/* * Copyright (C) 2017-2019 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "runtime/built_ins/builtins_dispatch_builder.h" #include "runtime/memory_manager/allocations_list.h" #include "test.h" #include "unit_tests/command_queue/enqueue_read_image_fixture.h" #include "unit_tests/gen_common/gen_commands_common_validation.h" #include "unit_tests/helpers/debug_manager_state_restore.h" #include "unit_tests/helpers/unit_test_helper.h" #include "unit_tests/mocks/mock_builtin_dispatch_info_builder.h" #include "unit_tests/mocks/mock_command_queue.h" #include "reg_configs_common.h" using namespace OCLRT; HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, gpgpuWalker) { typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER; enqueueReadImage(); auto *cmd = reinterpret_cast(cmdWalker); ASSERT_NE(nullptr, cmd); // Verify GPGPU_WALKER parameters EXPECT_NE(0u, cmd->getThreadGroupIdXDimension()); EXPECT_NE(0u, cmd->getThreadGroupIdYDimension()); EXPECT_NE(0u, cmd->getThreadGroupIdZDimension()); EXPECT_NE(0u, cmd->getRightExecutionMask()); EXPECT_NE(0u, cmd->getBottomExecutionMask()); EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize()); EXPECT_NE(0u, cmd->getIndirectDataLength()); EXPECT_FALSE(cmd->getIndirectParameterEnable()); // Compute the SIMD lane mask size_t simd = cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8; uint64_t simdMask = (1ull << simd) - 1; // Mask off lanes based on the execution masks auto laneMaskRight = cmd->getRightExecutionMask() & simdMask; auto lanesPerThreadX = 0; while (laneMaskRight) { lanesPerThreadX += laneMaskRight & 1; laneMaskRight >>= 1; } } HWTEST_F(EnqueueReadImageTest, alignsToCSR_Blocking) { //this test case assumes IOQ auto &csr = pDevice->getUltCommandStreamReceiver(); csr.taskCount = pCmdQ->taskCount + 100; csr.taskLevel = pCmdQ->taskLevel + 50; auto oldCsrTaskLevel = csr.peekTaskLevel(); EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_TRUE); EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount); EXPECT_EQ(oldCsrTaskLevel, pCmdQ->taskLevel); } HWTEST_F(EnqueueReadImageTest, alignsToCSR_NonBlocking) { //this test case assumes IOQ auto &csr = pDevice->getUltCommandStreamReceiver(); csr.taskCount = pCmdQ->taskCount + 100; csr.taskLevel = pCmdQ->taskLevel + 50; EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_FALSE); EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount); EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1); } HWTEST_F(EnqueueReadImageTest, bumpsTaskLevel) { auto taskLevelBefore = pCmdQ->taskLevel; EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, EnqueueReadImageTraits::blocking); EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore); } HWTEST_F(EnqueueReadImageTest, addsCommands) { auto usedCmdBufferBefore = pCS->getUsed(); EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, EnqueueReadImageTraits::blocking); EXPECT_NE(usedCmdBufferBefore, pCS->getUsed()); } HWTEST_F(EnqueueReadImageTest, addsIndirectData) { auto dshBefore = pDSH->getUsed(); auto iohBefore = pIOH->getUsed(); auto sshBefore = pSSH->getUsed(); EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, EnqueueReadImageTraits::blocking); EXPECT_TRUE(UnitTestHelper::evaluateDshUsage(dshBefore, pDSH->getUsed(), nullptr)); EXPECT_NE(iohBefore, pIOH->getUsed()); EXPECT_NE(sshBefore, pSSH->getUsed()); } HWTEST_F(EnqueueReadImageTest, loadRegisterImmediateL3CNTLREG) { enqueueReadImage(); validateL3Programming(cmdList, itorWalker); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) { enqueueReadImage(); validateStateBaseAddress(this->pCmdQ->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(), pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, mediaInterfaceDescriptorLoad) { typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD; typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA; enqueueReadImage(); // All state should be programmed before walker auto cmd = reinterpret_cast(cmdMediaInterfaceDescriptorLoad); ASSERT_NE(nullptr, cmd); // Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA)); // Validate the start address size_t alignmentStartAddress = 64 * sizeof(uint8_t); EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress); // Validate the length EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength()); size_t alignmentTotalLength = 32 * sizeof(uint8_t); EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength); // Generically validate this command FamilyType::PARSE::template validateCommand(cmdList.begin(), itorMediaInterfaceDescriptorLoad); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, interfaceDescriptorData) { typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS; typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA; enqueueReadImage(); // Extract the interfaceDescriptorData auto cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress; auto &interfaceDescriptorData = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData; // Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value. auto kernelStartPointer = ((uint64_t)interfaceDescriptorData.getKernelStartPointerHigh() << 32) + interfaceDescriptorData.getKernelStartPointer(); EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize); auto localWorkSize = 4u; auto simd = 32u; auto threadsPerThreadGroup = (localWorkSize + simd - 1) / simd; EXPECT_EQ(threadsPerThreadGroup, interfaceDescriptorData.getNumberOfThreadsInGpgpuThreadGroup()); EXPECT_NE(0u, interfaceDescriptorData.getCrossThreadConstantDataReadLength()); EXPECT_NE(0u, interfaceDescriptorData.getConstantIndirectUrbEntryReadLength()); // We shouldn't have these pointers the same. EXPECT_NE(kernelStartPointer, interfaceDescriptorData.getBindingTablePointer()); } HWTEST_F(EnqueueReadImageTest, surfaceState) { typedef typename FamilyType::RENDER_SURFACE_STATE RENDER_SURFACE_STATE; enqueueReadImage(); // BufferToImage kernel uses BTI=1 for destSurface uint32_t bindingTableIndex = 0; const auto &surfaceState = getSurfaceState(&pCmdQ->getIndirectHeap(IndirectHeap::SURFACE_STATE, 0), bindingTableIndex); // EnqueueReadImage uses multi-byte copies depending on per-pixel-size-in-bytes const auto &imageDesc = srcImage->getImageDesc(); EXPECT_EQ(imageDesc.image_width, surfaceState.getWidth()); EXPECT_EQ(imageDesc.image_height, surfaceState.getHeight()); EXPECT_NE(0u, surfaceState.getSurfacePitch()); EXPECT_NE(0u, surfaceState.getSurfaceType()); EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_FORMAT_R32_UINT, surfaceState.getSurfaceFormat()); EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_HORIZONTAL_ALIGNMENT_HALIGN_4, surfaceState.getSurfaceHorizontalAlignment()); EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_VERTICAL_ALIGNMENT_VALIGN_4, surfaceState.getSurfaceVerticalAlignment()); EXPECT_EQ(reinterpret_cast(srcImage->getCpuAddress()), surfaceState.getSurfaceBaseAddress()); } HWTEST_F(EnqueueReadImageTest, pipelineSelect) { enqueueReadImage(); int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect(); EXPECT_EQ(1, numCommands); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, mediaVFEState) { enqueueReadImage(); validateMediaVFEState(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState); } HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueReadImageTest, blockingEnqueueRequiresPCWithDCFlushSetAfterWalker) { typedef typename FamilyType::PIPE_CONTROL PIPE_CONTROL; bool blocking = true; enqueueReadImage(blocking); auto itorWalker = find(cmdList.begin(), cmdList.end()); auto itorCmd = find(itorWalker, cmdList.end()); auto *cmd = (PIPE_CONTROL *)*itorCmd; EXPECT_NE(cmdList.end(), itorCmd); if (::renderCoreFamily != IGFX_GEN8_CORE) { // SKL+: two PIPE_CONTROLs following GPGPU_WALKER: first has DcFlush and second has Write HwTag EXPECT_TRUE(cmd->getDcFlushEnable()); // Move to next PPC auto itorCmdP = ++((GenCmdList::iterator)itorCmd); EXPECT_NE(cmdList.end(), itorCmdP); auto itorCmd2 = find(itorCmdP, cmdList.end()); cmd = (PIPE_CONTROL *)*itorCmd2; EXPECT_FALSE(cmd->getDcFlushEnable()); } else { // BDW: single PIPE_CONTROL following GPGPU_WALKER has DcFlush and Write HwTag EXPECT_TRUE(cmd->getDcFlushEnable()); } } HWTEST_F(EnqueueReadImageTest, GivenImage1DarrayWhenReadImageIsCalledThenHostPtrSizeIsCalculatedProperly) { auto srcImage = Image1dArrayHelper<>::create(context); auto imageDesc = srcImage->getImageDesc(); auto imageSize = imageDesc.image_width * imageDesc.image_array_size * 4; size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_array_size, 1}; EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_FALSE, origin, region); auto &csr = pCmdQ->getCommandStreamReceiver(); auto temporaryAllocation = csr.getTemporaryAllocations().peekHead(); ASSERT_NE(nullptr, temporaryAllocation); EXPECT_EQ(temporaryAllocation->getUnderlyingBufferSize(), imageSize); delete srcImage; } HWTEST_F(EnqueueReadImageTest, GivenImage2DarrayWhenReadImageIsCalledThenHostPtrSizeIsCalculatedProperly) { auto srcImage = Image2dArrayHelper<>::create(context); auto imageDesc = srcImage->getImageDesc(); auto imageSize = imageDesc.image_width * imageDesc.image_height * imageDesc.image_array_size * 4; size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, imageDesc.image_array_size}; EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage, CL_FALSE, origin, region); auto &csr = pCmdQ->getCommandStreamReceiver(); auto temporaryAllocation = csr.getTemporaryAllocations().peekHead(); ASSERT_NE(nullptr, temporaryAllocation); EXPECT_EQ(temporaryAllocation->getUnderlyingBufferSize(), imageSize); delete srcImage; } HWTEST_F(EnqueueReadImageTest, GivenImage1DAndImageShareTheSameStorageWithHostPtrWhenReadReadImageIsCalledThenImageIsNotRead) { cl_int retVal = CL_SUCCESS; std::unique_ptr dstImage2(Image1dHelper<>::create(context)); auto imageDesc = dstImage2->getImageDesc(); std::unique_ptr pCmdOOQ(createCommandQueue(pDevice, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE)); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, 1, 1}; void *ptr = dstImage2->getCpuAddressForMemoryTransfer(); size_t rowPitch = dstImage2->getHostPtrRowPitch(); size_t slicePitch = dstImage2->getHostPtrSlicePitch(); retVal = pCmdOOQ->enqueueReadImage(dstImage2.get(), CL_FALSE, origin, region, rowPitch, slicePitch, ptr, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(pCmdOOQ->taskLevel, 0u); } HWTEST_F(EnqueueReadImageTest, GivenImage1DArrayAndImageShareTheSameStorageWithHostPtrWhenReadReadImageIsCalledThenImageIsNotRead) { cl_int retVal = CL_SUCCESS; std::unique_ptr dstImage2(Image1dArrayHelper<>::create(context)); auto imageDesc = dstImage2->getImageDesc(); size_t origin[] = {imageDesc.image_width / 2, imageDesc.image_array_size / 2, 0}; size_t region[] = {imageDesc.image_width - (imageDesc.image_width / 2), imageDesc.image_array_size - (imageDesc.image_array_size / 2), 1}; void *ptr = dstImage2->getCpuAddressForMemoryTransfer(); auto bytesPerPixel = 4; size_t rowPitch = dstImage2->getHostPtrRowPitch(); size_t slicePitch = dstImage2->getHostPtrSlicePitch(); auto pOffset = origin[2] * rowPitch + origin[1] * slicePitch + origin[0] * bytesPerPixel; void *ptrStorage = ptrOffset(ptr, pOffset); retVal = pCmdQ->enqueueReadImage(dstImage2.get(), CL_FALSE, origin, region, rowPitch, slicePitch, ptrStorage, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(pCmdQ->taskLevel, 0u); } HWTEST_F(EnqueueReadImageTest, GivenSharedContextZeroCopy2DImageWhenEnqueueReadImageWithMappedPointerIsCalledThenImageIsNotRead) { cl_int retVal = CL_SUCCESS; context->isSharedContext = true; std::unique_ptr dstImage(ImageHelper>::create(context)); EXPECT_TRUE(dstImage->isMemObjZeroCopy()); auto imageDesc = dstImage->getImageDesc(); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, 1}; void *ptr = dstImage->getCpuAddressForMemoryTransfer(); size_t rowPitch = dstImage->getHostPtrRowPitch(); size_t slicePitch = dstImage->getHostPtrSlicePitch(); retVal = pCmdQ->enqueueReadImage(dstImage.get(), CL_FALSE, origin, region, rowPitch, slicePitch, ptr, 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(pCmdQ->taskLevel, 0u); } HWTEST_F(EnqueueReadImageTest, GivenImage1DThatIsZeroCopyWhenReadImageWithTheSamePointerAndOutputEventIsPassedThenEventHasCorrectCommandTypeSet) { cl_int retVal = CL_SUCCESS; std::unique_ptr dstImage(Image1dHelper<>::create(context)); auto imageDesc = dstImage->getImageDesc(); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, 1}; void *ptr = dstImage->getCpuAddressForMemoryTransfer(); size_t rowPitch = dstImage->getHostPtrRowPitch(); size_t slicePitch = dstImage->getHostPtrSlicePitch(); cl_uint numEventsInWaitList = 0; cl_event event = nullptr; retVal = pCmdQ->enqueueReadImage(dstImage.get(), CL_FALSE, origin, region, rowPitch, slicePitch, ptr, numEventsInWaitList, nullptr, &event); EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_EQ(CL_SUCCESS, retVal); ASSERT_NE(nullptr, event); auto pEvent = static_cast(event); EXPECT_EQ(static_cast(CL_COMMAND_READ_IMAGE), pEvent->getCommandType()); pEvent->release(); } HWTEST_F(EnqueueReadImageTest, givenCommandQueueWhenEnqueueReadImageIsCalledThenItCallsNotifyFunction) { auto mockCmdQ = std::make_unique>(context, pDevice, nullptr); std::unique_ptr srcImage(Image2dArrayHelper<>::create(context)); auto imageDesc = srcImage->getImageDesc(); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, imageDesc.image_array_size}; EnqueueReadImageHelper<>::enqueueReadImage(mockCmdQ.get(), srcImage.get(), CL_TRUE, origin, region); EXPECT_TRUE(mockCmdQ->notifyEnqueueReadImageCalled); } HWTEST_F(EnqueueReadImageTest, givenEnqueueReadImageBlockingWhenAUBDumpAllocsOnEnqueueReadOnlyIsOnThenImageShouldBeSetDumpable) { DebugManagerStateRestore dbgRestore; DebugManager.flags.AUBDumpAllocsOnEnqueueReadOnly.set(true); std::unique_ptr srcImage(Image2dArrayHelper<>::create(context)); auto imageDesc = srcImage->getImageDesc(); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, imageDesc.image_array_size}; ASSERT_FALSE(srcImage->getGraphicsAllocation()->isAllocDumpable()); EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage.get(), CL_TRUE, origin, region); EXPECT_TRUE(srcImage->getGraphicsAllocation()->isAllocDumpable()); } HWTEST_F(EnqueueReadImageTest, givenEnqueueReadImageNonBlockingWhenAUBDumpAllocsOnEnqueueReadOnlyIsOnThenImageShouldntBeSetDumpable) { DebugManagerStateRestore dbgRestore; DebugManager.flags.AUBDumpAllocsOnEnqueueReadOnly.set(true); std::unique_ptr srcImage(Image2dArrayHelper<>::create(context)); auto imageDesc = srcImage->getImageDesc(); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, imageDesc.image_array_size}; ASSERT_FALSE(srcImage->getGraphicsAllocation()->isAllocDumpable()); EnqueueReadImageHelper<>::enqueueReadImage(pCmdQ, srcImage.get(), CL_FALSE, origin, region); EXPECT_FALSE(srcImage->getGraphicsAllocation()->isAllocDumpable()); } typedef EnqueueReadImageMipMapTest MipMapReadImageTest; HWTEST_P(MipMapReadImageTest, GivenImageWithMipLevelNonZeroWhenReadImageIsCalledThenProperMipLevelIsSet) { auto &builtIns = *pCmdQ->getDevice().getExecutionEnvironment()->getBuiltIns(); auto image_type = (cl_mem_object_type)GetParam(); auto &origBuilder = builtIns.getBuiltinDispatchInfoBuilder( EBuiltInOps::CopyImage3dToBuffer, pCmdQ->getContext(), pCmdQ->getDevice()); // substitute original builder with mock builder auto oldBuilder = builtIns.setBuiltinDispatchInfoBuilder( EBuiltInOps::CopyImage3dToBuffer, pCmdQ->getContext(), pCmdQ->getDevice(), std::unique_ptr(new MockBuiltinDispatchInfoBuilder(builtIns, &origBuilder))); cl_int retVal = CL_SUCCESS; cl_image_desc imageDesc = {}; uint32_t expectedMipLevel = 3; imageDesc.image_type = image_type; imageDesc.num_mip_levels = 10; imageDesc.image_width = 4; imageDesc.image_height = 1; imageDesc.image_depth = 1; size_t origin[] = {0, 0, 0, 0}; size_t region[] = {imageDesc.image_width, 1, 1}; std::unique_ptr image; switch (image_type) { case CL_MEM_OBJECT_IMAGE1D: origin[1] = expectedMipLevel; image = std::unique_ptr(ImageHelper::create(context, &imageDesc)); break; case CL_MEM_OBJECT_IMAGE1D_ARRAY: imageDesc.image_array_size = 2; origin[2] = expectedMipLevel; image = std::unique_ptr(ImageHelper::create(context, &imageDesc)); break; case CL_MEM_OBJECT_IMAGE2D: origin[2] = expectedMipLevel; image = std::unique_ptr(ImageHelper::create(context, &imageDesc)); break; case CL_MEM_OBJECT_IMAGE2D_ARRAY: imageDesc.image_array_size = 2; origin[3] = expectedMipLevel; image = std::unique_ptr(ImageHelper::create(context, &imageDesc)); break; case CL_MEM_OBJECT_IMAGE3D: origin[3] = expectedMipLevel; image = std::unique_ptr(ImageHelper::create(context, &imageDesc)); break; } EXPECT_NE(nullptr, image.get()); std::unique_ptr ptr = std::unique_ptr(new uint32_t[3]); retVal = pCmdQ->enqueueReadImage(image.get(), CL_FALSE, origin, region, 0, 0, ptr.get(), 0, nullptr, nullptr); EXPECT_EQ(CL_SUCCESS, retVal); auto &mockBuilder = static_cast(builtIns.getBuiltinDispatchInfoBuilder(EBuiltInOps::CopyImage3dToBuffer, pCmdQ->getContext(), pCmdQ->getDevice())); auto params = mockBuilder.getBuiltinOpParams(); EXPECT_EQ(expectedMipLevel, params->srcMipLevel); // restore original builder and retrieve mock builder auto newBuilder = builtIns.setBuiltinDispatchInfoBuilder( EBuiltInOps::CopyImage3dToBuffer, pCmdQ->getContext(), pCmdQ->getDevice(), std::move(oldBuilder)); EXPECT_NE(nullptr, newBuilder); } INSTANTIATE_TEST_CASE_P(MipMapReadImageTest_GivenImageWithMipLevelNonZeroWhenWriteImageIsCalledThenProperMipLevelIsSet, MipMapReadImageTest, ::testing::Values(CL_MEM_OBJECT_IMAGE1D, CL_MEM_OBJECT_IMAGE1D_ARRAY, CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE2D_ARRAY, CL_MEM_OBJECT_IMAGE3D)); using NegativeFailAllocationTest = Test; HWTEST_F(NegativeFailAllocationTest, givenEnqueueWriteImageWhenHostPtrAllocationCreationFailsThenReturnOutOfResource) { cl_int retVal = CL_SUCCESS; auto imageDesc = image->getImageDesc(); size_t origin[] = {0, 0, 0}; size_t region[] = {imageDesc.image_width, imageDesc.image_height, 1}; size_t rowPitch = image->getHostPtrRowPitch(); size_t slicePitch = image->getHostPtrSlicePitch(); retVal = pCmdQ->enqueueWriteImage(image.get(), CL_FALSE, origin, region, rowPitch, slicePitch, ptr, 0, nullptr, nullptr); EXPECT_EQ(CL_OUT_OF_RESOURCES, retVal); }