/* * Copyright (C) 2017-2019 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "runtime/helpers/convert_color.h" #include "test.h" #include "unit_tests/command_queue/enqueue_fill_image_fixture.h" #include "unit_tests/gen_common/gen_commands_common_validation.h" #include "unit_tests/helpers/unit_test_helper.h" #include "reg_configs_common.h" #include using namespace OCLRT; class EnqueueFillImageTest : public EnqueueFillImageTestFixture, public ::testing::Test { public: void SetUp(void) override { EnqueueFillImageTestFixture::SetUp(); } void TearDown(void) override { EnqueueFillImageTestFixture::TearDown(); } }; HWTEST_F(EnqueueFillImageTest, alignsToCSR) { //this test case assumes IOQ auto &csr = pDevice->getUltCommandStreamReceiver(); csr.taskCount = pCmdQ->taskCount + 100; csr.taskLevel = pCmdQ->taskLevel + 50; EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image); EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount); EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, gpgpuWalker) { typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER; enqueueFillImage(); auto *cmd = reinterpret_cast(cmdWalker); ASSERT_NE(nullptr, cmd); // Verify GPGPU_WALKER parameters EXPECT_NE(0u, cmd->getThreadGroupIdXDimension()); EXPECT_NE(0u, cmd->getThreadGroupIdYDimension()); EXPECT_NE(0u, cmd->getThreadGroupIdZDimension()); EXPECT_NE(0u, cmd->getRightExecutionMask()); EXPECT_NE(0u, cmd->getBottomExecutionMask()); EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize()); EXPECT_NE(0u, cmd->getIndirectDataLength()); EXPECT_FALSE(cmd->getIndirectParameterEnable()); // Compute the SIMD lane mask size_t simd = cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8; uint64_t simdMask = (1ull << simd) - 1; // Mask off lanes based on the execution masks auto laneMaskRight = cmd->getRightExecutionMask() & simdMask; auto lanesPerThreadX = 0; while (laneMaskRight) { lanesPerThreadX += laneMaskRight & 1; laneMaskRight >>= 1; } } HWTEST_F(EnqueueFillImageTest, bumpsTaskLevel) { auto taskLevelBefore = pCmdQ->taskLevel; EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image); EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore); } HWTEST_F(EnqueueFillImageTest, addsCommands) { auto usedCmdBufferBefore = pCS->getUsed(); EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image); EXPECT_NE(usedCmdBufferBefore, pCS->getUsed()); } HWTEST_F(EnqueueFillImageTest, addsIndirectData) { auto dshBefore = pDSH->getUsed(); auto iohBefore = pIOH->getUsed(); auto sshBefore = pSSH->getUsed(); EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image); EXPECT_TRUE(UnitTestHelper::evaluateDshUsage(dshBefore, pDSH->getUsed(), nullptr)); EXPECT_NE(iohBefore, pIOH->getUsed()); EXPECT_NE(sshBefore, pSSH->getUsed()); } HWTEST_F(EnqueueFillImageTest, loadRegisterImmediateL3CNTLREG) { enqueueFillImage(); validateL3Programming(cmdList, itorWalker); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) { enqueueFillImage(); validateStateBaseAddress(this->pCmdQ->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(), pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, mediaInterfaceDescriptorLoad) { typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD; typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA; enqueueFillImage(); // All state should be programmed before walker auto cmd = reinterpret_cast(cmdMediaInterfaceDescriptorLoad); ASSERT_NE(nullptr, cmd); // Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA)); // Validate the start address size_t alignmentStartAddress = 64 * sizeof(uint8_t); EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress); // Validate the length EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength()); size_t alignmentTotalLength = 32 * sizeof(uint8_t); EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength); // Generically validate this command FamilyType::PARSE::template validateCommand(cmdList.begin(), itorMediaInterfaceDescriptorLoad); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, interfaceDescriptorData) { typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS; typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA; enqueueFillImage(); // Extract the interfaceDescriptorData auto cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress; auto &interfaceDescriptorData = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData; // Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value. auto kernelStartPointer = ((uint64_t)interfaceDescriptorData.getKernelStartPointerHigh() << 32) + interfaceDescriptorData.getKernelStartPointer(); EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize); size_t maxLocalSize = 256u; auto localWorkSize = std::min(maxLocalSize, Image2dDefaults::imageDesc.image_width * Image2dDefaults::imageDesc.image_height); auto simd = 32u; auto threadsPerThreadGroup = (localWorkSize + simd - 1) / simd; EXPECT_EQ(threadsPerThreadGroup, interfaceDescriptorData.getNumberOfThreadsInGpgpuThreadGroup()); EXPECT_NE(0u, interfaceDescriptorData.getCrossThreadConstantDataReadLength()); EXPECT_NE(0u, interfaceDescriptorData.getConstantIndirectUrbEntryReadLength()); // We shouldn't have these pointers the same. EXPECT_NE(kernelStartPointer, interfaceDescriptorData.getBindingTablePointer()); } HWTEST_F(EnqueueFillImageTest, surfaceState) { typedef typename FamilyType::RENDER_SURFACE_STATE RENDER_SURFACE_STATE; enqueueFillImage(); const auto &surfaceState = getSurfaceState(&pCmdQ->getIndirectHeap(IndirectHeap::SURFACE_STATE, 0), 0); const auto &imageDesc = image->getImageDesc(); EXPECT_EQ(imageDesc.image_width, surfaceState.getWidth()); EXPECT_EQ(imageDesc.image_height, surfaceState.getHeight()); EXPECT_NE(0u, surfaceState.getSurfacePitch()); EXPECT_NE(0u, surfaceState.getSurfaceType()); EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_HORIZONTAL_ALIGNMENT_HALIGN_4, surfaceState.getSurfaceHorizontalAlignment()); EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_VERTICAL_ALIGNMENT_VALIGN_4, surfaceState.getSurfaceVerticalAlignment()); const auto &srcSurfaceState = getSurfaceState(&pCmdQ->getIndirectHeap(IndirectHeap::SURFACE_STATE, 0), 0); EXPECT_EQ(reinterpret_cast(image->getCpuAddress()), srcSurfaceState.getSurfaceBaseAddress()); } HWTEST_F(EnqueueFillImageTest, pipelineSelect) { enqueueFillImage(); int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect(); EXPECT_EQ(1, numCommands); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, mediaVFEState) { enqueueFillImage(); validateMediaVFEState(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState); } TEST_F(EnqueueFillImageTest, sRGBConvert) { float *fillColor; int iFillColor[4] = {0}; float LessThanZeroArray[4] = {-1.0f, -1.0f, -1.0f, 1.0f}; float MoreThanOneArray[4] = {2.0f, 2.0f, 2.0f, 1.0f}; float NaNArray[4] = {NAN, NAN, NAN, 1.0f}; float distance; cl_image_format oldImageFormat = {CL_sRGBA, CL_UNORM_INT8}; cl_image_format newImageFormat = {CL_RGBA, CL_UNSIGNED_INT8}; fillColor = LessThanZeroArray; convertFillColor(static_cast(fillColor), iFillColor, oldImageFormat, newImageFormat); for (int i = 0; i < 3; i++) { distance = std::fabs(0.0f - static_cast(iFillColor[i])); EXPECT_GE(0.6f, distance); } EXPECT_EQ(255, iFillColor[3]); fillColor = MoreThanOneArray; convertFillColor(static_cast(fillColor), iFillColor, oldImageFormat, newImageFormat); for (int i = 0; i < 3; i++) { distance = std::fabs(255.0f - static_cast(iFillColor[i])); EXPECT_GE(0.6f, distance); } EXPECT_EQ(255, iFillColor[3]); fillColor = NaNArray; convertFillColor(static_cast(fillColor), iFillColor, oldImageFormat, newImageFormat); for (int i = 0; i < 3; i++) { distance = std::fabs(0.0f - static_cast(iFillColor[i])); EXPECT_GE(0.6f, distance); } EXPECT_EQ(255, iFillColor[3]); } TEST(ColorConvertTest, givenSnorm8FormatWhenConvertingThenUseNormalizingFactor) { float fFillColor[4] = {0.3f, -0.3f, 0.0f, 1.0f}; int32_t iFillColor[4] = {}; int32_t expectedIFillColor[4] = {}; cl_image_format oldFormat = {CL_R, CL_SNORM_INT8}; cl_image_format newFormat = {CL_R, CL_UNSIGNED_INT8}; auto normalizingFactor = selectNormalizingFactor(oldFormat.image_channel_data_type); for (size_t i = 0; i < 4; i++) { expectedIFillColor[i] = static_cast(normalizingFactor * fFillColor[i]); expectedIFillColor[i] = expectedIFillColor[i] & 0xFF; } convertFillColor(static_cast(fFillColor), iFillColor, oldFormat, newFormat); EXPECT_TRUE(memcmp(expectedIFillColor, iFillColor, 4 * sizeof(int32_t)) == 0); } TEST(ColorConvertTest, givenSnorm16FormatWhenConvertingThenUseNormalizingFactor) { float fFillColor[4] = {0.3f, -0.3f, 0.0f, 1.0f}; int32_t iFillColor[4] = {}; int32_t expectedIFillColor[4] = {}; cl_image_format oldFormat = {CL_R, CL_SNORM_INT16}; cl_image_format newFormat = {CL_R, CL_UNSIGNED_INT16}; auto normalizingFactor = selectNormalizingFactor(oldFormat.image_channel_data_type); for (size_t i = 0; i < 4; i++) { expectedIFillColor[i] = static_cast(normalizingFactor * fFillColor[i]); expectedIFillColor[i] = expectedIFillColor[i] & 0xFFFF; } convertFillColor(static_cast(fFillColor), iFillColor, oldFormat, newFormat); EXPECT_TRUE(memcmp(expectedIFillColor, iFillColor, 4 * sizeof(int32_t)) == 0); }