/* * Copyright (C) 2018-2019 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "binary_encoder.h" #include "core/elf/writer.h" #include "core/helpers/aligned_memory.h" #include "core/helpers/file_io.h" #include "core/helpers/hash.h" #include "offline_compiler/offline_compiler.h" #include "CL/cl.h" #include "helper.h" #include #include #include #include void BinaryEncoder::setMessagePrinter(const MessagePrinter &messagePrinter) { this->messagePrinter = messagePrinter; } void BinaryEncoder::calculatePatchListSizes(std::vector &ptmFile) { size_t patchListPos = 0; for (size_t i = 0; i < ptmFile.size(); ++i) { if (ptmFile[i].find("PatchListSize") != std::string::npos) { patchListPos = i; } else if (ptmFile[i].find("PATCH_TOKEN") != std::string::npos) { uint32_t calcSize = 0; i++; while (i < ptmFile.size() && ptmFile[i].find("Kernel #") == std::string::npos) { if (ptmFile[i].find(':') == std::string::npos) { if (ptmFile[i].find("Hex") != std::string::npos) { calcSize += static_cast(std::count(ptmFile[i].begin(), ptmFile[i].end(), ' ')); } else { calcSize += std::atoi(&ptmFile[i][1]); } } i++; } uint32_t size = static_cast(std::stoul(ptmFile[patchListPos].substr(ptmFile[patchListPos].find_last_of(' ') + 1))); if (size != calcSize) { messagePrinter.printf("Warning! Calculated PatchListSize ( %u ) differs from file ( %u ) - changing it. Line %d\n", calcSize, size, static_cast(patchListPos + 1)); ptmFile[patchListPos] = ptmFile[patchListPos].substr(0, ptmFile[patchListPos].find_last_of(' ') + 1); ptmFile[patchListPos] += std::to_string(calcSize); } } } } bool BinaryEncoder::copyBinaryToBinary(const std::string &srcFileName, std::ostream &outBinary, uint32_t *binaryLength) { std::ifstream ifs(srcFileName, std::ios::binary); if (!ifs.good()) { messagePrinter.printf("Cannot open %s.\n", srcFileName.c_str()); return false; } ifs.seekg(0, ifs.end); auto length = static_cast(ifs.tellg()); ifs.seekg(0, ifs.beg); std::vector binary(length); ifs.read(binary.data(), length); outBinary.write(binary.data(), length); if (binaryLength) { *binaryLength = static_cast(length); } return true; } int BinaryEncoder::createElf() { CLElfLib::CElfWriter elfWriter(CLElfLib::E_EH_TYPE::EH_TYPE_OPENCL_EXECUTABLE, CLElfLib::E_EH_MACHINE::EH_MACHINE_NONE, 0); //Build Options if (fileExists(pathToDump + "build.bin")) { auto binary = readBinaryFile(pathToDump + "build.bin"); std::string data(binary.begin(), binary.end()); elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_OPENCL_OPTIONS, CLElfLib::E_SH_FLAG::SH_FLAG_NONE, "BuildOptions", data, static_cast(data.size()))); } else { messagePrinter.printf("Warning! Missing build section.\n"); } //LLVM or SPIRV if (fileExists(pathToDump + "llvm.bin")) { auto binary = readBinaryFile(pathToDump + "llvm.bin"); std::string data(binary.begin(), binary.end()); elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_OPENCL_LLVM_BINARY, CLElfLib::E_SH_FLAG::SH_FLAG_NONE, "Intel(R) OpenCL LLVM Object", data, static_cast(data.size()))); } else if (fileExists(pathToDump + "spirv.bin")) { auto binary = readBinaryFile(pathToDump + "spirv.bin"); std::string data(binary.begin(), binary.end()); elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_SPIRV, CLElfLib::E_SH_FLAG::SH_FLAG_NONE, "SPIRV Object", data, static_cast(data.size()))); } else { messagePrinter.printf("Warning! Missing llvm/spirv section.\n"); } //Device Binary if (fileExists(pathToDump + "device_binary.bin")) { auto binary = readBinaryFile(pathToDump + "device_binary.bin"); std::string data(binary.begin(), binary.end()); elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_OPENCL_DEV_BINARY, CLElfLib::E_SH_FLAG::SH_FLAG_NONE, "Intel(R) OpenCL Device Binary", data, static_cast(data.size()))); } else { messagePrinter.printf("Missing device_binary.bin\n"); return -1; } //Resolve Elf Binary std::vector elfBinary; elfWriter.resolveBinary(elfBinary); std::ofstream elfFile(elfName, std::ios::binary); if (!elfFile.good()) { messagePrinter.printf("Couldn't create %s.\n", elfName.c_str()); return -1; } elfFile.write(elfBinary.data(), elfBinary.size()); return 0; } void BinaryEncoder::printHelp() { messagePrinter.printf(R"===(Assembles Intel OpenCL GPU device binary from input files. It's expected that input files were previously generated by 'ocloc disasm' command or are compatible with 'ocloc disasm' output (especially in terms of file naming scheme). See 'ocloc disasm --help' for additional info. Usage: ocloc asm -out [-dump ] [-device ] -out Filename for newly assembled binary. -dump Path to the input directory containing disassembled binary (as disassembled by ocloc's disasm command). Default is './dump'. -device Optional target device of output binary can be: %s By default ocloc will pick base device within a generation - i.e. both skl and kbl will fallback to skl. If specific product (e.g. kbl) is needed, provide it as device_type. --help Print this usage message. Examples: Assemble to Intel OpenCL GPU device binary ocloc asm -out reassembled.bin )===", NEO::getDevicesTypes().c_str()); } int BinaryEncoder::encode() { std::vector ptmFile; readFileToVectorOfStrings(ptmFile, pathToDump + "PTM.txt"); calculatePatchListSizes(ptmFile); std::ofstream deviceBinary(pathToDump + "device_binary.bin", std::ios::binary); if (!deviceBinary.good()) { messagePrinter.printf("Error! Couldn't create device_binary.bin.\n"); return -1; } int retVal = processBinary(ptmFile, deviceBinary); deviceBinary.close(); if (retVal != CL_SUCCESS) { return retVal; } return createElf(); } int BinaryEncoder::processBinary(const std::vector &ptmFileLines, std::ostream &deviceBinary) { if (false == iga->isKnownPlatform()) { auto deviceMarker = findPos(ptmFileLines, "Device"); if (deviceMarker != ptmFileLines.size()) { std::stringstream ss(ptmFileLines[deviceMarker]); ss.ignore(32, ' '); ss.ignore(32, ' '); uint32_t gfxCore = 0; ss >> gfxCore; iga->setGfxCore(static_cast(gfxCore)); } } size_t i = 0; while (i < ptmFileLines.size()) { if (ptmFileLines[i].find("Kernel #") != std::string::npos) { if (processKernel(++i, ptmFileLines, deviceBinary)) { messagePrinter.printf("Warning while processing kernel!\n"); return -1; } } else if (writeDeviceBinary(ptmFileLines[i++], deviceBinary)) { messagePrinter.printf("Error while writing to binary!\n"); return -1; } } return 0; } void BinaryEncoder::addPadding(std::ostream &out, size_t numBytes) { for (size_t i = 0; i < numBytes; ++i) { const char nullByte = 0; out.write(&nullByte, 1U); } } int BinaryEncoder::processKernel(size_t &line, const std::vector &ptmFileLines, std::ostream &deviceBinary) { auto kernelInfoBeginMarker = line; auto kernelInfoEndMarker = ptmFileLines.size(); auto kernelNameMarker = ptmFileLines.size(); auto kernelPatchtokensMarker = ptmFileLines.size(); std::stringstream kernelBlob; // Normally these are added by the compiler, need to take or of them when reassembling constexpr size_t isaPaddingSizeInBytes = 128; constexpr uint32_t kernelHeapAlignmentInBytes = 64; uint32_t kernelNameSizeInBinary = 0; std::string kernelName; // Scan PTM lines for kernel info while (line < ptmFileLines.size()) { if (ptmFileLines[line].find("KernelName ") != std::string::npos) { kernelName = std::string(ptmFileLines[line], ptmFileLines[line].find(' ') + 1); kernelNameMarker = line; kernelPatchtokensMarker = kernelNameMarker + 1; // patchtokens come after name } else if (ptmFileLines[line].find("KernelNameSize") != std::string::npos) { std::stringstream ss(ptmFileLines[line]); ss.ignore(32, ' '); ss.ignore(32, ' '); ss >> kernelNameSizeInBinary; } else if (ptmFileLines[line].find("Kernel #") != std::string::npos) { kernelInfoEndMarker = line; break; } ++line; } // Write KernelName and padding kernelBlob.write(kernelName.c_str(), kernelName.size()); addPadding(kernelBlob, kernelNameSizeInBinary - kernelName.size()); // Write KernelHeap and padding uint32_t kernelSizeUnpadded = 0U; bool heapsCopiedSuccesfully = true; // Use .asm if available, fallback to .dat if (fileExists(pathToDump + kernelName + "_KernelHeap.asm")) { auto kernelAsAsm = readBinaryFile(pathToDump + kernelName + "_KernelHeap.asm"); std::string kernelAsBinary; messagePrinter.printf("Trying to assemble %s.asm\n", kernelName.c_str()); if (false == iga->tryAssembleGenISA(std::string(kernelAsAsm.begin(), kernelAsAsm.end()), kernelAsBinary)) { messagePrinter.printf("Error : Could not assemble : %s\n", kernelName.c_str()); return -1; } kernelSizeUnpadded = static_cast(kernelAsBinary.size()); kernelBlob.write(kernelAsBinary.data(), kernelAsBinary.size()); } else { heapsCopiedSuccesfully = copyBinaryToBinary(pathToDump + kernelName + "_KernelHeap.dat", kernelBlob, &kernelSizeUnpadded); } // Adding padding and alignment addPadding(kernelBlob, isaPaddingSizeInBytes); const uint32_t kernelHeapPaddedSize = kernelSizeUnpadded + isaPaddingSizeInBytes; const uint32_t kernelHeapAlignedSize = alignUp(kernelHeapPaddedSize, kernelHeapAlignmentInBytes); addPadding(kernelBlob, kernelHeapAlignedSize - kernelHeapPaddedSize); // Write GeneralStateHeap, DynamicStateHeap, SurfaceStateHeap if (fileExists(pathToDump + kernelName + "_GeneralStateHeap.bin")) { heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_GeneralStateHeap.bin", kernelBlob); } heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_DynamicStateHeap.bin", kernelBlob); heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_SurfaceStateHeap.bin", kernelBlob); if (false == heapsCopiedSuccesfully) { return -1; } // Write kernel patchtokens for (size_t i = kernelPatchtokensMarker; i < kernelInfoEndMarker; ++i) { if (writeDeviceBinary(ptmFileLines[i], kernelBlob)) { messagePrinter.printf("Error while writing to binary.\n"); return -1; } } auto kernelBlobData = kernelBlob.str(); uint64_t hashValue = NEO::Hash::hash(reinterpret_cast(kernelBlobData.data()), kernelBlobData.size()); uint32_t calcCheckSum = hashValue & 0xFFFFFFFF; // Add kernel header for (size_t i = kernelInfoBeginMarker; i < kernelNameMarker; ++i) { if (ptmFileLines[i].find("CheckSum") != std::string::npos) { static_assert(std::is_same::value, ""); deviceBinary.write(reinterpret_cast(&calcCheckSum), sizeof(uint32_t)); } else if (ptmFileLines[i].find("KernelHeapSize") != std::string::npos) { static_assert(sizeof(kernelHeapAlignedSize) == sizeof(uint32_t), ""); deviceBinary.write(reinterpret_cast(&kernelHeapAlignedSize), sizeof(uint32_t)); } else if (ptmFileLines[i].find("KernelUnpaddedSize") != std::string::npos) { static_assert(sizeof(kernelSizeUnpadded) == sizeof(uint32_t), ""); deviceBinary.write(reinterpret_cast(&kernelSizeUnpadded), sizeof(uint32_t)); } else { if (writeDeviceBinary(ptmFileLines[i], deviceBinary)) { messagePrinter.printf("Error while writing to binary.\n"); return -1; } } } // Add kernel blob after the header deviceBinary.write(kernelBlobData.c_str(), kernelBlobData.size()); return 0; } int BinaryEncoder::validateInput(uint32_t argc, const char **argv) { if (!strcmp(argv[argc - 1], "--help")) { printHelp(); return -1; } else { for (uint32_t i = 2; i < argc - 1; ++i) { if (!strcmp(argv[i], "-dump")) { pathToDump = std::string(argv[++i]); addSlash(pathToDump); } else if (!strcmp(argv[i], "-device")) { iga->setProductFamily(getProductFamilyFromDeviceName(argv[++i])); } else if (!strcmp(argv[i], "-out")) { elfName = std::string(argv[++i]); } else { messagePrinter.printf("Unknown argument %s\n", argv[i]); printHelp(); return -1; } } if (pathToDump.empty()) { messagePrinter.printf("Warning : Path to dump folder not specificed - using ./dump as default.\n"); pathToDump = "dump"; addSlash(pathToDump); } if (elfName.find(".bin") == std::string::npos) { messagePrinter.printf(".bin extension is expected for binary file.\n"); printHelp(); return -1; } if (false == iga->isKnownPlatform()) { messagePrinter.printf("Warning : missing or invalid -device parameter - results may be inacurate\n"); } } return 0; } template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary) { T val; in >> val; deviceBinary.write(reinterpret_cast(&val), sizeof(T)); } template <> void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary) { uint8_t val; uint16_t help; in >> help; val = static_cast(help); deviceBinary.write(reinterpret_cast(&val), sizeof(uint8_t)); } template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary); template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary); template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary); int BinaryEncoder::writeDeviceBinary(const std::string &line, std::ostream &deviceBinary) { if (line.find(':') != std::string::npos) { return 0; } else if (line.find("Hex") != std::string::npos) { std::stringstream ss(line); ss.ignore(32, ' '); uint16_t tmp; uint8_t byte; while (!ss.eof()) { ss >> std::hex >> tmp; byte = static_cast(tmp); deviceBinary.write(reinterpret_cast(&byte), sizeof(uint8_t)); } } else { std::stringstream ss(line); uint16_t size; std::string name; ss >> size; ss >> name; switch (size) { case 1: write(ss, deviceBinary); break; case 2: write(ss, deviceBinary); break; case 4: write(ss, deviceBinary); break; case 8: write(ss, deviceBinary); break; default: messagePrinter.printf("Unknown size in line: %s\n", line.c_str()); return -1; } } return 0; } bool BinaryEncoder::fileExists(const std::string &path) const { return ::fileExists(path); } std::vector BinaryEncoder::readBinaryFile(const std::string &path) const { return ::readBinaryFile(path); }