/* * Copyright (C) 2018-2020 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "binary_encoder.h" #include "shared/offline_compiler/source/offline_compiler.h" #include "shared/source/device_binary_format/elf/elf_encoder.h" #include "shared/source/device_binary_format/elf/ocl_elf.h" #include "shared/source/helpers/aligned_memory.h" #include "shared/source/helpers/file_io.h" #include "shared/source/helpers/hash.h" #include "CL/cl.h" #include "helper.h" #include #include #include #include void BinaryEncoder::calculatePatchListSizes(std::vector &ptmFile) { size_t patchListPos = 0; for (size_t i = 0; i < ptmFile.size(); ++i) { if (ptmFile[i].find("PatchListSize") != std::string::npos) { patchListPos = i; } else if (ptmFile[i].find("PATCH_TOKEN") != std::string::npos) { uint32_t calcSize = 0; i++; while (i < ptmFile.size() && ptmFile[i].find("Kernel #") == std::string::npos) { if (ptmFile[i].find(':') == std::string::npos) { if (ptmFile[i].find("Hex") != std::string::npos) { calcSize += static_cast(std::count(ptmFile[i].begin(), ptmFile[i].end(), ' ')); } else { calcSize += std::atoi(&ptmFile[i][1]); } } i++; } uint32_t size = static_cast(std::stoul(ptmFile[patchListPos].substr(ptmFile[patchListPos].find_last_of(' ') + 1))); if (size != calcSize) { argHelper->printf("Warning! Calculated PatchListSize ( %u ) differs from file ( %u ) - changing it. Line %d\n", calcSize, size, static_cast(patchListPos + 1)); ptmFile[patchListPos] = ptmFile[patchListPos].substr(0, ptmFile[patchListPos].find_last_of(' ') + 1); ptmFile[patchListPos] += std::to_string(calcSize); } } } } bool BinaryEncoder::copyBinaryToBinary(const std::string &srcFileName, std::ostream &outBinary, uint32_t *binaryLength) { if (argHelper->fileExists(srcFileName)) { return false; } auto binary = argHelper->readBinaryFile(srcFileName); auto length = binary.size(); outBinary.write(binary.data(), length); if (binaryLength) { *binaryLength = static_cast(length); } return true; } int BinaryEncoder::createElf(std::stringstream &deviceBinary) { NEO::Elf::ElfEncoder ElfEncoder; ElfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_EXECUTABLE; //Build Options if (argHelper->fileExists(pathToDump + "build.bin")) { auto binary = argHelper->readBinaryFile(pathToDump + "build.bin"); ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_OPTIONS, "BuildOptions", ArrayRef(reinterpret_cast(binary.data()), binary.size())); } else { argHelper->printf("Warning! Missing build section.\n"); } //LLVM or SPIRV if (argHelper->fileExists(pathToDump + "llvm.bin")) { auto binary = argHelper->readBinaryFile(pathToDump + "llvm.bin"); ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_LLVM_BINARY, "Intel(R) OpenCL LLVM Object", ArrayRef(reinterpret_cast(binary.data()), binary.size())); } else if (argHelper->fileExists(pathToDump + "spirv.bin")) { auto binary = argHelper->readBinaryFile(pathToDump + "spirv.bin"); ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_SPIRV, "SPIRV Object", ArrayRef(reinterpret_cast(binary.data()), binary.size())); } else { argHelper->printf("Warning! Missing llvm/spirv section.\n"); } //Device Binary auto deviceBinaryStr = deviceBinary.str(); std::vector binary(deviceBinaryStr.begin(), deviceBinaryStr.end()); ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_DEV_BINARY, "Intel(R) OpenCL Device Binary", ArrayRef(reinterpret_cast(binary.data()), binary.size())); //Resolve Elf Binary auto elfBinary = ElfEncoder.encode(); argHelper->saveOutput(elfName, elfBinary.data(), elfBinary.size()); return 0; } void BinaryEncoder::printHelp() { argHelper->printf(R"===(Assembles Intel Compute GPU device binary from input files. It's expected that input files were previously generated by 'ocloc disasm' command or are compatible with 'ocloc disasm' output (especially in terms of file naming scheme). See 'ocloc disasm --help' for additional info. Usage: ocloc asm -out [-dump ] [-device ] [-ignore_isa_padding] -out Filename for newly assembled binary. -dump Path to the input directory containing disassembled binary (as disassembled by ocloc's disasm command). Default is './dump'. -device Optional target device of output binary can be: %s By default ocloc will pick base device within a generation - i.e. both skl and kbl will fallback to skl. If specific product (e.g. kbl) is needed, provide it as device_type. -ignore_isa_padding Ignores Kernel Heap padding - padding will not be added to Kernel Heap binary. --help Print this usage message. Examples: Assemble to Intel Compute GPU device binary ocloc asm -out reassembled.bin )===", NEO::getDevicesTypes().c_str()); } int BinaryEncoder::encode() { std::vector ptmFile; if (!argHelper->fileExists(pathToDump + "PTM.txt")) { argHelper->printf("Error! Couldn't find PTM.txt"); return -1; } argHelper->readFileToVectorOfStrings(pathToDump + "PTM.txt", ptmFile); calculatePatchListSizes(ptmFile); std::stringstream deviceBinary; //(pathToDump + "device_binary.bin", std::ios::binary); int retVal = processBinary(ptmFile, deviceBinary); argHelper->saveOutput(pathToDump + "device_binary.bin", deviceBinary.str().c_str(), deviceBinary.str().length()); if (retVal != 0) { return retVal; } retVal = createElf(deviceBinary); return retVal; } int BinaryEncoder::processBinary(const std::vector &ptmFileLines, std::ostream &deviceBinary) { if (false == iga->isKnownPlatform()) { auto deviceMarker = findPos(ptmFileLines, "Device"); if (deviceMarker != ptmFileLines.size()) { std::stringstream ss(ptmFileLines[deviceMarker]); ss.ignore(32, ' '); ss.ignore(32, ' '); uint32_t gfxCore = 0; ss >> gfxCore; iga->setGfxCore(static_cast(gfxCore)); } } size_t i = 0; while (i < ptmFileLines.size()) { if (ptmFileLines[i].find("Kernel #") != std::string::npos) { if (processKernel(++i, ptmFileLines, deviceBinary)) { argHelper->printf("Warning while processing kernel!\n"); return -1; } } else if (writeDeviceBinary(ptmFileLines[i++], deviceBinary)) { argHelper->printf("Error while writing to binary!\n"); return -1; } } return 0; } void BinaryEncoder::addPadding(std::ostream &out, size_t numBytes) { for (size_t i = 0; i < numBytes; ++i) { const char nullByte = 0; out.write(&nullByte, 1U); } } int BinaryEncoder::processKernel(size_t &line, const std::vector &ptmFileLines, std::ostream &deviceBinary) { auto kernelInfoBeginMarker = line; auto kernelInfoEndMarker = ptmFileLines.size(); auto kernelNameMarker = ptmFileLines.size(); auto kernelPatchtokensMarker = ptmFileLines.size(); std::stringstream kernelBlob; // Normally these are added by the compiler, need to take or of them when reassembling constexpr size_t isaPaddingSizeInBytes = 128; constexpr uint32_t kernelHeapAlignmentInBytes = 64; uint32_t kernelNameSizeInBinary = 0; std::string kernelName; // Scan PTM lines for kernel info while (line < ptmFileLines.size()) { if (ptmFileLines[line].find("KernelName ") != std::string::npos) { kernelName = std::string(ptmFileLines[line], ptmFileLines[line].find(' ') + 1); kernelNameMarker = line; kernelPatchtokensMarker = kernelNameMarker + 1; // patchtokens come after name } else if (ptmFileLines[line].find("KernelNameSize") != std::string::npos) { std::stringstream ss(ptmFileLines[line]); ss.ignore(32, ' '); ss.ignore(32, ' '); ss >> kernelNameSizeInBinary; } else if (ptmFileLines[line].find("Kernel #") != std::string::npos) { kernelInfoEndMarker = line; break; } ++line; } // Write KernelName and padding kernelBlob.write(kernelName.c_str(), kernelName.size()); addPadding(kernelBlob, kernelNameSizeInBinary - kernelName.size()); // Write KernelHeap and padding uint32_t kernelHeapSizeUnpadded = 0U; bool heapsCopiedSuccesfully = true; // Use .asm if available, fallback to .dat if (argHelper->fileExists(pathToDump + kernelName + "_KernelHeap.asm")) { auto kernelAsAsm = argHelper->readBinaryFile(pathToDump + kernelName + "_KernelHeap.asm"); std::string kernelAsBinary; argHelper->printf("Trying to assemble %s.asm\n", kernelName.c_str()); if (false == iga->tryAssembleGenISA(std::string(kernelAsAsm.begin(), kernelAsAsm.end()), kernelAsBinary)) { argHelper->printf("Error : Could not assemble : %s\n", kernelName.c_str()); return -1; } kernelHeapSizeUnpadded = static_cast(kernelAsBinary.size()); kernelBlob.write(kernelAsBinary.data(), kernelAsBinary.size()); } else { heapsCopiedSuccesfully = copyBinaryToBinary(pathToDump + kernelName + "_KernelHeap.dat", kernelBlob, &kernelHeapSizeUnpadded); } uint32_t kernelHeapSize = 0U; // Adding padding and alignment if (ignoreIsaPadding) { kernelHeapSize = kernelHeapSizeUnpadded; } else { addPadding(kernelBlob, isaPaddingSizeInBytes); const uint32_t kernelHeapPaddedSize = kernelHeapSizeUnpadded + isaPaddingSizeInBytes; kernelHeapSize = alignUp(kernelHeapPaddedSize, kernelHeapAlignmentInBytes); addPadding(kernelBlob, kernelHeapSize - kernelHeapPaddedSize); } // Write GeneralStateHeap, DynamicStateHeap, SurfaceStateHeap if (argHelper->fileExists(pathToDump + kernelName + "_GeneralStateHeap.bin")) { heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_GeneralStateHeap.bin", kernelBlob); } heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_DynamicStateHeap.bin", kernelBlob); heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_SurfaceStateHeap.bin", kernelBlob); if (false == heapsCopiedSuccesfully) { return -1; } // Write kernel patchtokens for (size_t i = kernelPatchtokensMarker; i < kernelInfoEndMarker; ++i) { if (writeDeviceBinary(ptmFileLines[i], kernelBlob)) { argHelper->printf("Error while writing to binary.\n"); return -1; } } auto kernelBlobData = kernelBlob.str(); uint64_t hashValue = NEO::Hash::hash(reinterpret_cast(kernelBlobData.data()), kernelBlobData.size()); uint32_t calcCheckSum = hashValue & 0xFFFFFFFF; // Add kernel header for (size_t i = kernelInfoBeginMarker; i < kernelNameMarker; ++i) { if (ptmFileLines[i].find("CheckSum") != std::string::npos) { static_assert(std::is_same::value, ""); deviceBinary.write(reinterpret_cast(&calcCheckSum), sizeof(uint32_t)); } else if (ptmFileLines[i].find("KernelHeapSize") != std::string::npos) { static_assert(sizeof(kernelHeapSize) == sizeof(uint32_t), ""); deviceBinary.write(reinterpret_cast(&kernelHeapSize), sizeof(uint32_t)); } else if (ptmFileLines[i].find("KernelUnpaddedSize") != std::string::npos) { static_assert(sizeof(kernelHeapSizeUnpadded) == sizeof(uint32_t), ""); deviceBinary.write(reinterpret_cast(&kernelHeapSizeUnpadded), sizeof(uint32_t)); } else { if (writeDeviceBinary(ptmFileLines[i], deviceBinary)) { argHelper->printf("Error while writing to binary.\n"); return -1; } } } // Add kernel blob after the header deviceBinary.write(kernelBlobData.c_str(), kernelBlobData.size()); return 0; } int BinaryEncoder::validateInput(const std::vector &args) { if ("-help" == args[args.size() - 1]) { printHelp(); return -1; } for (size_t argIndex = 2; argIndex < args.size(); ++argIndex) { const auto &currArg = args[argIndex]; const bool hasMoreArgs = (argIndex + 1 < args.size()); if ("-dump" == currArg && hasMoreArgs) { pathToDump = args[++argIndex]; addSlash(pathToDump); } else if ("-device" == currArg && hasMoreArgs) { iga->setProductFamily(getProductFamilyFromDeviceName(args[++argIndex])); } else if ("-out" == currArg && hasMoreArgs) { elfName = args[++argIndex]; } else if ("-ignore_isa_padding" == currArg) { ignoreIsaPadding = true; } else if ("-q" == currArg) { argHelper->getPrinterRef() = MessagePrinter(true); iga->setMessagePrinter(argHelper->getPrinterRef()); } else { argHelper->printf("Unknown argument %s\n", currArg.c_str()); printHelp(); return -1; } } if (pathToDump.empty()) { if (!argHelper->outputEnabled()) { argHelper->printf("Warning : Path to dump folder not specificed - using ./dump as default.\n"); pathToDump = "dump"; addSlash(pathToDump); } } if (elfName.find(".bin") == std::string::npos) { argHelper->printf(".bin extension is expected for binary file.\n"); printHelp(); return -1; } if (false == iga->isKnownPlatform()) { argHelper->printf("Warning : missing or invalid -device parameter - results may be inacurate\n"); } return 0; } template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary) { T val; in >> val; deviceBinary.write(reinterpret_cast(&val), sizeof(T)); } template <> void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary) { uint8_t val; uint16_t help; in >> help; val = static_cast(help); deviceBinary.write(reinterpret_cast(&val), sizeof(uint8_t)); } template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary); template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary); template void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary); int BinaryEncoder::writeDeviceBinary(const std::string &line, std::ostream &deviceBinary) { if (line.find(':') != std::string::npos) { return 0; } else if (line.find("Hex") != std::string::npos) { std::stringstream ss(line); ss.ignore(32, ' '); uint16_t tmp; uint8_t byte; while (!ss.eof()) { ss >> std::hex >> tmp; byte = static_cast(tmp); deviceBinary.write(reinterpret_cast(&byte), sizeof(uint8_t)); } } else { std::stringstream ss(line); uint16_t size; std::string name; ss >> size; ss >> name; switch (size) { case 1: write(ss, deviceBinary); break; case 2: write(ss, deviceBinary); break; case 4: write(ss, deviceBinary); break; case 8: write(ss, deviceBinary); break; default: argHelper->printf("Unknown size in line: %s\n", line.c_str()); return -1; } } return 0; }