/* * Copyright (C) 2018 Intel Corporation * * SPDX-License-Identifier: MIT * */ #include "runtime/command_queue/command_queue_hw.h" #include "runtime/command_stream/command_stream_receiver.h" #include "runtime/event/event.h" #include "runtime/memory_manager/internal_allocation_storage.h" #include "runtime/memory_manager/memory_manager.h" #include "runtime/helpers/basic_math.h" #include "runtime/helpers/kernel_commands.h" #include "runtime/helpers/options.h" #include "unit_tests/command_queue/command_queue_fixture.h" #include "unit_tests/command_stream/command_stream_fixture.h" #include "unit_tests/fixtures/context_fixture.h" #include "unit_tests/fixtures/device_fixture.h" #include "unit_tests/fixtures/image_fixture.h" #include "unit_tests/fixtures/memory_management_fixture.h" #include "unit_tests/fixtures/buffer_fixture.h" #include "unit_tests/libult/ult_command_stream_receiver.h" #include "unit_tests/mocks/mock_memory_manager.h" #include "unit_tests/mocks/mock_command_queue.h" #include "unit_tests/mocks/mock_context.h" #include "unit_tests/mocks/mock_csr.h" #include "unit_tests/mocks/mock_kernel.h" #include "unit_tests/mocks/mock_program.h" #include "gtest/gtest.h" #include "gmock/gmock.h" #include "test.h" using namespace OCLRT; struct CommandQueueMemoryDevice : public MemoryManagementFixture, public DeviceFixture { void SetUp() override { MemoryManagementFixture::SetUp(); DeviceFixture::SetUp(); } void TearDown() override { DeviceFixture::TearDown(); MemoryManagementFixture::TearDown(); } }; struct CommandQueueTest : public CommandQueueMemoryDevice, public ContextFixture, public CommandQueueFixture, ::testing::TestWithParam { using CommandQueueFixture::SetUp; using ContextFixture::SetUp; CommandQueueTest() { } void SetUp() override { CommandQueueMemoryDevice::SetUp(); properties = GetParam(); cl_device_id device = pDevice; ContextFixture::SetUp(1, &device); CommandQueueFixture::SetUp(pContext, pDevice, properties); } void TearDown() override { CommandQueueFixture::TearDown(); ContextFixture::TearDown(); CommandQueueMemoryDevice::TearDown(); } cl_command_queue_properties properties; const HardwareInfo *pHwInfo = nullptr; }; TEST_P(CommandQueueTest, createDeleteCommandQueue_Properties) { InjectedFunction method = [this](size_t failureIndex) { auto retVal = CL_INVALID_VALUE; auto pCmdQ = CommandQueue::create( pContext, pDevice, nullptr, retVal); if (nonfailingAllocation == failureIndex) { EXPECT_EQ(CL_SUCCESS, retVal); EXPECT_NE(nullptr, pCmdQ); } else { EXPECT_EQ(CL_OUT_OF_HOST_MEMORY, retVal) << "for allocation " << failureIndex; EXPECT_EQ(nullptr, pCmdQ); } delete pCmdQ; }; injectFailures(method); } INSTANTIATE_TEST_CASE_P(CommandQueue, CommandQueueTest, ::testing::ValuesIn(AllCommandQueueProperties)); TEST(CommandQueue, taskLevelInitializesTo0) { CommandQueue cmdQ(nullptr, nullptr, 0); EXPECT_EQ(0u, cmdQ.taskLevel); EXPECT_EQ(0u, cmdQ.taskCount); } struct GetTagTest : public DeviceFixture, public CommandQueueFixture, public CommandStreamFixture, public ::testing::Test { using CommandQueueFixture::SetUp; void SetUp() override { DeviceFixture::SetUp(); CommandQueueFixture::SetUp(nullptr, pDevice, 0); CommandStreamFixture::SetUp(pCmdQ); } void TearDown() override { CommandStreamFixture::TearDown(); CommandQueueFixture::TearDown(); DeviceFixture::TearDown(); } }; TEST_F(GetTagTest, shouldReturnValue) { uint32_t tagValue = 0xdeadbeef; *pTagMemory = tagValue; EXPECT_EQ(tagValue, pCmdQ->getHwTag()); } TEST_F(GetTagTest, getHwTagInitialValue) { MockContext context; CommandQueue commandQueue(&context, pDevice, 0); EXPECT_EQ(initialHardwareTag, commandQueue.getHwTag()); } TEST(CommandQueue, IOQ_taskLevelFromCompletionStamp) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); CompletionStamp cs = { cmdQ.taskCount + 100, cmdQ.taskLevel + 50, 5, 0, EngineType::ENGINE_RCS}; cmdQ.updateFromCompletionStamp(cs); EXPECT_EQ(cs.taskLevel, cmdQ.taskLevel); EXPECT_EQ(cs.taskCount, cmdQ.taskCount); EXPECT_EQ(cs.flushStamp, cmdQ.flushStamp->peekStamp()); } TEST(CommandQueue, givenTimeStampWithTaskCountNotReadyStatusWhenupdateFromCompletionStampIsBeingCalledThenQueueTaskCountIsNotUpdated) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); cmdQ.taskCount = 1u; CompletionStamp cs = { Event::eventNotReady, 0, 0, 0, EngineType::ENGINE_RCS}; cmdQ.updateFromCompletionStamp(cs); EXPECT_EQ(1u, cmdQ.taskCount); } TEST(CommandQueue, GivenOOQwhenUpdateFromCompletionStampWithTrueIsCalledThenTaskLevelIsUpdated) { MockContext context; const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, 0}; CommandQueue cmdQ(&context, nullptr, props); auto oldTL = cmdQ.taskLevel; CompletionStamp cs = { cmdQ.taskCount + 100, cmdQ.taskLevel + 50, 5, 0, EngineType::ENGINE_RCS}; cmdQ.updateFromCompletionStamp(cs); EXPECT_NE(oldTL, cmdQ.taskLevel); EXPECT_EQ(oldTL + 50, cmdQ.taskLevel); EXPECT_EQ(cs.taskCount, cmdQ.taskCount); EXPECT_EQ(cs.flushStamp, cmdQ.flushStamp->peekStamp()); } TEST(CommandQueue, givenCmdQueueBlockedByReadyVirtualEventWhenUnblockingThenUpdateFlushTaskFromEvent) { std::unique_ptr mockDevice(MockDevice::createWithNewExecutionEnvironment(nullptr)); auto context = new MockContext; auto cmdQ = new CommandQueue(context, mockDevice.get(), 0); auto userEvent = new Event(cmdQ, CL_COMMAND_NDRANGE_KERNEL, 0, 0); userEvent->setStatus(CL_COMPLETE); userEvent->flushStamp->setStamp(5); userEvent->incRefInternal(); FlushStamp expectedFlushStamp = 0; EXPECT_EQ(expectedFlushStamp, cmdQ->flushStamp->peekStamp()); cmdQ->virtualEvent = userEvent; EXPECT_FALSE(cmdQ->isQueueBlocked()); EXPECT_EQ(userEvent->flushStamp->peekStamp(), cmdQ->flushStamp->peekStamp()); userEvent->decRefInternal(); cmdQ->decRefInternal(); context->decRefInternal(); } TEST(CommandQueue, givenCmdQueueBlockedByAbortedVirtualEventWhenUnblockingThenUpdateFlushTaskFromEvent) { auto context = new MockContext; std::unique_ptr mockDevice(MockDevice::createWithNewExecutionEnvironment(nullptr)); auto cmdQ = new CommandQueue(context, mockDevice.get(), 0); auto userEvent = new Event(cmdQ, CL_COMMAND_NDRANGE_KERNEL, 0, 0); userEvent->setStatus(-1); userEvent->flushStamp->setStamp(5); FlushStamp expectedFlushStamp = 0; EXPECT_EQ(expectedFlushStamp, cmdQ->flushStamp->peekStamp()); userEvent->incRefInternal(); cmdQ->virtualEvent = userEvent; EXPECT_FALSE(cmdQ->isQueueBlocked()); EXPECT_EQ(expectedFlushStamp, cmdQ->flushStamp->peekStamp()); userEvent->decRefInternal(); cmdQ->decRefInternal(); context->decRefInternal(); } struct CommandQueueCommandStreamTest : public CommandQueueMemoryDevice, public ::testing::Test { void SetUp() override { CommandQueueMemoryDevice::SetUp(); context.reset(new MockContext(pDevice)); } void TearDown() override { context.reset(); CommandQueueMemoryDevice::TearDown(); } std::unique_ptr context; }; HWTEST_F(CommandQueueCommandStreamTest, givenCommandQueueThatWaitsOnAbortedUserEventWhenIsQueueBlockedIsCalledThenTaskLevelAlignsToCsr) { MockContext context; std::unique_ptr mockDevice(MockDevice::createWithNewExecutionEnvironment(nullptr)); CommandQueue cmdQ(&context, mockDevice.get(), 0); auto &commandStreamReceiver = mockDevice->getUltCommandStreamReceiver(); commandStreamReceiver.taskLevel = 100u; Event userEvent(&cmdQ, CL_COMMAND_NDRANGE_KERNEL, 0, 0); userEvent.setStatus(-1); userEvent.incRefInternal(); cmdQ.virtualEvent = &userEvent; EXPECT_FALSE(cmdQ.isQueueBlocked()); EXPECT_EQ(100u, cmdQ.taskLevel); } TEST_F(CommandQueueCommandStreamTest, GetCommandStreamReturnsValidObject) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue commandQueue(context.get(), pDevice, props); auto &cs = commandQueue.getCS(1024); EXPECT_NE(nullptr, &cs); } TEST_F(CommandQueueCommandStreamTest, GetCommandStreamReturnsCsWithCsOverfetchSizeIncludedInGraphicsAllocation) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue commandQueue(context.get(), pDevice, props); size_t minSizeRequested = 20; auto &cs = commandQueue.getCS(minSizeRequested); ASSERT_NE(nullptr, &cs); auto *allocation = cs.getGraphicsAllocation(); ASSERT_NE(nullptr, &allocation); size_t expectedCsSize = alignUp(minSizeRequested + CSRequirements::minCommandQueueCommandStreamSize, MemoryConstants::pageSize) - CSRequirements::minCommandQueueCommandStreamSize; EXPECT_EQ(expectedCsSize, cs.getMaxAvailableSpace()); size_t expectedTotalSize = alignUp(minSizeRequested + CSRequirements::minCommandQueueCommandStreamSize, MemoryConstants::pageSize) + CSRequirements::csOverfetchSize; EXPECT_EQ(expectedTotalSize, allocation->getUnderlyingBufferSize()); } TEST_F(CommandQueueCommandStreamTest, getCommandStreamContainsMemoryForRequest) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue commandQueue(context.get(), pDevice, props); size_t requiredSize = 16384; const auto &commandStream = commandQueue.getCS(requiredSize); ASSERT_NE(nullptr, &commandStream); EXPECT_GE(commandStream.getMaxAvailableSpace(), requiredSize); } TEST_F(CommandQueueCommandStreamTest, getCommandStreamCanRecycle) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue commandQueue(context.get(), pDevice, props); auto &commandStreamInitial = commandQueue.getCS(1024); size_t requiredSize = commandStreamInitial.getMaxAvailableSpace() + 42; const auto &commandStream = commandQueue.getCS(requiredSize); ASSERT_NE(nullptr, &commandStream); EXPECT_GE(commandStream.getMaxAvailableSpace(), requiredSize); } TEST_F(CommandQueueCommandStreamTest, givenCommandStreamReceiverWithReusableAllocationsWhenAskedForCommandStreamReturnsAllocationFromReusablePool) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto memoryManager = pDevice->getMemoryManager(); size_t requiredSize = alignUp(100, MemoryConstants::pageSize) + CSRequirements::csOverfetchSize; auto allocation = memoryManager->allocateGraphicsMemory(requiredSize); auto &commandStreamReceiver = pDevice->getCommandStreamReceiver(); commandStreamReceiver.getInternalAllocationStorage()->storeAllocation(std::unique_ptr(allocation), REUSABLE_ALLOCATION); EXPECT_FALSE(commandStreamReceiver.getAllocationsForReuse().peekIsEmpty()); EXPECT_TRUE(commandStreamReceiver.getAllocationsForReuse().peekContains(*allocation)); const auto &indirectHeap = cmdQ.getCS(100); EXPECT_EQ(indirectHeap.getGraphicsAllocation(), allocation); EXPECT_TRUE(commandStreamReceiver.getAllocationsForReuse().peekIsEmpty()); } TEST_F(CommandQueueCommandStreamTest, givenCommandQueueWhenItIsDestroyedThenCommandStreamIsPutOnTheReusabeList) { auto cmdQ = new CommandQueue(context.get(), pDevice, 0); auto memoryManager = pDevice->getMemoryManager(); const auto &commandStream = cmdQ->getCS(100); auto graphicsAllocation = commandStream.getGraphicsAllocation(); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); //now destroy command queue, heap should go to reusable list delete cmdQ; EXPECT_FALSE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekContains(*graphicsAllocation)); } TEST_F(CommandQueueCommandStreamTest, CommandQueueWhenAskedForNewCommandStreamStoresOldHeapForReuse) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto memoryManager = pDevice->getMemoryManager(); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); const auto &indirectHeap = cmdQ.getCS(100); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); auto graphicsAllocation = indirectHeap.getGraphicsAllocation(); cmdQ.getCS(10000); EXPECT_FALSE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekContains(*graphicsAllocation)); } TEST_F(CommandQueueCommandStreamTest, givenCommandQueueWhenGetCSIsCalledThenCommandStreamAllocationTypeShouldBeSetToLinearStream) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); const auto &commandStream = cmdQ.getCS(100); auto commandStreamAllocation = commandStream.getGraphicsAllocation(); ASSERT_NE(nullptr, commandStreamAllocation); EXPECT_EQ(GraphicsAllocation::AllocationType::LINEAR_STREAM, commandStreamAllocation->getAllocationType()); } struct CommandQueueIndirectHeapTest : public CommandQueueMemoryDevice, public ::testing::TestWithParam { void SetUp() override { CommandQueueMemoryDevice::SetUp(); context.reset(new MockContext(pDevice)); } void TearDown() override { context.reset(); CommandQueueMemoryDevice::TearDown(); } std::unique_ptr context; }; TEST_P(CommandQueueIndirectHeapTest, IndirectHeapIsProvidedByDevice) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 8192); EXPECT_NE(nullptr, &indirectHeap); } TEST_P(CommandQueueIndirectHeapTest, givenIndirectObjectHeapWhenItIsQueriedForInternalAllocationThenTrueIsReturned) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 8192); if (this->GetParam() == IndirectHeap::INDIRECT_OBJECT) { EXPECT_TRUE(indirectHeap.getGraphicsAllocation()->is32BitAllocation); } else { EXPECT_FALSE(indirectHeap.getGraphicsAllocation()->is32BitAllocation); } } TEST_P(CommandQueueIndirectHeapTest, IndirectHeapContainsAtLeast64KB) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), sizeof(uint32_t)); if (this->GetParam() == IndirectHeap::SURFACE_STATE) { EXPECT_EQ(pDevice->getCommandStreamReceiver().defaultSshSize - MemoryConstants::pageSize, indirectHeap.getAvailableSpace()); } else { EXPECT_EQ(64 * KB, indirectHeap.getAvailableSpace()); } } TEST_P(CommandQueueIndirectHeapTest, getIndirectHeapContainsMemoryForRequest) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); size_t requiredSize = 16384; const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), requiredSize); ASSERT_NE(nullptr, &indirectHeap); EXPECT_GE(indirectHeap.getMaxAvailableSpace(), requiredSize); } TEST_P(CommandQueueIndirectHeapTest, getIndirectHeapCanRecycle) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto &indirectHeapInitial = cmdQ.getIndirectHeap(this->GetParam(), 10); size_t requiredSize = indirectHeapInitial.getMaxAvailableSpace() + 42; const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), requiredSize); ASSERT_NE(nullptr, &indirectHeap); if (this->GetParam() == IndirectHeap::SURFACE_STATE) { //no matter what SSH is always capped EXPECT_EQ(cmdQ.getDevice().getCommandStreamReceiver().defaultSshSize - MemoryConstants::pageSize, indirectHeap.getMaxAvailableSpace()); } else { EXPECT_LE(requiredSize, indirectHeap.getMaxAvailableSpace()); } } TEST_P(CommandQueueIndirectHeapTest, alignSizeToCacheLine) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); size_t minHeapSize = 64 * KB; auto &indirectHeapInitial = cmdQ.getIndirectHeap(this->GetParam(), 2 * minHeapSize + 1); EXPECT_TRUE(isAligned(indirectHeapInitial.getAvailableSpace())); indirectHeapInitial.getSpace(indirectHeapInitial.getAvailableSpace()); // use whole space to force obtain reusable const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), minHeapSize + 1); ASSERT_NE(nullptr, &indirectHeap); EXPECT_TRUE(isAligned(indirectHeap.getAvailableSpace())); } TEST_P(CommandQueueIndirectHeapTest, givenCommandStreamReceiverWithReusableAllocationsWhenAskedForHeapAllocationReturnsAllocationFromReusablePool) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto memoryManager = pDevice->getMemoryManager(); auto allocationSize = defaultHeapSize * 2; GraphicsAllocation *allocation = nullptr; if (this->GetParam() == IndirectHeap::INDIRECT_OBJECT) { allocation = memoryManager->allocate32BitGraphicsMemory(allocationSize, nullptr, AllocationOrigin::INTERNAL_ALLOCATION); } else { allocation = memoryManager->allocateGraphicsMemory(allocationSize); } if (this->GetParam() == IndirectHeap::SURFACE_STATE) { allocation->setSize(cmdQ.getDevice().getCommandStreamReceiver().defaultSshSize * 2); } auto &commandStreamReceiver = pDevice->getCommandStreamReceiver(); commandStreamReceiver.getInternalAllocationStorage()->storeAllocation(std::unique_ptr(allocation), REUSABLE_ALLOCATION); EXPECT_FALSE(commandStreamReceiver.getAllocationsForReuse().peekIsEmpty()); EXPECT_TRUE(commandStreamReceiver.getAllocationsForReuse().peekContains(*allocation)); const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 100); EXPECT_EQ(indirectHeap.getGraphicsAllocation(), allocation); // if we obtain heap from reusable pool, we need to keep the size of allocation // surface state heap is an exception, it is capped at (max_ssh_size_for_HW - page_size) if (this->GetParam() == IndirectHeap::SURFACE_STATE) { EXPECT_EQ(commandStreamReceiver.defaultSshSize - MemoryConstants::pageSize, indirectHeap.getMaxAvailableSpace()); } else { EXPECT_EQ(allocationSize, indirectHeap.getMaxAvailableSpace()); } EXPECT_TRUE(commandStreamReceiver.getAllocationsForReuse().peekIsEmpty()); } TEST_P(CommandQueueIndirectHeapTest, CommandQueueWhenAskedForNewHeapStoresOldHeapForReuse) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); auto memoryManager = pDevice->getMemoryManager(); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 100); auto heapSize = indirectHeap.getAvailableSpace(); auto graphicsAllocation = indirectHeap.getGraphicsAllocation(); // Request a larger heap than the first. cmdQ.getIndirectHeap(this->GetParam(), heapSize + 6000); EXPECT_FALSE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekContains(*graphicsAllocation)); } TEST_P(CommandQueueIndirectHeapTest, GivenCommandQueueWithoutHeapAllocationWhenAskedForNewHeapReturnsAcquiresNewAllocationWithoutStoring) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; MockCommandQueue cmdQ(context.get(), pDevice, props); auto memoryManager = pDevice->getMemoryManager(); auto &csr = pDevice->getUltCommandStreamReceiver(); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 100); auto heapSize = indirectHeap.getAvailableSpace(); auto graphicsAllocation = indirectHeap.getGraphicsAllocation(); csr.indirectHeap[this->GetParam()]->replaceGraphicsAllocation(nullptr); csr.indirectHeap[this->GetParam()]->replaceBuffer(nullptr, 0); // Request a larger heap than the first. cmdQ.getIndirectHeap(this->GetParam(), heapSize + 6000); EXPECT_NE(graphicsAllocation, indirectHeap.getGraphicsAllocation()); memoryManager->freeGraphicsMemory(graphicsAllocation); } TEST_P(CommandQueueIndirectHeapTest, givenCommandQueueWithResourceCachingActiveWhenQueueISDestroyedThenIndirectHeapIsNotOnReuseList) { auto cmdQ = new CommandQueue(context.get(), pDevice, 0); auto memoryManager = pDevice->getMemoryManager(); cmdQ->getIndirectHeap(this->GetParam(), 100); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); //now destroy command queue, heap should go to reusable list delete cmdQ; EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); } TEST_P(CommandQueueIndirectHeapTest, GivenCommandQueueWithHeapAllocatedWhenIndirectHeapIsReleasedThenHeapAllocationAndHeapBufferIsSetToNullptr) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; MockCommandQueue cmdQ(context.get(), pDevice, props); auto memoryManager = pDevice->getMemoryManager(); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 100); auto heapSize = indirectHeap.getMaxAvailableSpace(); EXPECT_NE(0u, heapSize); auto graphicsAllocation = indirectHeap.getGraphicsAllocation(); EXPECT_NE(nullptr, graphicsAllocation); cmdQ.releaseIndirectHeap(this->GetParam()); auto &csr = pDevice->getUltCommandStreamReceiver(); EXPECT_EQ(nullptr, csr.indirectHeap[this->GetParam()]->getGraphicsAllocation()); EXPECT_EQ(nullptr, indirectHeap.getCpuBase()); EXPECT_EQ(0u, indirectHeap.getMaxAvailableSpace()); } TEST_P(CommandQueueIndirectHeapTest, GivenCommandQueueWithoutHeapAllocatedWhenIndirectHeapIsReleasedThenIndirectHeapAllocationStaysNull) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; MockCommandQueue cmdQ(context.get(), pDevice, props); cmdQ.releaseIndirectHeap(this->GetParam()); auto &csr = pDevice->getUltCommandStreamReceiver(); EXPECT_EQ(nullptr, csr.indirectHeap[this->GetParam()]); } TEST_P(CommandQueueIndirectHeapTest, GivenCommandQueueWithHeapWhenGraphicAllocationIsNullThenNothingOnReuseList) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; MockCommandQueue cmdQ(context.get(), pDevice, props); auto &ih = cmdQ.getIndirectHeap(this->GetParam(), 0u); auto allocation = ih.getGraphicsAllocation(); EXPECT_NE(nullptr, allocation); auto &csr = pDevice->getUltCommandStreamReceiver(); csr.indirectHeap[this->GetParam()]->replaceGraphicsAllocation(nullptr); csr.indirectHeap[this->GetParam()]->replaceBuffer(nullptr, 0); cmdQ.releaseIndirectHeap(this->GetParam()); auto memoryManager = pDevice->getMemoryManager(); EXPECT_TRUE(memoryManager->getCommandStreamReceiver(0)->getAllocationsForReuse().peekIsEmpty()); memoryManager->freeGraphicsMemory(allocation); } TEST_P(CommandQueueIndirectHeapTest, givenCommandQueueWhenGetIndirectHeapIsCalledThenIndirectHeapAllocationTypeShouldBeSetToLinearStream) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); const auto &indirectHeap = cmdQ.getIndirectHeap(this->GetParam(), 100); auto indirectHeapAllocation = indirectHeap.getGraphicsAllocation(); ASSERT_NE(nullptr, indirectHeapAllocation); EXPECT_EQ(GraphicsAllocation::AllocationType::LINEAR_STREAM, indirectHeapAllocation->getAllocationType()); } TEST_P(CommandQueueIndirectHeapTest, givenCommandQueueWhenGetHeapMemoryIsCalledThenHeapIsCreated) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); IndirectHeap *indirectHeap = nullptr; cmdQ.allocateHeapMemory(this->GetParam(), 100, indirectHeap); EXPECT_NE(nullptr, indirectHeap); EXPECT_NE(nullptr, indirectHeap->getGraphicsAllocation()); pDevice->getMemoryManager()->freeGraphicsMemory(indirectHeap->getGraphicsAllocation()); delete indirectHeap; } TEST_P(CommandQueueIndirectHeapTest, givenCommandQueueWhenGetHeapMemoryIsCalledWithAlreadyAllocatedHeapThenGraphicsAllocationIsCreated) { const cl_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0}; CommandQueue cmdQ(context.get(), pDevice, props); IndirectHeap heap(nullptr, size_t{100}); IndirectHeap *indirectHeap = &heap; cmdQ.allocateHeapMemory(this->GetParam(), 100, indirectHeap); EXPECT_EQ(&heap, indirectHeap); EXPECT_NE(nullptr, indirectHeap->getGraphicsAllocation()); pDevice->getMemoryManager()->freeGraphicsMemory(indirectHeap->getGraphicsAllocation()); } INSTANTIATE_TEST_CASE_P( Device, CommandQueueIndirectHeapTest, testing::Values( IndirectHeap::DYNAMIC_STATE, IndirectHeap::GENERAL_STATE, IndirectHeap::INDIRECT_OBJECT, IndirectHeap::SURFACE_STATE)); using CommandQueueTests = ::testing::Test; HWTEST_F(CommandQueueTests, givenMultipleCommandQueuesWhenMarkerIsEmittedThenGraphicsAllocationIsReused) { std::unique_ptr device(MockDevice::createWithNewExecutionEnvironment(*platformDevices)); MockContext context(device.get()); std::unique_ptr commandQ(new CommandQueue(&context, device.get(), 0)); *device->getTagAddress() = 0; commandQ->enqueueMarkerWithWaitList(0, nullptr, nullptr); commandQ->enqueueMarkerWithWaitList(0, nullptr, nullptr); auto commandStreamGraphicsAllocation = commandQ->getCS(0).getGraphicsAllocation(); commandQ.reset(new CommandQueue(&context, device.get(), 0)); commandQ->enqueueMarkerWithWaitList(0, nullptr, nullptr); commandQ->enqueueMarkerWithWaitList(0, nullptr, nullptr); auto commandStreamGraphicsAllocation2 = commandQ->getCS(0).getGraphicsAllocation(); EXPECT_EQ(commandStreamGraphicsAllocation, commandStreamGraphicsAllocation2); } struct WaitForQueueCompletionTests : public ::testing::Test { template struct MyCmdQueue : public CommandQueueHw { MyCmdQueue(Context *context, Device *device) : CommandQueueHw(context, device, nullptr){}; void waitUntilComplete(uint32_t taskCountToWait, FlushStamp flushStampToWait, bool useQuickKmdSleep) override { requestedUseQuickKmdSleep = useQuickKmdSleep; waitUntilCompleteCounter++; } bool isQueueBlocked() override { return false; } bool requestedUseQuickKmdSleep = false; uint32_t waitUntilCompleteCounter = 0; }; void SetUp() override { device.reset(MockDevice::createWithNewExecutionEnvironment(*platformDevices)); context.reset(new MockContext(device.get())); } std::unique_ptr device; std::unique_ptr context; }; HWTEST_F(WaitForQueueCompletionTests, givenBlockingCallAndUnblockedQueueWhenEnqueuedThenCallWaitWithoutQuickKmdSleepRequest) { std::unique_ptr> cmdQ(new MyCmdQueue(context.get(), device.get())); uint32_t tmpPtr = 0; auto buffer = std::unique_ptr(BufferHelper<>::create(context.get())); cmdQ->enqueueReadBuffer(buffer.get(), CL_TRUE, 0, 1, &tmpPtr, 0, nullptr, nullptr); EXPECT_EQ(1u, cmdQ->waitUntilCompleteCounter); EXPECT_FALSE(cmdQ->requestedUseQuickKmdSleep); } HWTEST_F(WaitForQueueCompletionTests, givenBlockingCallAndBlockedQueueWhenEnqueuedThenCallWaitWithoutQuickKmdSleepRequest) { std::unique_ptr> cmdQ(new MyCmdQueue(context.get(), device.get())); std::unique_ptr blockingEvent(new Event(cmdQ.get(), CL_COMMAND_NDRANGE_KERNEL, 0, 0)); cl_event clBlockingEvent = blockingEvent.get(); uint32_t tmpPtr = 0; auto buffer = std::unique_ptr(BufferHelper<>::create(context.get())); cmdQ->enqueueReadBuffer(buffer.get(), CL_TRUE, 0, 1, &tmpPtr, 1, &clBlockingEvent, nullptr); EXPECT_EQ(1u, cmdQ->waitUntilCompleteCounter); EXPECT_FALSE(cmdQ->requestedUseQuickKmdSleep); } HWTEST_F(WaitForQueueCompletionTests, whenFinishIsCalledThenCallWaitWithoutQuickKmdSleepRequest) { std::unique_ptr> cmdQ(new MyCmdQueue(context.get(), device.get())); cmdQ->finish(false); EXPECT_EQ(1u, cmdQ->waitUntilCompleteCounter); EXPECT_FALSE(cmdQ->requestedUseQuickKmdSleep); } TEST(CommandQueue, givenEnqueueAcquireSharedObjectsWhenNoObjectsThenReturnSuccess) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); cl_uint numObjects = 0; cl_mem *memObjects = nullptr; cl_int result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_SUCCESS); } class MockSharingHandler : public SharingHandler { public: void synchronizeObject(UpdateData &updateData) override { updateData.synchronizationStatus = ACQUIRE_SUCCESFUL; } }; TEST(CommandQueue, givenEnqueuesForSharedObjectsWithImageUsingSharingHandlerThenReturnSuccess) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); MockSharingHandler *mockSharingHandler = new MockSharingHandler; auto image = std::unique_ptr(ImageHelper::create(&context)); image->setSharingHandler(mockSharingHandler); cl_mem memObject = image.get(); cl_uint numObjects = 1; cl_mem *memObjects = &memObject; cl_int result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_SUCCESS); result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_SUCCESS); } TEST(CommandQueue, givenEnqueuesForSharedObjectsWithImageUsingSharingHandlerWithEventThenReturnSuccess) { std::unique_ptr mockDevice(MockDevice::createWithNewExecutionEnvironment(nullptr)); MockContext context; CommandQueue cmdQ(&context, mockDevice.get(), 0); MockSharingHandler *mockSharingHandler = new MockSharingHandler; auto image = std::unique_ptr(ImageHelper::create(&context)); image->setSharingHandler(mockSharingHandler); cl_mem memObject = image.get(); cl_uint numObjects = 1; cl_mem *memObjects = &memObject; Event *eventAcquire = new Event(&cmdQ, CL_COMMAND_NDRANGE_KERNEL, 1, 5); cl_event clEventAquire = eventAcquire; cl_int result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, &clEventAquire, 0); EXPECT_EQ(result, CL_SUCCESS); ASSERT_NE(clEventAquire, nullptr); eventAcquire->release(); Event *eventRelease = new Event(&cmdQ, CL_COMMAND_NDRANGE_KERNEL, 1, 5); cl_event clEventRelease = eventRelease; result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, &clEventRelease, 0); EXPECT_EQ(result, CL_SUCCESS); ASSERT_NE(clEventRelease, nullptr); eventRelease->release(); } TEST(CommandQueue, givenEnqueueAcquireSharedObjectsWhenIncorrectArgumentsThenReturnProperError) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); cl_uint numObjects = 1; cl_mem *memObjects = nullptr; cl_int result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_VALUE); numObjects = 0; memObjects = (cl_mem *)1; result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_VALUE); numObjects = 0; memObjects = (cl_mem *)1; result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_VALUE); cl_mem memObject = nullptr; numObjects = 1; memObjects = &memObject; result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_MEM_OBJECT); auto buffer = std::unique_ptr(BufferHelper<>::create(&context)); memObject = buffer.get(); numObjects = 1; memObjects = &memObject; result = cmdQ.enqueueAcquireSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_MEM_OBJECT); } TEST(CommandQueue, givenEnqueueReleaseSharedObjectsWhenNoObjectsThenReturnSuccess) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); cl_uint numObjects = 0; cl_mem *memObjects = nullptr; cl_int result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_SUCCESS); } TEST(CommandQueue, givenEnqueueReleaseSharedObjectsWhenIncorrectArgumentsThenReturnProperError) { MockContext context; CommandQueue cmdQ(&context, nullptr, 0); cl_uint numObjects = 1; cl_mem *memObjects = nullptr; cl_int result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_VALUE); numObjects = 0; memObjects = (cl_mem *)1; result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_VALUE); numObjects = 0; memObjects = (cl_mem *)1; result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_VALUE); cl_mem memObject = nullptr; numObjects = 1; memObjects = &memObject; result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_MEM_OBJECT); auto buffer = std::unique_ptr(BufferHelper<>::create(&context)); memObject = buffer.get(); numObjects = 1; memObjects = &memObject; result = cmdQ.enqueueReleaseSharedObjects(numObjects, memObjects, 0, nullptr, nullptr, 0); EXPECT_EQ(result, CL_INVALID_MEM_OBJECT); } TEST(CommandQueue, givenEnqueueAcquireSharedObjectsCallWhenAcquireFailsThenCorrectErrorIsReturned) { class MockSharingHandler : public SharingHandler { int validateUpdateData(UpdateData &data) override { return CL_INVALID_MEM_OBJECT; } }; MockContext context; CommandQueue cmdQ(&context, nullptr, 0); auto buffer = std::unique_ptr(BufferHelper<>::create(&context)); MockSharingHandler *handler = new MockSharingHandler; buffer->setSharingHandler(handler); cl_mem memObject = buffer.get(); auto retVal = cmdQ.enqueueAcquireSharedObjects(1, &memObject, 0, nullptr, nullptr, 0); EXPECT_EQ(CL_INVALID_MEM_OBJECT, retVal); buffer->setSharingHandler(nullptr); } HWTEST_F(CommandQueueCommandStreamTest, givenDebugKernelWhenSetupDebugSurfaceIsCalledThenSurfaceStateIsCorrectlySet) { using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE; MockProgram program(*pDevice->getExecutionEnvironment()); program.enableKernelDebug(); std::unique_ptr kernel(MockKernel::create(*pDevice, &program)); CommandQueue cmdQ(context.get(), pDevice, 0); kernel->setSshLocal(nullptr, sizeof(RENDER_SURFACE_STATE) + kernel->getAllocatedKernelInfo()->patchInfo.pAllocateSystemThreadSurface->Offset); kernel->getAllocatedKernelInfo()->usesSsh = true; auto &commandStreamReceiver = pDevice->getCommandStreamReceiver(); cmdQ.setupDebugSurface(kernel.get()); auto debugSurface = commandStreamReceiver.getDebugSurfaceAllocation(); ASSERT_NE(nullptr, debugSurface); RENDER_SURFACE_STATE *surfaceState = (RENDER_SURFACE_STATE *)kernel->getSurfaceStateHeap(); EXPECT_EQ(debugSurface->getGpuAddress(), surfaceState->getSurfaceBaseAddress()); } HWTEST_F(CommandQueueCommandStreamTest, givenCsrWithDebugSurfaceAllocatedWhenSetupDebugSurfaceIsCalledThenDebugSurfaceIsReused) { using RENDER_SURFACE_STATE = typename FamilyType::RENDER_SURFACE_STATE; MockProgram program(*pDevice->getExecutionEnvironment()); program.enableKernelDebug(); std::unique_ptr kernel(MockKernel::create(*pDevice, &program)); CommandQueue cmdQ(context.get(), pDevice, 0); kernel->setSshLocal(nullptr, sizeof(RENDER_SURFACE_STATE) + kernel->getAllocatedKernelInfo()->patchInfo.pAllocateSystemThreadSurface->Offset); kernel->getAllocatedKernelInfo()->usesSsh = true; auto &commandStreamReceiver = pDevice->getCommandStreamReceiver(); commandStreamReceiver.allocateDebugSurface(SipKernel::maxDbgSurfaceSize); auto debugSurface = commandStreamReceiver.getDebugSurfaceAllocation(); ASSERT_NE(nullptr, debugSurface); cmdQ.setupDebugSurface(kernel.get()); EXPECT_EQ(debugSurface, commandStreamReceiver.getDebugSurfaceAllocation()); RENDER_SURFACE_STATE *surfaceState = (RENDER_SURFACE_STATE *)kernel->getSurfaceStateHeap(); EXPECT_EQ(debugSurface->getGpuAddress(), surfaceState->getSurfaceBaseAddress()); }