Files
compute-runtime/opencl/source/program/program.h
Krystian Chmielewski 01a719cf33 Allow for zebin rebuild when IR is present
This commits adds rebuilding zebin binary.
If zebin is built for different device and has SPIRV, then new ze binary
will be built using SPIRV.

Signed-off-by: Krystian Chmielewski <krystian.chmielewski@intel.com>
2022-04-12 08:05:25 +02:00

371 lines
13 KiB
C++

/*
* Copyright (C) 2018-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/compiler_interface/compiler_interface.h"
#include "shared/source/compiler_interface/linker.h"
#include "shared/source/device_binary_format/debug_zebin.h"
#include "shared/source/device_binary_format/elf/elf_encoder.h"
#include "shared/source/helpers/non_copyable_or_moveable.h"
#include "shared/source/program/program_info.h"
#include "shared/source/utilities/const_stringref.h"
#include "opencl/source/api/cl_types.h"
#include "opencl/source/cl_device/cl_device_vector.h"
#include "opencl/source/helpers/base_object.h"
#include "cif/builtins/memory/buffer/buffer.h"
#include "patch_list.h"
#include <list>
#include <string>
#include <vector>
namespace NEO {
namespace PatchTokenBinary {
struct ProgramFromPatchtokens;
}
class BuiltinDispatchInfoBuilder;
class ClDevice;
class Context;
class CompilerInterface;
class Device;
class ExecutionEnvironment;
class Program;
struct KernelInfo;
template <>
struct OpenCLObjectMapper<_cl_program> {
typedef class Program DerivedType;
};
namespace ProgramFunctions {
using CreateFromILFunc = std::function<Program *(Context *ctx,
const void *il,
size_t length,
int32_t &errcodeRet)>;
extern CreateFromILFunc createFromIL;
} // namespace ProgramFunctions
constexpr cl_int asClError(TranslationOutput::ErrorCode err) {
switch (err) {
default:
return CL_OUT_OF_HOST_MEMORY;
case TranslationOutput::ErrorCode::Success:
return CL_SUCCESS;
case TranslationOutput::ErrorCode::CompilerNotAvailable:
return CL_COMPILER_NOT_AVAILABLE;
case TranslationOutput::ErrorCode::CompilationFailure:
return CL_COMPILE_PROGRAM_FAILURE;
case TranslationOutput::ErrorCode::BuildFailure:
return CL_BUILD_PROGRAM_FAILURE;
case TranslationOutput::ErrorCode::LinkFailure:
return CL_LINK_PROGRAM_FAILURE;
}
}
class Program : public BaseObject<_cl_program> {
public:
static const cl_ulong objectMagic = 0x5651C89100AAACFELL;
enum class CreatedFrom {
SOURCE,
IL,
BINARY,
UNKNOWN
};
// Create program from binary
template <typename T = Program>
static T *create(
Context *pContext,
const ClDeviceVector &deviceVector,
const size_t *lengths,
const unsigned char **binaries,
cl_int *binaryStatus,
cl_int &errcodeRet);
// Create program from source
template <typename T = Program>
static T *create(
Context *pContext,
cl_uint count,
const char **strings,
const size_t *lengths,
cl_int &errcodeRet);
template <typename T = Program>
static T *createBuiltInFromSource(
const char *nullTerminatedString,
Context *context,
const ClDeviceVector &deviceVector,
cl_int *errcodeRet);
template <typename T = Program>
static T *createBuiltInFromGenBinary(
Context *context,
const ClDeviceVector &deviceVector,
const void *binary,
size_t size,
cl_int *errcodeRet);
template <typename T = Program>
static T *createFromIL(Context *context,
const void *il,
size_t length,
cl_int &errcodeRet);
Program(Context *context, bool isBuiltIn, const ClDeviceVector &clDevicesIn);
~Program() override;
Program(const Program &) = delete;
Program &operator=(const Program &) = delete;
cl_int build(const ClDeviceVector &deviceVector, const char *buildOptions,
bool enableCaching);
cl_int build(const ClDeviceVector &deviceVector, const char *buildOptions, bool enableCaching,
std::unordered_map<std::string, BuiltinDispatchInfoBuilder *> &builtinsMap);
MOCKABLE_VIRTUAL cl_int processGenBinary(const ClDevice &clDevice);
MOCKABLE_VIRTUAL cl_int processProgramInfo(ProgramInfo &dst, const ClDevice &clDevice);
cl_int compile(const ClDeviceVector &deviceVector, const char *buildOptions,
cl_uint numInputHeaders, const cl_program *inputHeaders, const char **headerIncludeNames);
cl_int link(const ClDeviceVector &deviceVector, const char *buildOptions,
cl_uint numInputPrograms, const cl_program *inputPrograms);
cl_int setProgramSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue);
MOCKABLE_VIRTUAL cl_int updateSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue);
size_t getNumKernels() const;
const KernelInfo *getKernelInfo(const char *kernelName, uint32_t rootDeviceIndex) const;
const KernelInfo *getKernelInfo(size_t ordinal, uint32_t rootDeviceIndex) const;
cl_int getInfo(cl_program_info paramName, size_t paramValueSize,
void *paramValue, size_t *paramValueSizeRet);
cl_int getBuildInfo(cl_device_id device, cl_program_build_info paramName,
size_t paramValueSize, void *paramValue, size_t *paramValueSizeRet) const;
bool isBuilt() const {
return std::any_of(this->deviceBuildInfos.begin(), this->deviceBuildInfos.end(), [](auto deviceBuildInfo) { return deviceBuildInfo.second.buildStatus == CL_SUCCESS && deviceBuildInfo.second.programBinaryType == CL_PROGRAM_BINARY_TYPE_EXECUTABLE; });
}
Context &getContext() const {
return *context;
}
Context *getContextPtr() const {
return context;
}
ExecutionEnvironment &peekExecutionEnvironment() const {
return executionEnvironment;
}
cl_int processSpirBinary(const void *pBinary, size_t binarySize, bool isSpirV);
cl_int getSource(std::string &binary) const;
MOCKABLE_VIRTUAL void processDebugData(uint32_t rootDeviceIndex);
void updateBuildLog(uint32_t rootDeviceIndex, const char *pErrorString, const size_t errorStringSize);
const char *getBuildLog(uint32_t rootDeviceIndex) const;
cl_uint getProgramBinaryType(ClDevice *clDevice) const {
return deviceBuildInfos.at(clDevice).programBinaryType;
}
bool getIsSpirV() const {
return isSpirV;
}
GraphicsAllocation *getConstantSurface(uint32_t rootDeviceIndex) const {
return buildInfos[rootDeviceIndex].constantSurface;
}
GraphicsAllocation *getGlobalSurface(uint32_t rootDeviceIndex) const {
return buildInfos[rootDeviceIndex].globalSurface;
}
GraphicsAllocation *getExportedFunctionsSurface(uint32_t rootDeviceIndex) const {
return buildInfos[rootDeviceIndex].exportedFunctionsSurface;
}
void cleanCurrentKernelInfo(uint32_t rootDeviceIndex);
const std::string &getOptions() const { return options; }
bool getAllowNonUniform() const {
return allowNonUniform;
}
bool getIsBuiltIn() const {
return isBuiltIn;
}
uint32_t getProgramOptionVersion() const {
return programOptionVersion;
}
void enableKernelDebug() {
kernelDebugEnabled = true;
}
bool isKernelDebugEnabled() {
return kernelDebugEnabled;
}
char *getDebugData(uint32_t rootDeviceIndex) {
return buildInfos[rootDeviceIndex].debugData.get();
}
size_t getDebugDataSize(uint32_t rootDeviceIndex) {
return buildInfos[rootDeviceIndex].debugDataSize;
}
const Linker::RelocatedSymbolsMap &getSymbols(uint32_t rootDeviceIndex) const {
return buildInfos[rootDeviceIndex].symbols;
}
void setSymbols(uint32_t rootDeviceIndex, Linker::RelocatedSymbolsMap &&symbols) {
buildInfos[rootDeviceIndex].symbols = std::move(symbols);
}
LinkerInput *getLinkerInput(uint32_t rootDeviceIndex) const {
return buildInfos[rootDeviceIndex].linkerInput.get();
}
void setLinkerInput(uint32_t rootDeviceIndex, std::unique_ptr<LinkerInput> &&linkerInput) {
buildInfos[rootDeviceIndex].linkerInput = std::move(linkerInput);
}
MOCKABLE_VIRTUAL void replaceDeviceBinary(std::unique_ptr<char[]> &&newBinary, size_t newBinarySize, uint32_t rootDeviceIndex);
static bool isValidCallback(void(CL_CALLBACK *funcNotify)(cl_program program, void *userData), void *userData);
void invokeCallback(void(CL_CALLBACK *funcNotify)(cl_program program, void *userData), void *userData);
const ClDeviceVector &getDevices() const { return clDevices; }
const ClDeviceVector &getDevicesInProgram() const;
bool isDeviceAssociated(const ClDevice &clDevice) const;
static cl_int processInputDevices(ClDeviceVector *&deviceVectorPtr, cl_uint numDevices, const cl_device_id *deviceList, const ClDeviceVector &allAvailableDevices);
MOCKABLE_VIRTUAL std::string getInternalOptions() const;
uint32_t getMaxRootDeviceIndex() const { return maxRootDeviceIndex; }
void retainForKernel() {
std::unique_lock<std::mutex> lock{lockMutex};
exposedKernels++;
}
void releaseForKernel() {
std::unique_lock<std::mutex> lock{lockMutex};
UNRECOVERABLE_IF(exposedKernels == 0);
exposedKernels--;
}
bool isLocked() {
std::unique_lock<std::mutex> lock{lockMutex};
return 0 != exposedKernels;
}
const ExecutionEnvironment &getExecutionEnvironment() const { return executionEnvironment; }
void setContext(Context *pContext) {
this->context = pContext;
}
void notifyDebuggerWithDebugData(ClDevice *clDevice);
MOCKABLE_VIRTUAL void createDebugZebin(uint32_t rootDeviceIndex);
Debug::Segments getZebinSegments(uint32_t rootDeviceIndex);
protected:
MOCKABLE_VIRTUAL cl_int createProgramFromBinary(const void *pBinary, size_t binarySize, ClDevice &clDevice);
cl_int packDeviceBinary(ClDevice &clDevice);
MOCKABLE_VIRTUAL cl_int linkBinary(Device *pDevice, const void *constantsInitData, const void *variablesInitData,
const ProgramInfo::GlobalSurfaceInfo &stringInfo, std::vector<NEO::ExternalFunctionInfo> &extFuncInfos);
void updateNonUniformFlag();
void updateNonUniformFlag(const Program **inputProgram, size_t numInputPrograms);
void extractInternalOptions(const std::string &options, std::string &internalOptions);
MOCKABLE_VIRTUAL bool isFlagOption(ConstStringRef option);
MOCKABLE_VIRTUAL bool isOptionValueValid(ConstStringRef option, ConstStringRef value);
MOCKABLE_VIRTUAL void applyAdditionalOptions(std::string &internalOptions);
MOCKABLE_VIRTUAL bool appendKernelDebugOptions(ClDevice &clDevice, std::string &internalOptions);
void notifyDebuggerWithSourceCode(ClDevice &clDevice, std::string &filename);
void prependFilePathToOptions(const std::string &filename);
void setBuildStatus(cl_build_status status);
void setBuildStatusSuccess(const ClDeviceVector &deviceVector, cl_program_binary_type binaryType);
bool isSpirV = false;
std::unique_ptr<char[]> irBinary;
size_t irBinarySize = 0U;
CreatedFrom createdFrom = CreatedFrom::UNKNOWN;
struct DeviceBuildInfo {
StackVec<ClDevice *, 2> associatedSubDevices;
cl_build_status buildStatus = CL_BUILD_NONE;
cl_program_binary_type programBinaryType = CL_PROGRAM_BINARY_TYPE_NONE;
};
std::unordered_map<ClDevice *, DeviceBuildInfo> deviceBuildInfos;
bool isCreatedFromBinary = false;
bool requiresRebuild = false;
std::string sourceCode;
std::string options;
static const std::vector<ConstStringRef> internalOptionsToExtract;
uint32_t programOptionVersion = 12U;
bool allowNonUniform = false;
struct BuildInfo : public NonCopyableClass {
std::vector<KernelInfo *> kernelInfoArray;
GraphicsAllocation *constantSurface = nullptr;
GraphicsAllocation *globalSurface = nullptr;
GraphicsAllocation *exportedFunctionsSurface = nullptr;
size_t globalVarTotalSize = 0U;
std::unique_ptr<LinkerInput> linkerInput;
Linker::RelocatedSymbolsMap symbols{};
std::string buildLog{};
std::unique_ptr<char[]> unpackedDeviceBinary;
size_t unpackedDeviceBinarySize = 0U;
std::unique_ptr<char[]> packedDeviceBinary;
size_t packedDeviceBinarySize = 0U;
ProgramInfo::GlobalSurfaceInfo constStringSectionData;
std::unique_ptr<char[]> debugData;
size_t debugDataSize = 0U;
};
std::vector<BuildInfo> buildInfos;
bool areSpecializationConstantsInitialized = false;
CIF::RAII::UPtr_t<CIF::Builtins::BufferSimple> specConstantsIds;
CIF::RAII::UPtr_t<CIF::Builtins::BufferSimple> specConstantsSizes;
specConstValuesMap specConstantsValues;
ExecutionEnvironment &executionEnvironment;
Context *context = nullptr;
ClDeviceVector clDevices;
ClDeviceVector clDevicesInProgram;
bool isBuiltIn = false;
bool kernelDebugEnabled = false;
uint32_t maxRootDeviceIndex = std::numeric_limits<uint32_t>::max();
std::mutex lockMutex;
uint32_t exposedKernels = 0;
};
} // namespace NEO