compute-runtime/core/compiler_interface/linker.cpp

214 lines
8.0 KiB
C++

/*
* Copyright (C) 2017-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "linker.h"
#include "core/helpers/debug_helpers.h"
#include "core/helpers/ptr_math.h"
#if __has_include("RelocationInfo.h")
#include "RelocationInfo.h"
#else
namespace vISA {
static const uint32_t MAX_SYMBOL_NAME_LENGTH = 256;
enum GenSymType { S_NOTYPE = 0,
S_UNDEF = 1,
S_FUNC = 2,
S_GLOBAL_VAR = 3,
S_GLOBAL_VAR_CONST = 4 };
typedef struct {
uint32_t s_type;
uint32_t s_offset;
uint32_t s_size;
char s_name[MAX_SYMBOL_NAME_LENGTH];
} GenSymEntry;
enum GenRelocType { R_NONE = 0,
R_SYM_ADDR = 1 };
typedef struct {
uint32_t r_type;
uint32_t r_offset;
char r_symbol[MAX_SYMBOL_NAME_LENGTH];
} GenRelocEntry;
} // namespace vISA
#endif
#include <sstream>
namespace NEO {
bool LinkerInput::decodeGlobalVariablesSymbolTable(const void *data, uint32_t numEntries) {
auto symbolEntryIt = reinterpret_cast<const vISA::GenSymEntry *>(data);
auto symbolEntryEnd = symbolEntryIt + numEntries;
symbols.reserve(symbols.size() + numEntries);
for (; symbolEntryIt != symbolEntryEnd; ++symbolEntryIt) {
DEBUG_BREAK_IF(symbols.count(symbolEntryIt->s_name) > 0);
SymbolInfo &symbolInfo = symbols[symbolEntryIt->s_name];
symbolInfo.offset = symbolEntryIt->s_offset;
symbolInfo.size = symbolEntryIt->s_size;
switch (symbolEntryIt->s_type) {
default:
DEBUG_BREAK_IF(true);
return false;
case vISA::S_GLOBAL_VAR:
symbolInfo.type = SymbolInfo::GlobalVariable;
traits.exportsGlobalVariables = true;
break;
case vISA::S_GLOBAL_VAR_CONST:
symbolInfo.type = SymbolInfo::GlobalConstant;
traits.exportsGlobalConstants = true;
break;
}
}
return true;
}
bool LinkerInput::decodeExportedFunctionsSymbolTable(const void *data, uint32_t numEntries, uint32_t instructionsSegmentId) {
auto symbolEntryIt = reinterpret_cast<const vISA::GenSymEntry *>(data);
auto symbolEntryEnd = symbolEntryIt + numEntries;
symbols.reserve(symbols.size() + numEntries);
for (; symbolEntryIt != symbolEntryEnd; ++symbolEntryIt) {
SymbolInfo &symbolInfo = symbols[symbolEntryIt->s_name];
symbolInfo.offset = symbolEntryIt->s_offset;
symbolInfo.size = symbolEntryIt->s_size;
switch (symbolEntryIt->s_type) {
default:
DEBUG_BREAK_IF(true);
return false;
case vISA::S_GLOBAL_VAR:
symbolInfo.type = SymbolInfo::GlobalVariable;
traits.exportsGlobalVariables = true;
break;
case vISA::S_GLOBAL_VAR_CONST:
symbolInfo.type = SymbolInfo::GlobalConstant;
traits.exportsGlobalConstants = true;
break;
case vISA::S_FUNC:
symbolInfo.type = SymbolInfo::Function;
traits.exportsFunctions = true;
UNRECOVERABLE_IF((this->exportedFunctionsSegmentId != -1) && (this->exportedFunctionsSegmentId != static_cast<int32_t>(instructionsSegmentId)));
this->exportedFunctionsSegmentId = static_cast<int32_t>(instructionsSegmentId);
break;
}
}
return true;
}
bool LinkerInput::decodeRelocationTable(const void *data, uint32_t numEntries, uint32_t instructionsSegmentId) {
this->traits.requiresPatchingOfInstructionSegments = true;
auto relocEntryIt = reinterpret_cast<const vISA::GenRelocEntry *>(data);
auto relocEntryEnd = relocEntryIt + numEntries;
if (instructionsSegmentId >= relocations.size()) {
static_assert(std::is_nothrow_move_constructible<decltype(relocations[0])>::value, "");
relocations.resize(instructionsSegmentId + 1);
}
auto &outRelocInfo = relocations[instructionsSegmentId];
outRelocInfo.reserve(numEntries);
for (; relocEntryIt != relocEntryEnd; ++relocEntryIt) {
RelocationInfo relocInfo{};
relocInfo.offset = relocEntryIt->r_offset;
relocInfo.symbolName = relocEntryIt->r_symbol;
switch (relocEntryIt->r_type) {
default:
DEBUG_BREAK_IF(true);
return false;
case vISA::R_SYM_ADDR:
break;
}
outRelocInfo.push_back(std::move(relocInfo));
}
return true;
}
bool Linker::processRelocations(const Segment &globalVariables, const Segment &globalConstants, const Segment &exportedFunctions) {
relocatedSymbols.reserve(data.getSymbols().size());
for (auto &symbol : data.getSymbols()) {
const Segment *seg = nullptr;
switch (symbol.second.type) {
default:
DEBUG_BREAK_IF(true);
return false;
case SymbolInfo::GlobalVariable:
seg = &globalVariables;
break;
case SymbolInfo::GlobalConstant:
seg = &globalConstants;
break;
case SymbolInfo::Function:
seg = &exportedFunctions;
break;
}
uintptr_t gpuAddress = seg->gpuAddress + symbol.second.offset;
if (symbol.second.offset + symbol.second.size > seg->segmentSize) {
DEBUG_BREAK_IF(true);
return false;
}
relocatedSymbols[symbol.first] = {symbol.second, gpuAddress};
}
return true;
}
bool Linker::patchInstructionsSegments(const std::vector<PatchableSegment> &instructionsSegments, std::vector<UnresolvedExternal> &outUnresolvedExternals) {
if (false == data.getTraits().requiresPatchingOfInstructionSegments) {
return true;
}
UNRECOVERABLE_IF(data.getRelocations().size() > instructionsSegments.size());
std::vector<UnresolvedExternal> unresolvedExternals;
auto segIt = instructionsSegments.begin();
for (auto relocsIt = data.getRelocations().begin(), relocsEnd = data.getRelocations().end();
relocsIt != relocsEnd; ++relocsIt, ++segIt) {
auto &thisSegmentRelocs = *relocsIt;
const PatchableSegment &instSeg = *segIt;
for (const auto &relocation : thisSegmentRelocs) {
auto relocAddress = ptrOffset(instSeg.hostPointer, relocation.offset);
auto symbolIt = relocatedSymbols.find(relocation.symbolName);
bool invalidOffset = relocation.offset + sizeof(uintptr_t) > instSeg.segmentSize;
bool unresolvedExternal = (symbolIt == relocatedSymbols.end());
DEBUG_BREAK_IF(invalidOffset);
if (invalidOffset || unresolvedExternal) {
uint32_t segId = static_cast<uint32_t>(segIt - instructionsSegments.begin());
unresolvedExternals.push_back(UnresolvedExternal{relocation, segId, invalidOffset});
continue;
}
*reinterpret_cast<uintptr_t *>(relocAddress) = symbolIt->second.gpuAddress;
}
}
outUnresolvedExternals.swap(unresolvedExternals);
return outUnresolvedExternals.size() == 0;
}
std::string constructLinkerErrorMessage(const Linker::UnresolvedExternals &unresolvedExternals, const std::vector<std::string> &instructionsSegmentsNames) {
std::stringstream errorStream;
if (unresolvedExternals.size() == 0) {
errorStream << "Internal linker error";
} else {
for (const auto &unresExtern : unresolvedExternals) {
if (unresExtern.internalError) {
errorStream << "error : internal linker error while handling symbol ";
} else {
errorStream << "error : unresolved external symbol ";
}
errorStream << unresExtern.unresolvedRelocation.symbolName << " at offset " << unresExtern.unresolvedRelocation.offset
<< " in instructions segment #" << unresExtern.instructionsSegmentId;
if (instructionsSegmentsNames.size() > unresExtern.instructionsSegmentId) {
errorStream << " (aka " << instructionsSegmentsNames[unresExtern.instructionsSegmentId] << ")";
}
errorStream << "\n";
}
}
return errorStream.str();
}
} // namespace NEO