/* * Copyright (C) 2017-2019 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "core/helpers/basic_math.h" #include "core/helpers/file_io.h" #include "core/helpers/hash.h" #include "runtime/compiler_interface/patchtokens_decoder.h" #include "runtime/context/context.h" #include "runtime/device/device.h" #include "runtime/gtpin/gtpin_defs.h" #include "runtime/gtpin/gtpin_helpers.h" #include "runtime/gtpin/gtpin_hw_helper.h" #include "runtime/gtpin/gtpin_init.h" #include "runtime/gtpin/gtpin_notify.h" #include "runtime/helpers/options.h" #include "runtime/kernel/kernel.h" #include "runtime/mem_obj/buffer.h" #include "runtime/memory_manager/surface.h" #include "runtime/os_interface/os_context.h" #include "test.h" #include "unit_tests/fixtures/context_fixture.h" #include "unit_tests/fixtures/memory_management_fixture.h" #include "unit_tests/fixtures/platform_fixture.h" #include "unit_tests/helpers/kernel_binary_helper.h" #include "unit_tests/helpers/test_files.h" #include "unit_tests/helpers/variable_backup.h" #include "unit_tests/mocks/mock_command_queue.h" #include "unit_tests/mocks/mock_context.h" #include "unit_tests/mocks/mock_device.h" #include "unit_tests/mocks/mock_kernel.h" #include "unit_tests/program/program_tests.h" #include "gtest/gtest.h" #include #include using namespace NEO; using namespace gtpin; namespace NEO { extern std::deque kernelExecQueue; } namespace ULT { int ContextCreateCallbackCount = 0; int ContextDestroyCallbackCount = 0; int KernelCreateCallbackCount = 0; int KernelSubmitCallbackCount = 0; int CommandBufferCreateCallbackCount = 0; int CommandBufferCompleteCallbackCount = 0; uint32_t kernelOffset = 0; bool returnNullResource = false; context_handle_t currContext = nullptr; std::deque kernelResources; void OnContextCreate(context_handle_t context, platform_info_t *platformInfo, igc_init_t **igcInit) { currContext = context; kernelResources.clear(); ContextCreateCallbackCount++; *igcInit = reinterpret_cast(0x1234); } void OnContextDestroy(context_handle_t context) { currContext = nullptr; EXPECT_EQ(0u, kernelResources.size()); kernelResources.clear(); ContextDestroyCallbackCount++; } void OnKernelCreate(context_handle_t context, const instrument_params_in_t *paramsIn, instrument_params_out_t *paramsOut) { paramsOut->inst_kernel_binary = const_cast(paramsIn->orig_kernel_binary); paramsOut->inst_kernel_size = paramsIn->orig_kernel_size; paramsOut->kernel_id = paramsIn->igc_hash_id; KernelCreateCallbackCount++; } void OnKernelSubmit(command_buffer_handle_t cb, uint64_t kernelId, uint32_t *entryOffset, resource_handle_t *resource) { resource_handle_t currResource = nullptr; ASSERT_NE(nullptr, currContext); if (!returnNullResource) { GTPIN_DI_STATUS st = gtpinCreateBuffer(currContext, (uint32_t)256, &currResource); EXPECT_EQ(GTPIN_DI_SUCCESS, st); EXPECT_NE(nullptr, currResource); uint8_t *bufAddress = nullptr; st = gtpinMapBuffer(currContext, currResource, &bufAddress); EXPECT_EQ(GTPIN_DI_SUCCESS, st); EXPECT_NE(nullptr, bufAddress); } *entryOffset = kernelOffset; *resource = currResource; kernelResources.push_back(currResource); KernelSubmitCallbackCount++; } void OnCommandBufferCreate(context_handle_t context, command_buffer_handle_t cb) { CommandBufferCreateCallbackCount++; } void OnCommandBufferComplete(command_buffer_handle_t cb) { ASSERT_NE(nullptr, currContext); resource_handle_t currResource = kernelResources[0]; EXPECT_NE(nullptr, currResource); GTPIN_DI_STATUS st = gtpinUnmapBuffer(currContext, currResource); EXPECT_EQ(GTPIN_DI_SUCCESS, st); st = gtpinFreeBuffer(currContext, currResource); EXPECT_EQ(GTPIN_DI_SUCCESS, st); kernelResources.pop_front(); CommandBufferCompleteCallbackCount++; } class MockMemoryManagerWithFailures : public OsAgnosticMemoryManager { public: MockMemoryManagerWithFailures(ExecutionEnvironment &executionEnvironment) : OsAgnosticMemoryManager(executionEnvironment){}; GraphicsAllocation *allocateGraphicsMemoryInDevicePool(const AllocationData &allocationData, AllocationStatus &status) override { if (failAllAllocationsInDevicePool) { failAllAllocationsInDevicePool = false; return nullptr; } return OsAgnosticMemoryManager::allocateGraphicsMemoryInDevicePool(allocationData, status); } bool failAllAllocationsInDevicePool = false; }; class GTPinFixture : public ContextFixture, public MemoryManagementFixture { using ContextFixture::SetUp; public: void SetUp() override { platformImpl.reset(); MemoryManagementFixture::SetUp(); constructPlatform(); pPlatform = platform(); auto executionEnvironment = pPlatform->peekExecutionEnvironment(); executionEnvironment->setHwInfo(*platformDevices); executionEnvironment->prepareRootDeviceEnvironments(1); memoryManager = new MockMemoryManagerWithFailures(*executionEnvironment); executionEnvironment->memoryManager.reset(memoryManager); pPlatform->initialize(); pDevice = pPlatform->getDevice(0); cl_device_id device = (cl_device_id)pDevice; ContextFixture::SetUp(1, &device); driverServices.bufferAllocate = nullptr; driverServices.bufferDeallocate = nullptr; driverServices.bufferMap = nullptr; driverServices.bufferUnMap = nullptr; gtpinCallbacks.onContextCreate = nullptr; gtpinCallbacks.onContextDestroy = nullptr; gtpinCallbacks.onKernelCreate = nullptr; gtpinCallbacks.onKernelSubmit = nullptr; gtpinCallbacks.onCommandBufferCreate = nullptr; gtpinCallbacks.onCommandBufferComplete = nullptr; NEO::isGTPinInitialized = false; kernelOffset = 0; } void TearDown() override { ContextFixture::TearDown(); platformImpl.reset(nullptr); MemoryManagementFixture::TearDown(); NEO::isGTPinInitialized = false; } Platform *pPlatform = nullptr; Device *pDevice = nullptr; cl_int retVal = CL_SUCCESS; GTPIN_DI_STATUS retFromGtPin = GTPIN_DI_SUCCESS; driver_services_t driverServices; gtpin::ocl::gtpin_events_t gtpinCallbacks; MockMemoryManagerWithFailures *memoryManager = nullptr; }; typedef Test GTPinTests; TEST_F(GTPinTests, givenInvalidArgumentsThenGTPinInitFails) { bool isInitialized = false; retFromGtPin = GTPin_Init(nullptr, nullptr, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); isInitialized = gtpinIsGTPinInitialized(); EXPECT_FALSE(isInitialized); retFromGtPin = GTPin_Init(>pinCallbacks, nullptr, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); isInitialized = gtpinIsGTPinInitialized(); EXPECT_FALSE(isInitialized); retFromGtPin = GTPin_Init(nullptr, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); isInitialized = gtpinIsGTPinInitialized(); EXPECT_FALSE(isInitialized); } TEST_F(GTPinTests, givenIncompleteArgumentsThenGTPinInitFails) { interface_version_t ver; ver.common = 0; ver.specific = 0; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, &ver); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); gtpinCallbacks.onContextCreate = OnContextCreate; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); gtpinCallbacks.onContextDestroy = OnContextDestroy; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); gtpinCallbacks.onKernelCreate = OnKernelCreate; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); gtpinCallbacks.onKernelSubmit = OnKernelSubmit; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INVALID_ARGUMENT, retFromGtPin); } TEST_F(GTPinTests, givenInvalidArgumentsWhenVersionArgumentIsProvidedThenGTPinInitReturnsDriverVersion) { interface_version_t ver; ver.common = 0; ver.specific = 0; retFromGtPin = GTPin_Init(nullptr, nullptr, &ver); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(gtpin::ocl::GTPIN_OCL_INTERFACE_VERSION, ver.specific); EXPECT_EQ(gtpin::GTPIN_COMMON_INTERFACE_VERSION, ver.common); retFromGtPin = GTPin_Init(>pinCallbacks, nullptr, &ver); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(gtpin::ocl::GTPIN_OCL_INTERFACE_VERSION, ver.specific); EXPECT_EQ(gtpin::GTPIN_COMMON_INTERFACE_VERSION, ver.common); retFromGtPin = GTPin_Init(nullptr, &driverServices, &ver); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(gtpin::ocl::GTPIN_OCL_INTERFACE_VERSION, ver.specific); EXPECT_EQ(gtpin::GTPIN_COMMON_INTERFACE_VERSION, ver.common); } TEST_F(GTPinTests, givenValidAndCompleteArgumentsThenGTPinInitSucceeds) { bool isInitialized = false; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); EXPECT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); isInitialized = gtpinIsGTPinInitialized(); EXPECT_TRUE(isInitialized); } TEST_F(GTPinTests, givenValidAndCompleteArgumentsWhenGTPinIsAlreadyInitializedThenGTPinInitFails) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); EXPECT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_ERROR_INSTANCE_ALREADY_CREATED, retFromGtPin); } TEST_F(GTPinTests, givenInvalidArgumentsThenBufferAllocateFails) { resource_handle_t res; uint32_t buffSize = 400u; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); EXPECT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); retFromGtPin = (*driverServices.bufferAllocate)(nullptr, buffSize, &res); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferAllocate)((gtpin::context_handle_t)ctxt, buffSize, nullptr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenInvalidArgumentsThenBufferDeallocateFails) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); retFromGtPin = (*driverServices.bufferDeallocate)(nullptr, nullptr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, nullptr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, (gtpin::resource_handle_t)ctxt); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenInvalidArgumentsThenBufferMapFails) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); EXPECT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); ASSERT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); uint8_t *mappedPtr; retFromGtPin = (*driverServices.bufferMap)(nullptr, nullptr, &mappedPtr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferMap)((gtpin::context_handle_t)ctxt, nullptr, &mappedPtr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); retFromGtPin = (*driverServices.bufferMap)((gtpin::context_handle_t)ctxt, (gtpin::resource_handle_t)ctxt, &mappedPtr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenInvalidArgumentsThenBufferUnMapFails) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); EXPECT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); ASSERT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); retFromGtPin = (*driverServices.bufferUnMap)(nullptr, nullptr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferUnMap)((gtpin::context_handle_t)ctxt, nullptr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); retFromGtPin = (*driverServices.bufferUnMap)((gtpin::context_handle_t)ctxt, (gtpin::resource_handle_t)ctxt); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenValidRequestForHugeMemoryAllocationThenBufferAllocateFails) { InjectedFunction allocBufferFunc = [this](size_t failureIndex) { resource_handle_t res; cl_context ctxt = (cl_context)((Context *)pContext); uint32_t hugeSize = 400u; // Will be handled as huge memory allocation retFromGtPin = (*driverServices.bufferAllocate)((gtpin::context_handle_t)ctxt, hugeSize, &res); if (MemoryManagement::nonfailingAllocation != failureIndex) { EXPECT_EQ(GTPIN_DI_ERROR_ALLOCATION_FAILED, retFromGtPin); } else { EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, res); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); } }; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); injectFailures(allocBufferFunc); } TEST_F(GTPinTests, givenValidRequestForMemoryAllocationThenBufferAllocateAndDeallocateSucceeds) { resource_handle_t res; uint32_t buffSize = 400u; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferAllocate)((gtpin::context_handle_t)ctxt, buffSize, &res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, res); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenValidArgumentsForBufferMapWhenCallSequenceIsCorrectThenBufferMapSucceeds) { resource_handle_t res; uint32_t buffSize = 400u; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); ASSERT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferAllocate)((gtpin::context_handle_t)ctxt, buffSize, &res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, res); uint8_t *mappedPtr = nullptr; retFromGtPin = (*driverServices.bufferMap)((gtpin::context_handle_t)ctxt, res, &mappedPtr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, mappedPtr); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenMissingReturnArgumentForBufferMapWhenCallSequenceIsCorrectThenBufferMapFails) { resource_handle_t res; uint32_t buffSize = 400u; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); ASSERT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferAllocate)((gtpin::context_handle_t)ctxt, buffSize, &res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, res); retFromGtPin = (*driverServices.bufferMap)((gtpin::context_handle_t)ctxt, res, nullptr); EXPECT_NE(GTPIN_DI_SUCCESS, retFromGtPin); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenValidArgumentsForBufferUnMapWhenCallSequenceIsCorrectThenBufferUnMapSucceeds) { resource_handle_t res; uint32_t buffSize = 400u; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); ASSERT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); ASSERT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); cl_context ctxt = (cl_context)((Context *)pContext); retFromGtPin = (*driverServices.bufferAllocate)((gtpin::context_handle_t)ctxt, buffSize, &res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, res); uint8_t *mappedPtr = nullptr; retFromGtPin = (*driverServices.bufferMap)((gtpin::context_handle_t)ctxt, res, &mappedPtr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); EXPECT_NE(nullptr, mappedPtr); retFromGtPin = (*driverServices.bufferUnMap)((gtpin::context_handle_t)ctxt, res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); retFromGtPin = (*driverServices.bufferDeallocate)((gtpin::context_handle_t)ctxt, res); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); } TEST_F(GTPinTests, givenUninitializedGTPinInterfaceThenGTPinContextCallbackIsNotCalled) { int prevCount = ContextCreateCallbackCount; cl_device_id device = (cl_device_id)pDevice; auto context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); EXPECT_EQ(ContextCreateCallbackCount, prevCount); prevCount = ContextDestroyCallbackCount; retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(ContextDestroyCallbackCount, prevCount); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenContextCreationArgumentsAreInvalidThenGTPinContextCallbackIsNotCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); int prevCount = ContextCreateCallbackCount; cl_device_id device = (cl_device_id)pDevice; cl_context_properties invalidProperties[3] = {CL_CONTEXT_PLATFORM, (cl_context_properties) nullptr, 0}; auto context = clCreateContext(invalidProperties, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_INVALID_PLATFORM, retVal); EXPECT_EQ(nullptr, context); EXPECT_EQ(ContextCreateCallbackCount, prevCount); context = clCreateContextFromType(invalidProperties, CL_DEVICE_TYPE_GPU, nullptr, nullptr, &retVal); EXPECT_EQ(CL_INVALID_PLATFORM, retVal); EXPECT_EQ(nullptr, context); EXPECT_EQ(ContextCreateCallbackCount, prevCount); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceThenGTPinContextCallbackIsCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); int prevCount = ContextCreateCallbackCount; cl_device_id device = (cl_device_id)pDevice; auto context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); EXPECT_EQ(ContextCreateCallbackCount, prevCount + 1); prevCount = ContextDestroyCallbackCount; retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(ContextDestroyCallbackCount, prevCount + 1); prevCount = ContextCreateCallbackCount; context = clCreateContextFromType(nullptr, CL_DEVICE_TYPE_GPU, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); EXPECT_EQ(ContextCreateCallbackCount, prevCount + 1); prevCount = ContextDestroyCallbackCount; retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(ContextDestroyCallbackCount, prevCount + 1); } TEST_F(GTPinTests, givenUninitializedGTPinInterfaceThenGTPinKernelCreateCallbackIsNotCalled) { cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( (cl_context)((Context *)pContext), 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount = KernelCreateCallbackCount; kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount, KernelCreateCallbackCount); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenKernelIsExecutedThenGTPinCallbacksAreCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_kernel kernel1 = nullptr; cl_kernel kernel2 = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); // Create and submit first instance of "CopyBuffer" kernel int prevCount11 = KernelCreateCallbackCount; kernel1 = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel1); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount11 + 1, KernelCreateCallbackCount); Kernel *pKernel1 = (Kernel *)kernel1; const KernelInfo &kInfo1 = pKernel1->getKernelInfo(); uint64_t gtpinKernelId1 = pKernel1->getKernelId(); EXPECT_EQ(kInfo1.heapInfo.pKernelHeader->ShaderHashCode, gtpinKernelId1); constexpr size_t n = 256; auto buff10 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); auto buff11 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); retVal = clSetKernelArg(pKernel1, 0, sizeof(cl_mem), &buff10); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clSetKernelArg(pKernel1, 1, sizeof(cl_mem), &buff11); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount12 = KernelSubmitCallbackCount; int prevCount13 = CommandBufferCreateCallbackCount; int prevCount14 = CommandBufferCompleteCallbackCount; cl_uint workDim = 1; size_t globalWorkOffset[3] = {0, 0, 0}; size_t globalWorkSize[3] = {n, 1, 1}; size_t localWorkSize[3] = {1, 1, 1}; retVal = clEnqueueNDRangeKernel(cmdQ, pKernel1, workDim, globalWorkOffset, globalWorkSize, localWorkSize, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount12 + 1, KernelSubmitCallbackCount); EXPECT_EQ(prevCount13 + 1, CommandBufferCreateCallbackCount); // Create and submit second instance of "CopyBuffer" kernel int prevCount21 = KernelCreateCallbackCount; kernel2 = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel2); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that GT-Pin Kernel Create callback is not called multiple times for the same kernel EXPECT_EQ(prevCount21, KernelCreateCallbackCount); Kernel *pKernel2 = (Kernel *)kernel2; const KernelInfo &kInfo2 = pKernel2->getKernelInfo(); uint64_t gtpinKernelId2 = pKernel2->getKernelId(); EXPECT_EQ(kInfo2.heapInfo.pKernelHeader->ShaderHashCode, gtpinKernelId2); auto buff20 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); auto buff21 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); retVal = clSetKernelArg(pKernel2, 0, sizeof(cl_mem), &buff20); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clSetKernelArg(pKernel2, 1, sizeof(cl_mem), &buff21); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount22 = KernelSubmitCallbackCount; int prevCount23 = CommandBufferCreateCallbackCount; int prevCount24 = CommandBufferCompleteCallbackCount; retVal = clEnqueueNDRangeKernel(cmdQ, pKernel2, workDim, globalWorkOffset, globalWorkSize, localWorkSize, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount22 + 1, KernelSubmitCallbackCount); EXPECT_EQ(prevCount23 + 1, CommandBufferCreateCallbackCount); retVal = clFinish(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount14 + 2, CommandBufferCompleteCallbackCount); EXPECT_EQ(prevCount24 + 2, CommandBufferCompleteCallbackCount); // Cleanup retVal = clReleaseKernel(kernel1); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseKernel(kernel2); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseMemObject(buff10); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff11); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff20); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff21); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenKernelWithoutSSHIsUsedThenKernelCreateCallbacksIsNotCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_device_id device = (cl_device_id)pDevice; cl_context context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); auto pContext = castToObject(context); // Prepare a kernel without SSH char binary[1024] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'}; size_t binSize = 10; MockProgram *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, &binary[0], binSize, false, &retVal); ASSERT_NE(nullptr, pProgram); EXPECT_EQ(CL_SUCCESS, retVal); char *pBin = &binary[0]; SProgramBinaryHeader *pBHdr = (SProgramBinaryHeader *)pBin; pBHdr->Magic = iOpenCL::MAGIC_CL; pBHdr->Version = iOpenCL::CURRENT_ICBE_VERSION; pBHdr->Device = pDevice->getHardwareInfo().platform.eRenderCoreFamily; pBHdr->GPUPointerSizeInBytes = 8; pBHdr->NumberOfKernels = 1; pBHdr->SteppingId = 0; pBHdr->PatchListSize = 0; pBin += sizeof(SProgramBinaryHeader); binSize += sizeof(SProgramBinaryHeader); SKernelBinaryHeaderCommon *pKHdr = (SKernelBinaryHeaderCommon *)pBin; pKHdr->CheckSum = 0; pKHdr->ShaderHashCode = 0; pKHdr->KernelNameSize = 4; pKHdr->PatchListSize = 0; pKHdr->KernelHeapSize = 16; pKHdr->GeneralStateHeapSize = 0; pKHdr->DynamicStateHeapSize = 0; pKHdr->SurfaceStateHeapSize = 0; pKHdr->KernelUnpaddedSize = 0; pBin += sizeof(SKernelBinaryHeaderCommon); binSize += sizeof(SKernelBinaryHeaderCommon); char *pKernelBin = pBin; strcpy(pBin, "Tst"); pBin += pKHdr->KernelNameSize; binSize += pKHdr->KernelNameSize; strcpy(pBin, "fake_ISA_code__"); binSize += pKHdr->KernelHeapSize; uint32_t kernelBinSize = pKHdr->DynamicStateHeapSize + pKHdr->GeneralStateHeapSize + pKHdr->KernelHeapSize + pKHdr->KernelNameSize + pKHdr->PatchListSize + pKHdr->SurfaceStateHeapSize; uint64_t hashValue = Hash::hash(reinterpret_cast(pKernelBin), kernelBinSize); pKHdr->CheckSum = static_cast(hashValue & 0xFFFFFFFF); pProgram->genBinary = makeCopy(&binary[0], binSize); pProgram->genBinarySize = binSize; retVal = pProgram->processGenBinary(); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that GT-Pin Kernel Create callback is not called int prevCount = KernelCreateCallbackCount; cl_kernel kernel = clCreateKernel(pProgram, "Tst", &retVal); EXPECT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount, KernelCreateCallbackCount); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenKernelWithExecEnvIsUsedThenKernelCreateCallbacksIsNotCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_device_id device = (cl_device_id)pDevice; cl_context context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); auto pContext = castToObject(context); // Prepare a kernel with fake Execution Environment char binary[1024] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'}; size_t binSize = 10; MockProgram *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, &binary[0], binSize, false, &retVal); ASSERT_NE(nullptr, pProgram); EXPECT_EQ(CL_SUCCESS, retVal); char *pBin = &binary[0]; SProgramBinaryHeader *pBHdr = (SProgramBinaryHeader *)pBin; pBHdr->Magic = iOpenCL::MAGIC_CL; pBHdr->Version = iOpenCL::CURRENT_ICBE_VERSION; pBHdr->Device = pDevice->getHardwareInfo().platform.eRenderCoreFamily; pBHdr->GPUPointerSizeInBytes = 8; pBHdr->NumberOfKernels = 1; pBHdr->SteppingId = 0; pBHdr->PatchListSize = 0; pBin += sizeof(SProgramBinaryHeader); binSize += sizeof(SProgramBinaryHeader); SKernelBinaryHeaderCommon *pKHdr = (SKernelBinaryHeaderCommon *)pBin; pKHdr->CheckSum = 0; pKHdr->ShaderHashCode = 0; pKHdr->KernelNameSize = 4; pKHdr->PatchListSize = sizeof(SPatchExecutionEnvironment) + sizeof(SPatchBindingTableState); pKHdr->KernelHeapSize = 16; pKHdr->GeneralStateHeapSize = 0; pKHdr->DynamicStateHeapSize = 0; pKHdr->SurfaceStateHeapSize = 64; pKHdr->KernelUnpaddedSize = 0; pBin += sizeof(SKernelBinaryHeaderCommon); binSize += sizeof(SKernelBinaryHeaderCommon); char *pKernelBin = pBin; strcpy(pBin, "Tst"); pBin += pKHdr->KernelNameSize; binSize += pKHdr->KernelNameSize; strcpy(pBin, "fake_ISA_code__"); pBin += pKHdr->KernelHeapSize; binSize += pKHdr->KernelHeapSize; memset(pBin, 0, pKHdr->SurfaceStateHeapSize); pBin += pKHdr->SurfaceStateHeapSize; binSize += pKHdr->SurfaceStateHeapSize; SPatchExecutionEnvironment *pPatch1 = (SPatchExecutionEnvironment *)pBin; pPatch1->Token = iOpenCL::PATCH_TOKEN_EXECUTION_ENVIRONMENT; pPatch1->Size = sizeof(iOpenCL::SPatchExecutionEnvironment); pPatch1->RequiredWorkGroupSizeX = 0; pPatch1->RequiredWorkGroupSizeY = 0; pPatch1->RequiredWorkGroupSizeZ = 0; pPatch1->LargestCompiledSIMDSize = 8; pPatch1->CompiledSubGroupsNumber = 0; pPatch1->HasBarriers = 0; pPatch1->DisableMidThreadPreemption = 0; pPatch1->CompiledSIMD8 = 1; pPatch1->CompiledSIMD16 = 0; pPatch1->CompiledSIMD32 = 0; pPatch1->HasDeviceEnqueue = 1; pPatch1->MayAccessUndeclaredResource = 0; pPatch1->UsesFencesForReadWriteImages = 0; pPatch1->UsesStatelessSpillFill = 0; pPatch1->IsCoherent = 0; pPatch1->IsInitializer = 0; pPatch1->IsFinalizer = 0; pPatch1->SubgroupIndependentForwardProgressRequired = 0; pPatch1->CompiledForGreaterThan4GBBuffers = 0; pBin += sizeof(SPatchExecutionEnvironment); binSize += sizeof(SPatchExecutionEnvironment); SPatchBindingTableState *pPatch2 = (SPatchBindingTableState *)pBin; pPatch2->Token = iOpenCL::PATCH_TOKEN_BINDING_TABLE_STATE; pPatch2->Size = sizeof(iOpenCL::SPatchBindingTableState); pPatch2->Offset = 0; pPatch2->Count = 1; pPatch2->SurfaceStateOffset = 0; binSize += sizeof(SPatchBindingTableState); uint32_t kernelBinSize = pKHdr->DynamicStateHeapSize + pKHdr->GeneralStateHeapSize + pKHdr->KernelHeapSize + pKHdr->KernelNameSize + pKHdr->PatchListSize + pKHdr->SurfaceStateHeapSize; uint64_t hashValue = Hash::hash(reinterpret_cast(pKernelBin), kernelBinSize); pKHdr->CheckSum = static_cast(hashValue & 0xFFFFFFFF); pProgram->genBinary = makeCopy(&binary[0], binSize); pProgram->genBinarySize = binSize; retVal = pProgram->processGenBinary(); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that GT-Pin Kernel Create callback is not called int prevCount = KernelCreateCallbackCount; cl_kernel kernel = clCreateKernel(pProgram, "Tst", &retVal); EXPECT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount, KernelCreateCallbackCount); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenKernelWithoutSSHIsUsedThenGTPinSubmitKernelCallbackIsNotCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount1 = KernelCreateCallbackCount; kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount1 + 1, KernelCreateCallbackCount); Kernel *pKernel = (Kernel *)kernel; const KernelInfo &kInfo = pKernel->getKernelInfo(); uint64_t gtpinKernelId = pKernel->getKernelId(); EXPECT_EQ(kInfo.heapInfo.pKernelHeader->ShaderHashCode, gtpinKernelId); constexpr size_t n = 256; auto buff0 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); auto buff1 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); retVal = clSetKernelArg(pKernel, 0, sizeof(cl_mem), &buff0); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clSetKernelArg(pKernel, 1, sizeof(cl_mem), &buff1); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that when SSH is removed then during kernel execution // GT-Pin Kernel Submit, Command Buffer Create and Command Buffer Complete callbacks are not called. pKernel->resizeSurfaceStateHeap(nullptr, 0, 0, 0); int prevCount2 = KernelSubmitCallbackCount; int prevCount3 = CommandBufferCreateCallbackCount; int prevCount4 = CommandBufferCompleteCallbackCount; cl_uint workDim = 1; size_t globalWorkOffset[3] = {0, 0, 0}; size_t globalWorkSize[3] = {n, 1, 1}; size_t localWorkSize[3] = {1, 1, 1}; retVal = clEnqueueNDRangeKernel(cmdQ, pKernel, workDim, globalWorkOffset, globalWorkSize, localWorkSize, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount2, KernelSubmitCallbackCount); EXPECT_EQ(prevCount3, CommandBufferCreateCallbackCount); retVal = clFinish(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount4, CommandBufferCompleteCallbackCount); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseMemObject(buff0); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff1); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenBlockedKernelWithoutSSHIsUsedThenGTPinSubmitKernelCallbackIsNotCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount1 = KernelCreateCallbackCount; kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount1 + 1, KernelCreateCallbackCount); Kernel *pKernel = (Kernel *)kernel; const KernelInfo &kInfo = pKernel->getKernelInfo(); uint64_t gtpinKernelId = pKernel->getKernelId(); EXPECT_EQ(kInfo.heapInfo.pKernelHeader->ShaderHashCode, gtpinKernelId); constexpr size_t n = 256; auto buff0 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); auto buff1 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); retVal = clSetKernelArg(pKernel, 0, sizeof(cl_mem), &buff0); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clSetKernelArg(pKernel, 1, sizeof(cl_mem), &buff1); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that when SSH is removed then during kernel execution // GT-Pin Kernel Submit, Command Buffer Create and Command Buffer Complete callbacks are not called. pKernel->resizeSurfaceStateHeap(nullptr, 0, 0, 0); cl_event userEvent = clCreateUserEvent(context, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount2 = KernelSubmitCallbackCount; int prevCount3 = CommandBufferCreateCallbackCount; int prevCount4 = CommandBufferCompleteCallbackCount; cl_uint workDim = 1; size_t globalWorkOffset[3] = {0, 0, 0}; size_t globalWorkSize[3] = {n, 1, 1}; size_t localWorkSize[3] = {1, 1, 1}; retVal = clEnqueueNDRangeKernel(cmdQ, pKernel, workDim, globalWorkOffset, globalWorkSize, localWorkSize, 1, &userEvent, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount2, KernelSubmitCallbackCount); EXPECT_EQ(prevCount3, CommandBufferCreateCallbackCount); retVal = clSetUserEventStatus(userEvent, CL_COMPLETE); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clFinish(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount4, CommandBufferCompleteCallbackCount); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseMemObject(buff0); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff1); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseEvent(userEvent); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenTheSameKerneIsExecutedTwiceThenGTPinCreateKernelCallbackIsCalledOnce) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_kernel kernel1 = nullptr; cl_kernel kernel2 = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); // Kernel "CopyBuffer" - called for the first time int prevCount11 = KernelCreateCallbackCount; kernel1 = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel1); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount11 + 1, KernelCreateCallbackCount); Kernel *pKernel1 = (Kernel *)kernel1; const KernelInfo &kInfo1 = pKernel1->getKernelInfo(); uint64_t gtpinKernelId1 = pKernel1->getKernelId(); EXPECT_EQ(kInfo1.heapInfo.pKernelHeader->ShaderHashCode, gtpinKernelId1); constexpr size_t n = 256; auto buff10 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); auto buff11 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); retVal = clSetKernelArg(pKernel1, 0, sizeof(cl_mem), &buff10); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clSetKernelArg(pKernel1, 1, sizeof(cl_mem), &buff11); EXPECT_EQ(CL_SUCCESS, retVal); cl_event userEvent = clCreateUserEvent(context, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount12 = KernelSubmitCallbackCount; int prevCount13 = CommandBufferCreateCallbackCount; int prevCount14 = CommandBufferCompleteCallbackCount; cl_uint workDim = 1; size_t globalWorkOffset[3] = {0, 0, 0}; size_t globalWorkSize[3] = {n, 1, 1}; size_t localWorkSize[3] = {1, 1, 1}; retVal = clEnqueueNDRangeKernel(cmdQ, pKernel1, workDim, globalWorkOffset, globalWorkSize, localWorkSize, 1, &userEvent, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount12 + 1, KernelSubmitCallbackCount); EXPECT_EQ(prevCount13 + 1, CommandBufferCreateCallbackCount); EXPECT_EQ(prevCount14, CommandBufferCompleteCallbackCount); // The same kernel "CopyBuffer" - called second time int prevCount21 = KernelCreateCallbackCount; kernel2 = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel2); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that Kernel Create callback was not called now EXPECT_EQ(prevCount21, KernelCreateCallbackCount); Kernel *pKernel2 = (Kernel *)kernel2; const KernelInfo &kInfo2 = pKernel2->getKernelInfo(); uint64_t gtpinKernelId2 = pKernel2->getKernelId(); EXPECT_EQ(kInfo2.heapInfo.pKernelHeader->ShaderHashCode, gtpinKernelId2); auto buff20 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); auto buff21 = clCreateBuffer(context, 0, n * sizeof(unsigned int), nullptr, nullptr); retVal = clSetKernelArg(pKernel2, 0, sizeof(cl_mem), &buff20); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clSetKernelArg(pKernel2, 1, sizeof(cl_mem), &buff21); EXPECT_EQ(CL_SUCCESS, retVal); int prevCount22 = KernelSubmitCallbackCount; int prevCount23 = CommandBufferCreateCallbackCount; int prevCount24 = CommandBufferCompleteCallbackCount; EXPECT_EQ(prevCount14, prevCount24); retVal = clEnqueueNDRangeKernel(cmdQ, pKernel2, workDim, globalWorkOffset, globalWorkSize, localWorkSize, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount22 + 1, KernelSubmitCallbackCount); EXPECT_EQ(prevCount23 + 1, CommandBufferCreateCallbackCount); EXPECT_EQ(prevCount14, CommandBufferCompleteCallbackCount); EXPECT_EQ(prevCount24, CommandBufferCompleteCallbackCount); EXPECT_EQ(prevCount14, prevCount24); clSetUserEventStatus(userEvent, CL_COMPLETE); retVal = clFinish(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that both kernel instances were completed EXPECT_EQ(prevCount14 + 2, CommandBufferCompleteCallbackCount); EXPECT_EQ(prevCount24 + 2, CommandBufferCompleteCallbackCount); // Cleanup retVal = clReleaseKernel(kernel1); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseKernel(kernel2); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseMemObject(buff10); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff11); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff20); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseMemObject(buff21); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseEvent(userEvent); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenMultipleKernelSubmissionsWhenOneOfGtpinSurfacesIsNullThenOnlyNonNullSurfacesAreMadeResident) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); cl_kernel kernel1 = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); kernel1 = clCreateKernel(pProgram, "CopyBuffer", &retVal); EXPECT_NE(nullptr, kernel1); EXPECT_EQ(CL_SUCCESS, retVal); Kernel *pKernel1 = (Kernel *)kernel1; returnNullResource = true; auto pCmdQueue = castToObject(cmdQ); gtpinNotifyKernelSubmit(pKernel1, pCmdQueue); EXPECT_EQ(nullptr, kernelExecQueue[0].gtpinResource); CommandStreamReceiver &csr = pCmdQueue->getGpgpuCommandStreamReceiver(); gtpinNotifyMakeResident(pKernel1, &csr); EXPECT_FALSE(kernelExecQueue[0].isResourceResident); std::vector residencyVector; gtpinNotifyUpdateResidencyList(pKernel1, &residencyVector); EXPECT_EQ(0u, residencyVector.size()); returnNullResource = false; gtpinNotifyKernelSubmit(pKernel1, pCmdQueue); EXPECT_NE(nullptr, kernelExecQueue[1].gtpinResource); gtpinNotifyMakeResident(pKernel1, &csr); EXPECT_TRUE(kernelExecQueue[1].isResourceResident); cl_mem gtpinBuffer1 = kernelExecQueue[1].gtpinResource; gtpinNotifyKernelSubmit(pKernel1, pCmdQueue); EXPECT_NE(nullptr, kernelExecQueue[2].gtpinResource); gtpinNotifyUpdateResidencyList(pKernel1, &residencyVector); EXPECT_EQ(1u, residencyVector.size()); EXPECT_TRUE(kernelExecQueue[2].isResourceResident); EXPECT_FALSE(kernelExecQueue[0].isResourceResident); GeneralSurface *pSurf = static_cast(residencyVector[0]); delete pSurf; residencyVector.clear(); cl_mem gtpinBuffer2 = kernelExecQueue[2].gtpinResource; gtpinUnmapBuffer(reinterpret_cast(context), reinterpret_cast(gtpinBuffer1)); gtpinFreeBuffer(reinterpret_cast(context), reinterpret_cast(gtpinBuffer1)); gtpinUnmapBuffer(reinterpret_cast(context), reinterpret_cast(gtpinBuffer2)); gtpinFreeBuffer(reinterpret_cast(context), reinterpret_cast(gtpinBuffer2)); retVal = clFinish(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); // Cleanup returnNullResource = false; kernelResources.clear(); retVal = clReleaseKernel(kernel1); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenKernelIsCreatedThenAllKernelSubmitRelatedNotificationsAreCalled) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); kernelExecQueue.clear(); cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); // Create kernel int prevCount1 = KernelCreateCallbackCount; kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); ASSERT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount1 + 1, KernelCreateCallbackCount); // Simulate that created kernel was sent for execution auto pKernel = castToObject(kernel); auto pCmdQueue = castToObject(cmdQ); ASSERT_NE(nullptr, pKernel); EXPECT_EQ(0u, kernelExecQueue.size()); EXPECT_EQ(0u, kernelResources.size()); int prevCount2 = CommandBufferCreateCallbackCount; int prevCount3 = KernelSubmitCallbackCount; gtpinNotifyKernelSubmit(kernel, pCmdQueue); EXPECT_EQ(prevCount2 + 1, CommandBufferCreateCallbackCount); EXPECT_EQ(prevCount3 + 1, KernelSubmitCallbackCount); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_EQ(1u, kernelResources.size()); EXPECT_EQ(pKernel, kernelExecQueue[0].pKernel); EXPECT_EQ(kernelResources[0], (resource_handle_t)kernelExecQueue[0].gtpinResource); EXPECT_EQ(pCmdQueue, kernelExecQueue[0].pCommandQueue); EXPECT_FALSE(kernelExecQueue[0].isTaskCountValid); EXPECT_FALSE(kernelExecQueue[0].isResourceResident); // Verify that if kernel unknown to GT-Pin is about to be flushed // then its residency vector does not obtain GT-Pin resource std::vector residencyVector; EXPECT_EQ(0u, residencyVector.size()); gtpinNotifyUpdateResidencyList(nullptr, &residencyVector); EXPECT_EQ(0u, residencyVector.size()); EXPECT_FALSE(kernelExecQueue[0].isResourceResident); // Verify that if kernel known to GT-Pin is about to be flushed // then its residency vector obtains GT-Pin resource EXPECT_EQ(0u, residencyVector.size()); gtpinNotifyUpdateResidencyList(pKernel, &residencyVector); EXPECT_EQ(1u, residencyVector.size()); GeneralSurface *pSurf = (GeneralSurface *)residencyVector[0]; delete pSurf; residencyVector.clear(); EXPECT_TRUE(kernelExecQueue[0].isResourceResident); kernelExecQueue[0].isResourceResident = false; // Create second kernel ... cl_kernel kernel2 = clCreateKernel(pProgram, "CopyBuffer", &retVal); ASSERT_NE(nullptr, kernel2); EXPECT_EQ(CL_SUCCESS, retVal); // ... and simulate that it was sent for execution auto pKernel2 = castToObject(kernel2); ASSERT_NE(nullptr, pKernel2); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_EQ(1u, kernelResources.size()); int prevCount22 = CommandBufferCreateCallbackCount; int prevCount23 = KernelSubmitCallbackCount; gtpinNotifyKernelSubmit(kernel2, pCmdQueue); EXPECT_EQ(prevCount22 + 1, CommandBufferCreateCallbackCount); EXPECT_EQ(prevCount23 + 1, KernelSubmitCallbackCount); EXPECT_EQ(2u, kernelExecQueue.size()); EXPECT_EQ(2u, kernelResources.size()); EXPECT_EQ(pKernel2, kernelExecQueue[1].pKernel); EXPECT_EQ(kernelResources[1], (resource_handle_t)kernelExecQueue[1].gtpinResource); EXPECT_EQ(pCmdQueue, kernelExecQueue[1].pCommandQueue); EXPECT_FALSE(kernelExecQueue[1].isTaskCountValid); EXPECT_FALSE(kernelExecQueue[1].isResourceResident); // Verify that correct GT-Pin resource is made resident cl_mem gtpinBuffer0 = kernelExecQueue[0].gtpinResource; auto pBuffer0 = castToObject(gtpinBuffer0); GraphicsAllocation *pGfxAlloc0 = pBuffer0->getGraphicsAllocation(); cl_mem gtpinBuffer1 = kernelExecQueue[1].gtpinResource; auto pBuffer1 = castToObject(gtpinBuffer1); GraphicsAllocation *pGfxAlloc1 = pBuffer1->getGraphicsAllocation(); CommandStreamReceiver &csr = pCmdQueue->getGpgpuCommandStreamReceiver(); EXPECT_FALSE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_FALSE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); gtpinNotifyMakeResident(pKernel, &csr); EXPECT_TRUE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_FALSE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); // Cancel information about second submitted kernel kernelExecQueue.pop_back(); EXPECT_EQ(1u, kernelExecQueue.size()); kernelResources.pop_back(); EXPECT_EQ(1u, kernelResources.size()); gtpinUnmapBuffer((context_handle_t)context, (resource_handle_t)gtpinBuffer1); gtpinFreeBuffer((context_handle_t)context, (resource_handle_t)gtpinBuffer1); retVal = clReleaseKernel(kernel2); EXPECT_EQ(CL_SUCCESS, retVal); // Verify that if flush occurs on another queue then our kernel is not flushed to CSR uint32_t taskCount = 11; gtpinNotifyPreFlushTask(nullptr); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_FALSE(kernelExecQueue[0].isTaskCountValid); gtpinNotifyFlushTask(taskCount); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_FALSE(kernelExecQueue[0].isTaskCountValid); // Verify that if flush occurs on current queue then our kernel is flushed to CSR gtpinNotifyPreFlushTask(pCmdQueue); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_FALSE(kernelExecQueue[0].isTaskCountValid); gtpinNotifyFlushTask(taskCount); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_TRUE(kernelExecQueue[0].isTaskCountValid); EXPECT_EQ(taskCount, kernelExecQueue[0].taskCount); // Verify that if previous task was completed then it does not affect our kernel uint32_t taskCompleted = taskCount - 1; int prevCount4 = CommandBufferCompleteCallbackCount; gtpinNotifyTaskCompletion(taskCompleted); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_EQ(1u, kernelResources.size()); EXPECT_EQ(prevCount4, CommandBufferCompleteCallbackCount); // Verify that if current task was completed then it is our kernel gtpinNotifyTaskCompletion(taskCompleted + 1); EXPECT_EQ(0u, kernelExecQueue.size()); EXPECT_EQ(0u, kernelResources.size()); EXPECT_EQ(prevCount4 + 1, CommandBufferCompleteCallbackCount); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenOneKernelIsSubmittedSeveralTimesThenCorrectBuffersAreMadeResident) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); kernelExecQueue.clear(); cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_command_queue cmdQ = nullptr; cl_queue_properties properties = 0; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); cmdQ = clCreateCommandQueue(context, device, properties, &retVal); ASSERT_NE(nullptr, cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); // Create kernel int prevCount1 = KernelCreateCallbackCount; kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); ASSERT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(prevCount1 + 1, KernelCreateCallbackCount); // Simulate that created kernel was sent for execution two times in a row auto pKernel = castToObject(kernel); auto pCmdQueue = castToObject(cmdQ); ASSERT_NE(nullptr, pKernel); EXPECT_EQ(0u, kernelExecQueue.size()); EXPECT_EQ(0u, kernelResources.size()); int prevCount2 = CommandBufferCreateCallbackCount; int prevCount3 = KernelSubmitCallbackCount; // First kernel submission gtpinNotifyKernelSubmit(kernel, pCmdQueue); EXPECT_EQ(prevCount2 + 1, CommandBufferCreateCallbackCount); EXPECT_EQ(prevCount3 + 1, KernelSubmitCallbackCount); EXPECT_EQ(1u, kernelExecQueue.size()); EXPECT_EQ(1u, kernelResources.size()); EXPECT_EQ(pKernel, kernelExecQueue[0].pKernel); EXPECT_EQ(kernelResources[0], (resource_handle_t)kernelExecQueue[0].gtpinResource); EXPECT_EQ(pCmdQueue, kernelExecQueue[0].pCommandQueue); EXPECT_FALSE(kernelExecQueue[0].isTaskCountValid); EXPECT_FALSE(kernelExecQueue[0].isResourceResident); // Second kernel submission gtpinNotifyKernelSubmit(kernel, pCmdQueue); EXPECT_EQ(prevCount2 + 2, CommandBufferCreateCallbackCount); EXPECT_EQ(prevCount3 + 2, KernelSubmitCallbackCount); EXPECT_EQ(2u, kernelExecQueue.size()); EXPECT_EQ(2u, kernelResources.size()); EXPECT_EQ(pKernel, kernelExecQueue[0].pKernel); EXPECT_EQ(kernelResources[0], (resource_handle_t)kernelExecQueue[0].gtpinResource); EXPECT_EQ(pCmdQueue, kernelExecQueue[0].pCommandQueue); EXPECT_FALSE(kernelExecQueue[0].isTaskCountValid); EXPECT_FALSE(kernelExecQueue[0].isResourceResident); EXPECT_EQ(pKernel, kernelExecQueue[1].pKernel); EXPECT_EQ(kernelResources[1], (resource_handle_t)kernelExecQueue[1].gtpinResource); EXPECT_EQ(pCmdQueue, kernelExecQueue[1].pCommandQueue); EXPECT_FALSE(kernelExecQueue[1].isTaskCountValid); EXPECT_FALSE(kernelExecQueue[1].isResourceResident); // Verify that correct GT-Pin resource is made resident. // This simulates enqueuing non-blocked kernels cl_mem gtpinBuffer0 = kernelExecQueue[0].gtpinResource; auto pBuffer0 = castToObject(gtpinBuffer0); GraphicsAllocation *pGfxAlloc0 = pBuffer0->getGraphicsAllocation(); cl_mem gtpinBuffer1 = kernelExecQueue[1].gtpinResource; auto pBuffer1 = castToObject(gtpinBuffer1); GraphicsAllocation *pGfxAlloc1 = pBuffer1->getGraphicsAllocation(); CommandStreamReceiver &csr = pCmdQueue->getGpgpuCommandStreamReceiver(); // Make resident resource of first submitted kernel EXPECT_FALSE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_FALSE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); gtpinNotifyMakeResident(pKernel, &csr); EXPECT_TRUE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_FALSE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); // Make resident resource of second submitted kernel gtpinNotifyMakeResident(pKernel, &csr); EXPECT_TRUE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_TRUE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); // Verify that correct GT-Pin resource is added to residency list. // This simulates enqueuing blocked kernels kernelExecQueue[0].isResourceResident = false; kernelExecQueue[1].isResourceResident = false; pGfxAlloc0->releaseResidencyInOsContext(csr.getOsContext().getContextId()); pGfxAlloc1->releaseResidencyInOsContext(csr.getOsContext().getContextId()); EXPECT_FALSE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_FALSE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); std::vector residencyVector; EXPECT_EQ(0u, residencyVector.size()); // Add to residency list resource of first submitted kernel gtpinNotifyUpdateResidencyList(pKernel, &residencyVector); EXPECT_EQ(1u, residencyVector.size()); // Make resident first resource on residency list GeneralSurface *pSurf1 = (GeneralSurface *)residencyVector[0]; pSurf1->makeResident(csr); EXPECT_TRUE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_FALSE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); // Add to residency list resource of second submitted kernel gtpinNotifyUpdateResidencyList(pKernel, &residencyVector); EXPECT_EQ(2u, residencyVector.size()); // Make resident second resource on residency list GeneralSurface *pSurf2 = (GeneralSurface *)residencyVector[1]; pSurf2->makeResident(csr); EXPECT_TRUE(pGfxAlloc0->isResident(csr.getOsContext().getContextId())); EXPECT_TRUE(pGfxAlloc1->isResident(csr.getOsContext().getContextId())); // Cleanup delete pSurf1; delete pSurf2; residencyVector.clear(); kernelExecQueue.pop_back(); EXPECT_EQ(1u, kernelExecQueue.size()); kernelResources.pop_back(); EXPECT_EQ(1u, kernelResources.size()); gtpinUnmapBuffer((context_handle_t)context, (resource_handle_t)gtpinBuffer1); gtpinFreeBuffer((context_handle_t)context, (resource_handle_t)gtpinBuffer1); kernelExecQueue.pop_back(); EXPECT_EQ(0u, kernelExecQueue.size()); kernelResources.pop_back(); EXPECT_EQ(0u, kernelResources.size()); gtpinUnmapBuffer((context_handle_t)context, (resource_handle_t)gtpinBuffer0); gtpinFreeBuffer((context_handle_t)context, (resource_handle_t)gtpinBuffer0); retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); pSource.reset(); retVal = clReleaseCommandQueue(cmdQ); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenLowMemoryConditionOccursThenKernelCreationFails) { InjectedFunction allocBufferFunc = [this](size_t failureIndex) { cl_device_id device = (cl_device_id)pDevice; cl_context context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); auto pContext = castToObject(context); // Prepare a program with one kernel having Stateless Private Surface char binary[1024] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'}; size_t binSize = 10; MockProgram *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, &binary[0], binSize, false, &retVal); ASSERT_NE(nullptr, pProgram); EXPECT_EQ(CL_SUCCESS, retVal); char *pBin = &binary[0]; SProgramBinaryHeader *pBHdr = (SProgramBinaryHeader *)pBin; pBHdr->Magic = iOpenCL::MAGIC_CL; pBHdr->Version = iOpenCL::CURRENT_ICBE_VERSION; pBHdr->Device = pDevice->getHardwareInfo().platform.eRenderCoreFamily; pBHdr->GPUPointerSizeInBytes = 8; pBHdr->NumberOfKernels = 1; pBHdr->SteppingId = 0; pBHdr->PatchListSize = 0; pBin += sizeof(SProgramBinaryHeader); binSize += sizeof(SProgramBinaryHeader); SKernelBinaryHeaderCommon *pKHdr = (SKernelBinaryHeaderCommon *)pBin; pKHdr->CheckSum = 0; pKHdr->ShaderHashCode = 0; pKHdr->KernelNameSize = 4; pKHdr->PatchListSize = sizeof(SPatchAllocateStatelessPrivateSurface); pKHdr->KernelHeapSize = 16; pKHdr->GeneralStateHeapSize = 0; pKHdr->DynamicStateHeapSize = 0; pKHdr->SurfaceStateHeapSize = 0; pKHdr->KernelUnpaddedSize = 0; pBin += sizeof(SKernelBinaryHeaderCommon); binSize += sizeof(SKernelBinaryHeaderCommon); char *pKernelBin = pBin; strcpy(pBin, "Tst"); pBin += pKHdr->KernelNameSize; binSize += pKHdr->KernelNameSize; strcpy(pBin, "fake_ISA_code__"); pBin += pKHdr->KernelHeapSize; binSize += pKHdr->KernelHeapSize; SPatchAllocateStatelessPrivateSurface *pPatch = (SPatchAllocateStatelessPrivateSurface *)pBin; pPatch->Token = iOpenCL::PATCH_TOKEN_ALLOCATE_STATELESS_PRIVATE_MEMORY; pPatch->Size = sizeof(iOpenCL::SPatchAllocateStatelessPrivateSurface); pPatch->SurfaceStateHeapOffset = 0; pPatch->DataParamOffset = 0; pPatch->DataParamSize = 0; pPatch->PerThreadPrivateMemorySize = 4; binSize += sizeof(SPatchAllocateStatelessPrivateSurface); uint32_t kernelBinSize = pKHdr->DynamicStateHeapSize + pKHdr->GeneralStateHeapSize + pKHdr->KernelHeapSize + pKHdr->KernelNameSize + pKHdr->PatchListSize + pKHdr->SurfaceStateHeapSize; uint64_t hashValue = Hash::hash(reinterpret_cast(pKernelBin), kernelBinSize); pKHdr->CheckSum = static_cast(hashValue & 0xFFFFFFFF); pProgram->genBinary = makeCopy(&binary[0], binSize); pProgram->genBinarySize = binSize; retVal = pProgram->processGenBinary(); if (retVal == CL_OUT_OF_HOST_MEMORY) { auto nonFailingAlloc = MemoryManagement::nonfailingAllocation; EXPECT_NE(nonFailingAlloc, failureIndex); } else { EXPECT_EQ(CL_SUCCESS, retVal); // Create kernels from program cl_kernel kernels[2] = {0}; cl_uint numCreatedKernels = 0; if (MemoryManagement::nonfailingAllocation != failureIndex) { memoryManager->failAllAllocationsInDevicePool = true; } retVal = clCreateKernelsInProgram(pProgram, 2, kernels, &numCreatedKernels); if (MemoryManagement::nonfailingAllocation != failureIndex) { if (retVal != CL_SUCCESS) { EXPECT_EQ(nullptr, kernels[0]); EXPECT_EQ(1u, numCreatedKernels); } clReleaseKernel(kernels[0]); } else { EXPECT_NE(nullptr, kernels[0]); EXPECT_EQ(1u, numCreatedKernels); clReleaseKernel(kernels[0]); } } clReleaseProgram(pProgram); clReleaseContext(context); }; gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); ASSERT_EQ(&NEO::gtpinCreateBuffer, driverServices.bufferAllocate); ASSERT_EQ(&NEO::gtpinFreeBuffer, driverServices.bufferDeallocate); EXPECT_EQ(&NEO::gtpinMapBuffer, driverServices.bufferMap); EXPECT_EQ(&NEO::gtpinUnmapBuffer, driverServices.bufferUnMap); injectFailures(allocBufferFunc); } TEST_F(GTPinTests, givenKernelWithSSHThenVerifyThatSSHResizeWorksWell) { cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); // Create kernel kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); ASSERT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); Kernel *pKernel = castToObject(kernel); ASSERT_NE(nullptr, pKernel); size_t numBTS1 = pKernel->getNumberOfBindingTableStates(); EXPECT_EQ(2u, numBTS1); size_t sizeSurfaceStates1 = pKernel->getSurfaceStateHeapSize(); EXPECT_NE(0u, sizeSurfaceStates1); size_t offsetBTS1 = pKernel->getBindingTableOffset(); EXPECT_NE(0u, offsetBTS1); GFXCORE_FAMILY genFamily = pDevice->getHardwareInfo().platform.eRenderCoreFamily; GTPinHwHelper >pinHelper = GTPinHwHelper::get(genFamily); void *pSS1 = gtpinHelper.getSurfaceState(pKernel, 0); EXPECT_NE(nullptr, pSS1); // Enlarge SSH by one SURFACE STATE element bool surfaceAdded = gtpinHelper.addSurfaceState(pKernel); EXPECT_TRUE(surfaceAdded); size_t numBTS2 = pKernel->getNumberOfBindingTableStates(); EXPECT_EQ(numBTS1 + 1, numBTS2); size_t sizeSurfaceStates2 = pKernel->getSurfaceStateHeapSize(); EXPECT_GT(sizeSurfaceStates2, sizeSurfaceStates1); size_t offsetBTS2 = pKernel->getBindingTableOffset(); EXPECT_GT(offsetBTS2, offsetBTS1); void *pSS2 = gtpinHelper.getSurfaceState(pKernel, 0); EXPECT_NE(pSS2, pSS1); pSS2 = gtpinHelper.getSurfaceState(pKernel, numBTS2); EXPECT_EQ(nullptr, pSS2); // Remove kernel's SSH pKernel->resizeSurfaceStateHeap(nullptr, 0, 0, 0); // Try to enlarge SSH once again, this time the operation must fail surfaceAdded = gtpinHelper.addSurfaceState(pKernel); EXPECT_FALSE(surfaceAdded); size_t numBTS3 = pKernel->getNumberOfBindingTableStates(); EXPECT_EQ(0u, numBTS3); size_t sizeSurfaceStates3 = pKernel->getSurfaceStateHeapSize(); EXPECT_EQ(0u, sizeSurfaceStates3); size_t offsetBTS3 = pKernel->getBindingTableOffset(); EXPECT_EQ(0u, offsetBTS3); void *pSS3 = gtpinHelper.getSurfaceState(pKernel, 0); EXPECT_EQ(nullptr, pSS3); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, givenKernelThenVerifyThatKernelCodeSubstitutionWorksWell) { cl_kernel kernel = nullptr; cl_program pProgram = nullptr; cl_device_id device = (cl_device_id)pDevice; size_t sourceSize = 0; std::string testFile; cl_context context = nullptr; KernelBinaryHelper kbHelper("CopyBuffer_simd8", false); testFile.append(clFiles); testFile.append("CopyBuffer_simd8.cl"); auto pSource = loadDataFromFile(testFile.c_str(), sourceSize); EXPECT_NE(0u, sourceSize); EXPECT_NE(nullptr, pSource); context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, context); const char *sources[1] = {pSource.get()}; pProgram = clCreateProgramWithSource( context, 1, sources, &sourceSize, &retVal); ASSERT_NE(nullptr, pProgram); retVal = clBuildProgram( pProgram, 1, &device, nullptr, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); // Create kernel kernel = clCreateKernel(pProgram, "CopyBuffer", &retVal); ASSERT_NE(nullptr, kernel); EXPECT_EQ(CL_SUCCESS, retVal); Kernel *pKernel = castToObject(kernel); ASSERT_NE(nullptr, pKernel); bool isKernelCodeSubstituted = pKernel->isKernelHeapSubstituted(); EXPECT_FALSE(isKernelCodeSubstituted); // Substitute new kernel code constexpr size_t newCodeSize = 64; uint8_t newCode[newCodeSize] = {0x0, 0x1, 0x2, 0x3, 0x4}; pKernel->substituteKernelHeap(&newCode[0], newCodeSize); // Verify that substitution went properly isKernelCodeSubstituted = pKernel->isKernelHeapSubstituted(); EXPECT_TRUE(isKernelCodeSubstituted); uint8_t *pBin2 = reinterpret_cast(const_cast(pKernel->getKernelHeap())); EXPECT_EQ(pBin2, &newCode[0]); auto kernelIsa = pKernel->getKernelInfo().kernelAllocation->getUnderlyingBuffer(); EXPECT_EQ(0, memcmp(kernelIsa, newCode, newCodeSize)); // Cleanup retVal = clReleaseKernel(kernel); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseProgram(pProgram); EXPECT_EQ(CL_SUCCESS, retVal); retVal = clReleaseContext(context); EXPECT_EQ(CL_SUCCESS, retVal); } TEST_F(GTPinTests, checkWhetherGTPinHwHelperGetterWorksWell) { GFXCORE_FAMILY genFamily = pDevice->getHardwareInfo().platform.eRenderCoreFamily; GTPinHwHelper *pGTPinHelper = >PinHwHelper::get(genFamily); EXPECT_NE(nullptr, pGTPinHelper); } TEST(GTPinOfflineTests, givenGtPinInDisabledStateWhenCallbacksFromEnqueuePathAreCalledThenNothingHappens) { ASSERT_FALSE(gtpinIsGTPinInitialized()); auto dummyKernel = reinterpret_cast(0x1000); auto dummyQueue = reinterpret_cast(0x1000); uint32_t dummyCompletedTask = 0u; //now call gtpin function with dummy data, this must not crash gtpinNotifyKernelSubmit(dummyKernel, dummyQueue); gtpinNotifyPreFlushTask(dummyQueue); gtpinNotifyTaskCompletion(dummyCompletedTask); gtpinNotifyFlushTask(dummyCompletedTask); EXPECT_FALSE(gtpinIsGTPinInitialized()); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenOnKernelSubitIsCalledThenCorrectOffsetisSetInKernel) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); VariableBackup returnNullResourceBckp(&returnNullResource); VariableBackup kernelOffsetBckp(&kernelOffset); EXPECT_EQ(GTPIN_DI_SUCCESS, retFromGtPin); char surfaceStateHeap[0x80]; SKernelBinaryHeaderCommon kernelHeader; std::unique_ptr context(new MockContext(pDevice)); EXPECT_EQ(CL_SUCCESS, retVal); auto pKernelInfo = std::make_unique(); kernelHeader.SurfaceStateHeapSize = sizeof(surfaceStateHeap); pKernelInfo->heapInfo.pSsh = surfaceStateHeap; pKernelInfo->heapInfo.pKernelHeader = &kernelHeader; pKernelInfo->usesSsh = true; auto pProgramm = std::make_unique(*pDevice->getExecutionEnvironment(), context.get(), false); std::unique_ptr cmdQ(new MockCommandQueue(context.get(), pDevice, nullptr)); std::unique_ptr pKernel(new MockKernel(pProgramm.get(), *pKernelInfo, *pDevice)); pKernel->setSshLocal(nullptr, sizeof(surfaceStateHeap)); kernelOffset = 0x1234; EXPECT_NE(pKernel->getStartOffset(), kernelOffset); returnNullResource = true; cl_context ctxt = (cl_context)((Context *)context.get()); currContext = (gtpin::context_handle_t)ctxt; gtpinNotifyKernelSubmit(pKernel.get(), cmdQ.get()); EXPECT_EQ(pKernel->getStartOffset(), kernelOffset); EXPECT_EQ(CL_SUCCESS, retVal); kernelResources.clear(); } TEST_F(GTPinTests, givenInitializedGTPinInterfaceWhenOnContextCreateIsCalledThenGtpinInitIsSet) { gtpinCallbacks.onContextCreate = OnContextCreate; gtpinCallbacks.onContextDestroy = OnContextDestroy; gtpinCallbacks.onKernelCreate = OnKernelCreate; gtpinCallbacks.onKernelSubmit = OnKernelSubmit; gtpinCallbacks.onCommandBufferCreate = OnCommandBufferCreate; gtpinCallbacks.onCommandBufferComplete = OnCommandBufferComplete; retFromGtPin = GTPin_Init(>pinCallbacks, &driverServices, nullptr); auto context = std::make_unique(); gtpinNotifyContextCreate(context.get()); EXPECT_NE(gtpinGetIgcInit(), nullptr); } TEST_F(ProgramTests, givenGenBinaryWithGtpinInfoWhenProcessGenBinaryCalledThenGtpinInfoIsSet) { cl_int retVal = CL_INVALID_BINARY; char genBin[1024] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'}; size_t binSize = 10; std::unique_ptr pProgram(Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), nullptr, &genBin[0], binSize, false, &retVal)); EXPECT_NE(nullptr, pProgram.get()); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ((uint32_t)CL_PROGRAM_BINARY_TYPE_EXECUTABLE, (uint32_t)pProgram->getProgramBinaryType()); cl_device_id deviceId = pContext->getDevice(0); Device *pDevice = castToObject(deviceId); char *pBin = &genBin[0]; retVal = CL_INVALID_BINARY; binSize = 0; // Prepare simple program binary containing patch token PATCH_TOKEN_GLOBAL_MEMORY_OBJECT_KERNEL_ARGUMENT SProgramBinaryHeader *pBHdr = (SProgramBinaryHeader *)pBin; pBHdr->Magic = iOpenCL::MAGIC_CL; pBHdr->Version = iOpenCL::CURRENT_ICBE_VERSION; pBHdr->Device = pDevice->getHardwareInfo().platform.eRenderCoreFamily; pBHdr->GPUPointerSizeInBytes = 8; pBHdr->NumberOfKernels = 1; pBHdr->SteppingId = 0; pBHdr->PatchListSize = 0; pBin += sizeof(SProgramBinaryHeader); binSize += sizeof(SProgramBinaryHeader); SKernelBinaryHeaderCommon *pKHdr = (SKernelBinaryHeaderCommon *)pBin; pKHdr->CheckSum = 0; pKHdr->ShaderHashCode = 0; pKHdr->KernelNameSize = 8; pKHdr->PatchListSize = 8; pKHdr->KernelHeapSize = 0; pKHdr->GeneralStateHeapSize = 0; pKHdr->DynamicStateHeapSize = 0; pKHdr->SurfaceStateHeapSize = 0; pKHdr->KernelUnpaddedSize = 0; pBin += sizeof(SKernelBinaryHeaderCommon); binSize += sizeof(SKernelBinaryHeaderCommon); strcpy(pBin, "TstCopy"); pBin += pKHdr->KernelNameSize; binSize += pKHdr->KernelNameSize; iOpenCL::SPatchItemHeader *pPatch = (iOpenCL::SPatchItemHeader *)pBin; pPatch->Token = iOpenCL::PATCH_TOKEN_GTPIN_INFO; pPatch->Size = sizeof(iOpenCL::SPatchItemHeader); binSize += sizeof(iOpenCL::SPatchItemHeader); pBin += sizeof(iOpenCL::SPatchItemHeader); pKHdr->CheckSum = PatchTokenBinary::calcKernelChecksum(ArrayRef(reinterpret_cast(pKHdr), reinterpret_cast(pBin))); // Decode prepared program binary pProgram->genBinary = makeCopy(&genBin[0], binSize); pProgram->genBinarySize = binSize; retVal = pProgram->processGenBinary(); auto kernelInfo = pProgram->getKernelInfo("TstCopy"); EXPECT_NE(kernelInfo->igcInfoForGtpin, nullptr); ASSERT_EQ(CL_SUCCESS, retVal); } } // namespace ULT