/* * Copyright (c) 2017 - 2018, Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "runtime/command_queue/local_id_gen.h" #include "runtime/helpers/aligned_memory.h" #include "runtime/utilities/cpu_info.h" #include namespace OCLRT { struct uint16x8_t; struct uint16x16_t; // This is the initial value of SIMD for local ID // computation. It correlates to the SIMD lane. // Must be 32byte aligned for AVX2 usage ALIGNAS(32) const uint16_t initialLocalID[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; // Lookup table for generating LocalIDs based on the SIMD of the kernel void (*LocalIDHelper::generateSimd8)(void *buffer, const std::array &localWorkgroupSize, uint16_t threadsPerWorkGroup, const std::array &dimensionsOrder) = generateLocalIDsSimd; void (*LocalIDHelper::generateSimd16)(void *buffer, const std::array &localWorkgroupSize, uint16_t threadsPerWorkGroup, const std::array &dimensionsOrder) = generateLocalIDsSimd; void (*LocalIDHelper::generateSimd32)(void *buffer, const std::array &localWorkgroupSize, uint16_t threadsPerWorkGroup, const std::array &dimensionsOrder) = generateLocalIDsSimd; // Initialize the lookup table based on CPU capabilities LocalIDHelper::LocalIDHelper() { bool supportsAVX2 = CpuInfo::getInstance().isFeatureSupported(CpuInfo::featureAvX2); if (supportsAVX2) { LocalIDHelper::generateSimd8 = generateLocalIDsSimd; LocalIDHelper::generateSimd16 = generateLocalIDsSimd; LocalIDHelper::generateSimd32 = generateLocalIDsSimd; } } LocalIDHelper LocalIDHelper::initializer; //traditional function to generate local IDs void generateLocalIDs(void *buffer, uint16_t simd, const std::array &localWorkgroupSize, const std::array &dimensionsOrder, bool hasKernelOnlyImages) { auto threadsPerWorkGroup = static_cast(getThreadsPerWG(simd, localWorkgroupSize[0] * localWorkgroupSize[1] * localWorkgroupSize[2])); bool use4x4Layout = hasKernelOnlyImages && isCompatibleWith4x4Layout(localWorkgroupSize, dimensionsOrder, simd); if (use4x4Layout) { generateLocalIDsWith4x4Layout(buffer, localWorkgroupSize, simd); } else if (simd == 32) { LocalIDHelper::generateSimd32(buffer, localWorkgroupSize, threadsPerWorkGroup, dimensionsOrder); } else if (simd == 16) { LocalIDHelper::generateSimd16(buffer, localWorkgroupSize, threadsPerWorkGroup, dimensionsOrder); } else { LocalIDHelper::generateSimd8(buffer, localWorkgroupSize, threadsPerWorkGroup, dimensionsOrder); } } bool isCompatibleWith4x4Layout(const std::array &localWorkgroupSize, const std::array &dimensionsOrder, uint16_t simd) { //limit support to 8x4x1 and 8x8x1 LWS return dimensionsOrder.at(0) == 0 && dimensionsOrder.at(1) == 1 && localWorkgroupSize[2] == 1 && localWorkgroupSize[0] == 8 && (localWorkgroupSize[1] == 4 || localWorkgroupSize[1] == 8); } inline void generateLocalIDsWith4x4Layout(void *b, const std::array &localWorkgroupSize, uint16_t simd) { uint8_t rowWidth = simd == 32u ? 32u : 16u; uint8_t xDelta = simd == 8u ? 2u : 4u; // difference between corresponding values in consecutive X rows uint8_t yDelta = simd == 8u || localWorkgroupSize.at(1) == 4u ? 4u : rowWidth / xDelta; // difference between corresponding values in consecutive Y rows std::array replicationFactors{{static_cast(localWorkgroupSize.at(0) / xDelta), static_cast(localWorkgroupSize.at(1) / yDelta), static_cast(localWorkgroupSize.at(2))}}; bool earlyGrowX = replicationFactors.at(1) == 1 && simd == 32u && replicationFactors.at(0) > 1; bool earlyGrowZ = replicationFactors.at(1) == 1 && simd == 32u && !earlyGrowX && replicationFactors.at(2) > 1; auto buffer = reinterpret_cast(b); uint16_t offset = 0u; for (uint16_t z = 0u; z < replicationFactors.at(2); z++) { for (uint16_t y = 0u; y < replicationFactors.at(1); y++) { for (uint16_t x = 0u; x < replicationFactors.at(0); x++) { // row for X for (uint8_t i = 0u; i < simd; i++) { if (earlyGrowX && i == yDelta * xDelta) { x++; } auto xValue = xDelta * x + (i & (xDelta - 1)); buffer[offset + i] = xValue & (localWorkgroupSize.at(0) - 1); } offset += rowWidth; // row for Y for (uint8_t i = 0u; i < simd; i++) { auto yValue = yDelta * y + i / xDelta; buffer[offset + i] = yValue & (localWorkgroupSize.at(1) - 1); } offset += rowWidth; // row for Z for (uint8_t i = 0u; i < simd; i++) { if (earlyGrowZ && i == yDelta * xDelta) { z++; } auto zValue = z; buffer[offset + i] = zValue & (localWorkgroupSize.at(2) - 1); } offset += rowWidth; } } } } } // namespace OCLRT