/* * Copyright (c) 2017 - 2018, Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "runtime/built_ins/built_ins.h" #include "runtime/built_ins/builtins_dispatch_builder.h" #include "runtime/command_queue/command_queue.h" #include "runtime/command_stream/command_stream_receiver.h" #include "reg_configs_common.h" #include "runtime/helpers/ptr_math.h" #include "runtime/helpers/aligned_memory.h" #include "runtime/helpers/dispatch_info.h" #include "unit_tests/command_queue/enqueue_fixture.h" #include "unit_tests/command_queue/enqueue_fill_buffer_fixture.h" #include "unit_tests/gen_common/gen_commands_common_validation.h" #include "runtime/memory_manager/memory_manager.h" #include "test.h" using namespace OCLRT; typedef Test EnqueueFillBufferCmdTests; HWTEST_F(EnqueueFillBufferCmdTests, alignsToCSR) { //this test case assumes IOQ auto &csr = pDevice->getUltCommandStreamReceiver(); csr.taskCount = pCmdQ->taskCount + 100; csr.taskLevel = pCmdQ->taskLevel + 50; EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount); EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1); } HWTEST_F(EnqueueFillBufferCmdTests, bumpsTaskLevel) { auto taskLevelBefore = pCmdQ->taskLevel; EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore); } HWTEST_F(EnqueueFillBufferCmdTests, setsBufferCompletionStamp) { EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); auto deviceEngineType = pDevice->getEngineType(); auto &commandStreamReceiver = pDevice->getCommandStreamReceiver(); EXPECT_EQ(commandStreamReceiver.peekTaskCount(), buffer->getCompletionStamp().taskCount); EXPECT_EQ(0u, buffer->getCompletionStamp().deviceOrdinal); EXPECT_EQ(deviceEngineType, buffer->getCompletionStamp().engineType); } HWTEST_F(EnqueueFillBufferCmdTests, addsCommands) { auto usedCmdBufferBefore = pCS->getUsed(); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); EXPECT_NE(usedCmdBufferBefore, pCS->getUsed()); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, GPGPUWalker) { typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER; enqueueFillBuffer(); auto *cmd = (GPGPU_WALKER *)cmdWalker; ASSERT_NE(nullptr, cmd); // Verify GPGPU_WALKER parameters EXPECT_NE(0u, cmd->getThreadGroupIdXDimension()); EXPECT_NE(0u, cmd->getThreadGroupIdYDimension()); EXPECT_NE(0u, cmd->getThreadGroupIdZDimension()); EXPECT_NE(0u, cmd->getRightExecutionMask()); EXPECT_NE(0u, cmd->getBottomExecutionMask()); EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize()); EXPECT_NE(0u, cmd->getIndirectDataLength()); EXPECT_FALSE(cmd->getIndirectParameterEnable()); // Compute the SIMD lane mask size_t simd = cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8; uint64_t simdMask = (1ull << simd) - 1; // Mask off lanes based on the execution masks auto laneMaskRight = cmd->getRightExecutionMask() & simdMask; auto lanesPerThreadX = 0; while (laneMaskRight) { lanesPerThreadX += laneMaskRight & 1; laneMaskRight >>= 1; } } HWTEST_F(EnqueueFillBufferCmdTests, addsIndirectData) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); auto dshBefore = pDSH->getUsed(); auto iohBefore = pIOH->getUsed(); auto sshBefore = pSSH->getUsed(); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); MultiDispatchInfo multiDispatchInfo; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {EnqueueFillBufferTraits::offset, 0, 0}; dc.size = {EnqueueFillBufferTraits::size, 0, 0}; builder.buildDispatchInfos(multiDispatchInfo, dc); EXPECT_NE(0u, multiDispatchInfo.size()); auto kernel = multiDispatchInfo.begin()->getKernel(); EXPECT_NE(dshBefore, pDSH->getUsed()); EXPECT_NE(iohBefore, pIOH->getUsed()); if (kernel->requiresSshForBuffers()) { EXPECT_NE(sshBefore, pSSH->getUsed()); } context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } HWTEST_F(EnqueueFillBufferCmdTests, FillBufferRightLeftover) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); MultiDispatchInfo mdi; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {0, 0, 0}; dc.size = {EnqueueFillBufferTraits::patternSize, 0, 0}; builder.buildDispatchInfos(mdi, dc); EXPECT_EQ(1u, mdi.size()); auto kernel = mdi.begin()->getKernel(); EXPECT_STREQ("FillBufferRightLeftover", kernel->getKernelInfo().name.c_str()); context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } HWTEST_F(EnqueueFillBufferCmdTests, FillBufferMiddle) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); MultiDispatchInfo mdi; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {0, 0, 0}; dc.size = {MemoryConstants::cacheLineSize, 0, 0}; builder.buildDispatchInfos(mdi, dc); EXPECT_EQ(1u, mdi.size()); auto kernel = mdi.begin()->getKernel(); EXPECT_STREQ("FillBufferMiddle", kernel->getKernelInfo().name.c_str()); context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } HWTEST_F(EnqueueFillBufferCmdTests, FillBufferLeftLeftover) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); MultiDispatchInfo mdi; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {EnqueueFillBufferTraits::patternSize, 0, 0}; dc.size = {EnqueueFillBufferTraits::patternSize, 0, 0}; builder.buildDispatchInfos(mdi, dc); EXPECT_EQ(1u, mdi.size()); auto kernel = mdi.begin()->getKernel(); EXPECT_STREQ("FillBufferLeftLeftover", kernel->getKernelInfo().name.c_str()); context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, LoadRegisterImmediateL3CNTLREG) { enqueueFillBuffer(); validateL3Programming(cmdList, itorWalker); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) { enqueueFillBuffer(); validateStateBaseAddress(this->pDevice->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(), pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, MediaInterfaceDescriptorLoad) { typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD; typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA; enqueueFillBuffer(); auto *cmd = (MEDIA_INTERFACE_DESCRIPTOR_LOAD *)cmdMediaInterfaceDescriptorLoad; // Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA)); // Validate the start address size_t alignmentStartAddress = 64 * sizeof(uint8_t); EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress); // Validate the length EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength()); size_t alignmentTotalLength = 32 * sizeof(uint8_t); EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength); // Generically validate this command FamilyType::PARSE::template validateCommand(cmdList.begin(), itorMediaInterfaceDescriptorLoad); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, InterfaceDescriptorData) { typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA; typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS; enqueueFillBuffer(); // Extract the IDD auto cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress; auto &IDD = *(INTERFACE_DESCRIPTOR_DATA *)(cmdInterfaceDescriptorData); // Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value. auto kernelStartPointer = ((uint64_t)IDD.getKernelStartPointerHigh() << 32) + IDD.getKernelStartPointer(); EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize); EXPECT_NE(0u, IDD.getNumberOfThreadsInGpgpuThreadGroup()); EXPECT_NE(0u, IDD.getCrossThreadConstantDataReadLength()); EXPECT_NE(0u, IDD.getConstantIndirectUrbEntryReadLength()); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, PipelineSelect) { enqueueFillBuffer(); int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect(); EXPECT_EQ(1, numCommands); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, MediaVFEState) { typedef typename FamilyType::MEDIA_VFE_STATE MEDIA_VFE_STATE; enqueueFillBuffer(); auto *cmd = (MEDIA_VFE_STATE *)cmdMediaVfeState; ASSERT_NE(nullptr, cmd); // Verify we have a valid length EXPECT_EQ(pDevice->getHardwareInfo().pSysInfo->ThreadCount, cmd->getMaximumNumberOfThreads()); EXPECT_NE(0u, cmd->getNumberOfUrbEntries()); EXPECT_NE(0u, cmd->getUrbEntryAllocationSize()); // Generically validate this command FamilyType::PARSE::template validateCommand(cmdList.begin(), itorMediaVfeState); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, argumentZeroShouldMatchDestAddress) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); enqueueFillBuffer(); // Extract the kernel used MultiDispatchInfo multiDispatchInfo; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {EnqueueFillBufferTraits::offset, 0, 0}; dc.size = {EnqueueFillBufferTraits::size, 0, 0}; builder.buildDispatchInfos(multiDispatchInfo, dc); EXPECT_NE(0u, multiDispatchInfo.size()); auto kernel = multiDispatchInfo.begin()->getKernel(); ASSERT_NE(nullptr, kernel); // Determine where the argument is auto pArgument = (void **)getStatelessArgumentPointer(*kernel, 0u, pCmdQ->getIndirectHeap(IndirectHeap::INDIRECT_OBJECT, 0)); EXPECT_EQ((void *)((uintptr_t)buffer->getGraphicsAllocation()->getGpuAddress()), *pArgument); context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } // This test case should be re-enabled once getStatelessArgumentPointer gets support for SVM pointers. // This could happen if KernelInfo.kernelArgInfo was accessible given a Kernel. Just need an offset // into CrossThreadData. HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, DISABLED_argumentOneShouldMatchOffset) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); enqueueFillBuffer(); // Extract the kernel used MultiDispatchInfo multiDispatchInfo; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {EnqueueFillBufferTraits::offset, 0, 0}; dc.size = {EnqueueFillBufferTraits::size, 0, 0}; builder.buildDispatchInfos(multiDispatchInfo, dc); EXPECT_NE(0u, multiDispatchInfo.size()); auto kernel = multiDispatchInfo.begin()->getKernel(); ASSERT_NE(nullptr, kernel); // Determine where the argument is auto pArgument = (uint32_t *)getStatelessArgumentPointer(*kernel, 1u, pCmdQ->getIndirectHeap(IndirectHeap::INDIRECT_OBJECT, 0)); ASSERT_NE(nullptr, pArgument); EXPECT_EQ(0u, *pArgument); context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillBufferCmdTests, argumentTwoShouldMatchPatternPtr) { auto patternAllocation = context.getMemoryManager()->allocateGraphicsMemory(EnqueueFillBufferTraits::patternSize, MemoryConstants::preferredAlignment); enqueueFillBuffer(); // Extract the kernel used MultiDispatchInfo multiDispatchInfo; auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::FillBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); ASSERT_NE(nullptr, &builder); BuiltinDispatchInfoBuilder::BuiltinOpParams dc; MemObj patternMemObj(&this->context, 0, 0, alignUp(EnqueueFillBufferTraits::patternSize, 4), patternAllocation->getUnderlyingBuffer(), patternAllocation->getUnderlyingBuffer(), patternAllocation, false, false, true); dc.srcMemObj = &patternMemObj; dc.dstMemObj = buffer; dc.dstOffset = {EnqueueFillBufferTraits::offset, 0, 0}; dc.size = {EnqueueFillBufferTraits::size, 0, 0}; builder.buildDispatchInfos(multiDispatchInfo, dc); EXPECT_NE(0u, multiDispatchInfo.size()); auto kernel = multiDispatchInfo.begin()->getKernel(); ASSERT_NE(nullptr, kernel); // Determine where the argument is auto pArgument = (void **)getStatelessArgumentPointer(*kernel, 2u, pCmdQ->getIndirectHeap(IndirectHeap::INDIRECT_OBJECT, 0)); EXPECT_NE(nullptr, *pArgument); context.getMemoryManager()->freeGraphicsMemory(patternAllocation); } HWTEST_F(EnqueueFillBufferCmdTests, patternShouldBeCopied) { MemoryManager *mmgr = pCmdQ->getDevice().getMemoryManager(); ASSERT_TRUE(mmgr->graphicsAllocations.peekIsEmpty()); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); ASSERT_FALSE(mmgr->graphicsAllocations.peekIsEmpty()); GraphicsAllocation *allocation = mmgr->graphicsAllocations.peekHead(); while (allocation != nullptr) { if ((allocation->getUnderlyingBufferSize() >= sizeof(float)) && (allocation->getUnderlyingBuffer() != nullptr) && (*(static_cast(allocation->getUnderlyingBuffer())) == EnqueueFillBufferHelper<>::Traits::pattern[0]) && (pCmdQ->taskCount == allocation->taskCount)) { break; } allocation = allocation->next; } ASSERT_NE(nullptr, allocation); EXPECT_NE(&EnqueueFillBufferHelper<>::Traits::pattern[0], allocation->getUnderlyingBuffer()); } HWTEST_F(EnqueueFillBufferCmdTests, patternShouldBeAligned) { MemoryManager *mmgr = pCmdQ->getDevice().getMemoryManager(); ASSERT_TRUE(mmgr->graphicsAllocations.peekIsEmpty()); EnqueueFillBufferHelper<>::enqueueFillBuffer(pCmdQ, buffer); ASSERT_FALSE(mmgr->graphicsAllocations.peekIsEmpty()); GraphicsAllocation *allocation = mmgr->graphicsAllocations.peekHead(); while (allocation != nullptr) { if ((allocation->getUnderlyingBufferSize() >= sizeof(float)) && (allocation->getUnderlyingBuffer() != nullptr) && (*(static_cast(allocation->getUnderlyingBuffer())) == EnqueueFillBufferHelper<>::Traits::pattern[0]) && (pCmdQ->taskCount == allocation->taskCount)) { break; } allocation = allocation->next; } ASSERT_NE(nullptr, allocation); EXPECT_EQ(alignUp(allocation->getUnderlyingBuffer(), MemoryConstants::cacheLineSize), allocation->getUnderlyingBuffer()); EXPECT_EQ(alignUp(allocation->getUnderlyingBufferSize(), MemoryConstants::cacheLineSize), allocation->getUnderlyingBufferSize()); } HWTEST_F(EnqueueFillBufferCmdTests, patternOfSizeOneByteShouldGetPreparedForMiddleKernel) { MemoryManager *mmgr = pCmdQ->getDevice().getMemoryManager(); ASSERT_TRUE(mmgr->allocationsForReuse.peekIsEmpty()); ASSERT_TRUE(mmgr->graphicsAllocations.peekIsEmpty()); auto dstBuffer = std::unique_ptr(BufferHelper<>::create()); const uint8_t pattern[1] = {0x55}; const size_t patternSize = sizeof(pattern); const size_t offset = 0; const size_t size = 4 * patternSize; const uint8_t output[4] = {0x55, 0x55, 0x55, 0x55}; auto retVal = clEnqueueFillBuffer( pCmdQ, dstBuffer.get(), pattern, patternSize, offset, size, 0, nullptr, nullptr); ASSERT_EQ(CL_SUCCESS, retVal); ASSERT_TRUE(mmgr->allocationsForReuse.peekIsEmpty()); ASSERT_FALSE(mmgr->graphicsAllocations.peekIsEmpty()); GraphicsAllocation *allocation = mmgr->graphicsAllocations.peekHead(); ASSERT_NE(nullptr, allocation); EXPECT_EQ(0, memcmp(allocation->getUnderlyingBuffer(), output, size)); } HWTEST_F(EnqueueFillBufferCmdTests, patternOfSizeTwoBytesShouldGetPreparedForMiddleKernel) { MemoryManager *mmgr = pCmdQ->getDevice().getMemoryManager(); ASSERT_TRUE(mmgr->allocationsForReuse.peekIsEmpty()); ASSERT_TRUE(mmgr->graphicsAllocations.peekIsEmpty()); auto dstBuffer = std::unique_ptr(BufferHelper<>::create()); const uint8_t pattern[2] = {0x55, 0xAA}; const size_t patternSize = sizeof(pattern); const size_t offset = 0; const size_t size = 2 * patternSize; const uint8_t output[4] = {0x55, 0xAA, 0x55, 0xAA}; auto retVal = clEnqueueFillBuffer( pCmdQ, dstBuffer.get(), pattern, patternSize, offset, size, 0, nullptr, nullptr); ASSERT_EQ(CL_SUCCESS, retVal); ASSERT_TRUE(mmgr->allocationsForReuse.peekIsEmpty()); ASSERT_FALSE(mmgr->graphicsAllocations.peekIsEmpty()); GraphicsAllocation *allocation = mmgr->graphicsAllocations.peekHead(); ASSERT_NE(nullptr, allocation); EXPECT_EQ(0, memcmp(allocation->getUnderlyingBuffer(), output, size)); } HWTEST_F(EnqueueFillBufferCmdTests, givenEnqueueFillBufferWhenPatternAllocationIsObtainedThenItsTypeShouldBeSetToFillPattern) { MemoryManager *mmgr = pCmdQ->getDevice().getMemoryManager(); ASSERT_TRUE(mmgr->graphicsAllocations.peekIsEmpty()); auto dstBuffer = std::unique_ptr(BufferHelper<>::create()); const uint8_t pattern[1] = {0x55}; const size_t patternSize = sizeof(pattern); const size_t offset = 0; const size_t size = patternSize; auto retVal = clEnqueueFillBuffer( pCmdQ, dstBuffer.get(), pattern, patternSize, offset, size, 0, nullptr, nullptr); ASSERT_EQ(CL_SUCCESS, retVal); ASSERT_FALSE(mmgr->graphicsAllocations.peekIsEmpty()); GraphicsAllocation *patternAllocation = mmgr->graphicsAllocations.peekHead(); ASSERT_NE(nullptr, patternAllocation); EXPECT_EQ(GraphicsAllocation::ALLOCATION_TYPE_FILL_PATTERN, patternAllocation->getAllocationType()); }