatchInfo(argNum, dataSize, offset, sourceOffset, 0); } void KernelInfo::storeKernelArgument( const SPatchStatelessGlobalMemoryObjectKernelArgument *pStatelessGlobalKernelArg) { uint32_t argNum = pStatelessGlobalKernelArg->ArgumentNumber; uint32_t offsetSSH = pStatelessGlobalKernelArg->SurfaceStateHeapOffset; usesSsh |= true; storeKernelArgPatchInfo(argNum, pStatelessGlobalKernelArg->DataParamSize, pStatelessGlobalKernelArg->DataParamOffset, 0, offsetSSH); kernelArgInfo[argNum].isBuffer = true; patchInfo.statelessGlobalMemObjKernelArgs.push_back(pStatelessGlobalKernelArg); } void KernelInfo::storeKernelArgument( const SPatchImageMemoryObjectKernelArgument *pImageMemObjKernelArg) { uint32_t argNum = pImageMemObjKernelArg->ArgumentNumber; uint32_t offsetSurfaceState = pImageMemObjKernelArg->Offset; usesSsh |= true; storeKernelArgPatchInfo(argNum, 0, 0, 0, offsetSurfaceState); kernelArgInfo[argNum].isImage = true; if (pImageMemObjKernelArg->Type == iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA) { kernelArgInfo[argNum].isMediaImage = true; } if (pImageMemObjKernelArg->Type == iOpenCL::IMAGE_MEMORY_OBJECT_2D_MEDIA_BLOCK) { kernelArgInfo[argNum].isMediaBlockImage = true; } kernelArgInfo[argNum].accessQualifier = pImageMemObjKernelArg->Writeable ? CL_KERNEL_ARG_ACCESS_READ_WRITE : CL_KERNEL_ARG_ACCESS_READ_ONLY; patchInfo.imageMemObjKernelArgs.push_back(pImageMemObjKernelArg); } void KernelInfo::storeKernelArgument( const SPatchGlobalMemoryObjectKernelArgument *pGlobalMemObjKernelArg) { uint32_t argNum = pGlobalMemObjKernelArg->ArgumentNumber; uint32_t offsetSurfaceState = pGlobalMemObjKernelArg->Offset; usesSsh |= true; storeKernelArgPatchInfo(argNum, 0, 0, 0, offsetSurfaceState); kernelArgInfo[argNum].isBuffer = true; patchInfo.globalMemObjKernelArgs.push_back(pGlobalMemObjKernelArg); } void KernelInfo::storeKernelArgument( const SPatchSamplerKernelArgument *pSamplerArgument) { uint32_t argNum = pSamplerArgument->ArgumentNumber; uint32_t offsetSurfaceState = pSamplerArgument->Offset; storeKernelArgPatchInfo(argNum, 0, 0, 0, offsetSurfaceState); kernelArgInfo[argNum].samplerArgumentType = pSamplerArgument->Type; if (pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_TEXTURE) { DEBUG_BREAK_IF(pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_VME && pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_VE && pSamplerArgument->Type != iOpenCL::SAMPLER_OBJECT_VD); kernelArgInfo[argNum].isAccelerator = true; isVmeWorkload = true; } else { kernelArgInfo[argNum].isSampler = true; } } void KernelInfo::storeKernelArgument( const SPatchStatelessConstantMemoryObjectKernelArgument *pStatelessConstMemObjKernelArg) { uint32_t argNum = pStatelessConstMemObjKernelArg->ArgumentNumber; uint32_t offsetSSH = pStatelessConstMemObjKernelArg->SurfaceStateHeapOffset; usesSsh |= true; storeKernelArgPatchInfo(argNum, pStatelessConstMemObjKernelArg->DataParamSize, pStatelessConstMemObjKernelArg->DataParamOffset, 0, offsetSSH); kernelArgInfo[argNum].isBuffer = true; patchInfo.statelessGlobalMemObjKernelArgs.push_back(reinterpret_cast(pStatelessConstMemObjKernelArg)); } void KernelInfo::storeKernelArgument(const SPatchStatelessDeviceQueueKernelArgument *pStatelessDeviceQueueKernelArg) { uint32_t argNum = pStatelessDeviceQueueKernelArg->ArgumentNumber; resizeKernelArgInfoAndRegisterParameter(argNum); kernelArgInfo[argNum].isDeviceQueue = true; storeKernelArgPatchInfo(argNum, pStatelessDeviceQueueKernelArg->DataParamSize, pStatelessDeviceQueueKernelArg->DataParamOffset, 0, pStatelessDeviceQueueKernelArg->SurfaceStateHeapOffset); } void KernelInfo::storePatchToken( const SPatchAllocateStatelessPrivateSurface *pStatelessPrivateSurfaceArg) { usesSsh |= true; patchInfo.pAllocateStatelessPrivateSurface = pStatelessPrivateSurfaceArg; } void KernelInfo::storePatchToken(const SPatchAllocateStatelessConstantMemorySurfaceWithInitialization *pStatelessConstantMemorySurfaceWithInitializationArg) { usesSsh |= true; patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization = pStatelessConstantMemorySurfaceWithInitializationArg; } void KernelInfo::storePatchToken(const SPatchAllocateStatelessGlobalMemorySurfaceWithInitialization *pStatelessGlobalMemorySurfaceWithInitializationArg) { usesSsh |= true; patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization = pStatelessGlobalMemorySurfaceWithInitializationArg; } void KernelInfo::storePatchToken(const SPatchAllocateStatelessPrintfSurface *pStatelessPrintfSurfaceArg) { usesSsh |= true; patchInfo.pAllocateStatelessPrintfSurface = pStatelessPrintfSurfaceArg; } void KernelInfo::storePatchToken(const SPatchAllocateStatelessEventPoolSurface *pStatelessEventPoolSurfaceArg) { usesSsh |= true; patchInfo.pAllocateStatelessEventPoolSurface = pStatelessEventPoolSurfaceArg; } void KernelInfo::storePatchToken(const SPatchAllocateStatelessDefaultDeviceQueueSurface *pStatelessDefaultDeviceQueueSurfaceArg) { usesSsh |= true; patchInfo.pAllocateStatelessDefaultDeviceQueueSurface = pStatelessDefaultDeviceQueueSurfaceArg; } void KernelInfo::storePatchToken(const SPatchString *pStringArg) { uint32_t stringIndex = pStringArg->Index; PrintfStringInfo printfStringInfo; printfStringInfo.SizeInBytes = pStringArg->StringSize; if (printfStringInfo.SizeInBytes) { printfStringInfo.pStringData = new char[printfStringInfo.SizeInBytes]; if (printfStringInfo.pStringData != nullptr) { memcpy_s(printfStringInfo.pStringData, printfStringInfo.SizeInBytes, (cl_char *)pStringArg + sizeof(SPatchString), printfStringInfo.SizeInBytes); patchInfo.stringDataMap.insert(std::pair(stringIndex, printfStringInfo)); } } } void KernelInfo::storePatchToken(const SPatchKernelAttributesInfo *pKernelAttributesInfo) { attributes = reinterpret_cast(pKernelAttributesInfo) + sizeof(SPatchKernelAttributesInfo); auto start = attributes.find("intel_reqd_sub_group_size("); if (start != std::string::npos) { start += strlen("intel_reqd_sub_group_size("); auto stop = attributes.find(")", start); std::stringstream requiredSubGroupSizeStr(attributes.substr(start, stop - start)); requiredSubGroupSizeStr >> requiredSubGroupSize; } } void KernelInfo::storePatchToken(const SPatchAllocateSystemThreadSurface *pSystemThreadSurface) { usesSsh |= true; patchInfo.pAllocateSystemThreadSurface = pSystemThreadSurface; } const char *KernelInfo::queryPrintfString(uint32_t index) const { auto printfInfo = patchInfo.stringDataMap.find(index); return printfInfo == patchInfo.stringDataMap.end() ? nullptr : printfInfo->second.pStringData; } cl_int KernelInfo::resolveKernelInfo() { cl_int retVal = CL_SUCCESS; std::unordered_map::iterator iterUint; std::unordered_map::iterator iterSizeT; for (auto &argInfo : kernelArgInfo) { iterUint = accessQualifierMap.find(argInfo.accessQualifierStr); if (iterUint != accessQualifierMap.end()) { argInfo.accessQualifier = iterUint->second; } else { retVal = CL_INVALID_BINARY; break; } iterUint = addressQualifierMap.find(argInfo.addressQualifierStr); if (iterUint != addressQualifierMap.end()) { argInfo.addressQualifier = iterUint->second; } else { retVal = CL_INVALID_BINARY; break; } auto qualifierCount = sizeof(typeQualifiers) / sizeof(typeQualifiers[0]); for (auto qualifierId = 0u; qualifierId < qualifierCount; qualifierId++) { if (strstr(argInfo.typeQualifierStr.c_str(), typeQualifiers[qualifierId].argTypeQualifier) != nullptr) { argInfo.typeQualifier |= typeQualifiers[qualifierId].argTypeQualifierValue; } } } return retVal; } void KernelInfo::storeKernelArgPatchInfo(uint32_t argNum, uint32_t dataSize, uint32_t dataOffset, uint32_t sourceOffset, uint32_t offsetSSH) { resizeKernelArgInfoAndRegisterParameter(argNum); KernelArgPatchInfo kernelArgPatchInfo; kernelArgPatchInfo.crossthreadOffset = dataOffset; kernelArgPatchInfo.size = dataSize; kernelArgPatchInfo.sourceOffset = sourceOffset; kernelArgInfo[argNum].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo); kernelArgInfo[argNum].offsetHeap = offsetSSH; } size_t KernelInfo::getSamplerStateArrayCount() const { size_t count = patchInfo.samplerStateArray ? (size_t)patchInfo.samplerStateArray->Count : 0; return count; } size_t KernelInfo::getSamplerStateArraySize(const HardwareInfo &hwInfo) const { size_t samplerStateArraySize = getSamplerStateArrayCount() * Sampler::getSamplerStateSize(hwInfo); return samplerStateArraySize; } size_t KernelInfo::getBorderColorStateSize() const { size_t borderColorSize = 0; if (patchInfo.samplerStateArray) { borderColorSize = patchInfo.samplerStateArray->Offset - patchInfo.samplerStateArray->BorderColorOffset; } return borderColorSize; } size_t KernelInfo::getBorderColorOffset() const { size_t borderColorOffset = 0; if (patchInfo.samplerStateArray) { borderColorOffset = patchInfo.samplerStateArray->BorderColorOffset; } return borderColorOffset; } uint32_t KernelInfo::getConstantBufferSize() const { return patchInfo.dataParameterStream ? patchInfo.dataParameterStream->DataParameterStreamSize : 0; } } // namespace OCLRT