compute-runtime/opencl/source/program/program.cpp

573 lines
26 KiB
C++

/*
* Copyright (C) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "program.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/compiler_interface/compiler_interface.h"
#include "shared/source/compiler_interface/intermediate_representations.h"
#include "shared/source/compiler_interface/oclc_extensions.h"
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/device_binary_format/elf/elf_encoder.h"
#include "shared/source/device_binary_format/elf/ocl_elf.h"
#include "shared/source/device_binary_format/patchtokens_decoder.h"
#include "shared/source/helpers/addressing_mode_helper.h"
#include "shared/source/helpers/api_specific_config.h"
#include "shared/source/helpers/compiler_options_parser.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/kernel_helpers.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/os_interface/hw_info_config.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/program/kernel_info.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/context/context.h"
#include "opencl/source/platform/platform.h"
#include "opencl/source/program/block_kernel_manager.h"
#include "compiler_options.h"
#include <sstream>
namespace NEO {
Program::Program(Context *context, bool isBuiltIn, const ClDeviceVector &clDevicesIn) : executionEnvironment(*clDevicesIn[0]->getExecutionEnvironment()),
context(context),
clDevices(clDevicesIn),
isBuiltIn(isBuiltIn) {
if (this->context && !this->isBuiltIn) {
this->context->incRefInternal();
}
blockKernelManager = new BlockKernelManager();
maxRootDeviceIndex = 0;
for (const auto &device : clDevicesIn) {
if (device->getRootDeviceIndex() > maxRootDeviceIndex) {
maxRootDeviceIndex = device->getRootDeviceIndex();
}
deviceBuildInfos[device] = {};
for (auto i = 0u; i < device->getNumSubDevices(); i++) {
auto subDevice = device->getSubDevice(i);
if (isDeviceAssociated(*subDevice)) {
deviceBuildInfos[device].associatedSubDevices.push_back(subDevice);
}
}
}
buildInfos.resize(maxRootDeviceIndex + 1);
kernelDebugEnabled = clDevices[0]->isDebuggerActive();
}
void Program::initInternalOptions(std::string &internalOptions) const {
auto pClDevice = clDevices[0];
auto force32BitAddressess = pClDevice->getSharedDeviceInfo().force32BitAddressess;
internalOptions = getOclVersionCompilerInternalOption(pClDevice->getEnabledClVersion());
if (force32BitAddressess && !isBuiltIn) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::arch32bit);
}
auto sharedSystemAllocationsAllowed = clDevices[0]->areSharedSystemAllocationsAllowed();
if ((isBuiltIn && is32bit) || AddressingModeHelper::forceToStatelessNeeded(options, CompilerOptions::smallerThan4gbBuffersOnly.str(), sharedSystemAllocationsAllowed) ||
DebugManager.flags.DisableStatelessToStatefulOptimization.get()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::greaterThan4gbBuffersRequired);
}
if (ApiSpecificConfig::getBindlessConfiguration()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::bindlessMode);
}
auto enableStatelessToStatefullWithOffset = HwHelper::get(pClDevice->getHardwareInfo().platform.eRenderCoreFamily).isStatelesToStatefullWithOffsetSupported();
if (DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != -1) {
enableStatelessToStatefullWithOffset = DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != 0;
}
if (enableStatelessToStatefullWithOffset) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::hasBufferOffsetArg);
}
auto &hwInfo = pClDevice->getHardwareInfo();
const auto &hwInfoConfig = *HwInfoConfig::get(hwInfo.platform.eProductFamily);
if (hwInfoConfig.isForceEmuInt32DivRemSPWARequired(hwInfo)) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::forceEmuInt32DivRemSP);
}
if (hwInfo.capabilityTable.supportsImages) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::enableImageSupport);
}
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::preserveVec3Type);
}
Program::~Program() {
for (auto i = 0u; i < buildInfos.size(); i++) {
cleanCurrentKernelInfo(i);
}
freeBlockResources();
delete blockKernelManager;
for (const auto &buildInfo : buildInfos) {
if (buildInfo.constantSurface) {
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(buildInfo.constantSurface->getGpuAddress())))) {
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(buildInfo.constantSurface->getGpuAddress()));
} else {
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(buildInfo.constantSurface);
}
}
if (buildInfo.globalSurface) {
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(buildInfo.globalSurface->getGpuAddress())))) {
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(buildInfo.globalSurface->getGpuAddress()));
} else {
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(buildInfo.globalSurface);
}
}
}
if (context && !isBuiltIn) {
context->decRefInternal();
}
}
cl_int Program::createProgramFromBinary(
const void *pBinary,
size_t binarySize, ClDevice &clDevice) {
auto rootDeviceIndex = clDevice.getRootDeviceIndex();
cl_int retVal = CL_INVALID_BINARY;
this->irBinary.reset();
this->irBinarySize = 0U;
this->isSpirV = false;
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = 0U;
this->buildInfos[rootDeviceIndex].packedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = 0U;
this->createdFrom = CreatedFrom::BINARY;
ArrayRef<const uint8_t> archive(reinterpret_cast<const uint8_t *>(pBinary), binarySize);
bool isSpirV = NEO::isSpirVBitcode(archive);
if (isSpirV || NEO::isLlvmBitcode(archive)) {
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_INTERMEDIATE;
retVal = processSpirBinary(archive.begin(), archive.size(), isSpirV);
} else if (isAnyDeviceBinaryFormat(archive)) {
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_EXECUTABLE;
this->isCreatedFromBinary = true;
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto productAbbreviation = hardwarePrefix[hwInfo->platform.eProductFamily];
TargetDevice targetDevice = {};
targetDevice.coreFamily = hwInfo->platform.eRenderCoreFamily;
targetDevice.stepping = hwInfo->platform.usRevId;
targetDevice.maxPointerSizeInBytes = sizeof(uintptr_t);
std::string decodeErrors;
std::string decodeWarnings;
auto singleDeviceBinary = unpackSingleDeviceBinary(archive, ConstStringRef(productAbbreviation, strlen(productAbbreviation)), targetDevice,
decodeErrors, decodeWarnings);
if (decodeWarnings.empty() == false) {
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeWarnings.c_str());
}
if (singleDeviceBinary.intermediateRepresentation.empty() && singleDeviceBinary.deviceBinary.empty()) {
retVal = CL_INVALID_BINARY;
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeErrors.c_str());
} else {
retVal = CL_SUCCESS;
this->irBinary = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.intermediateRepresentation.begin()), singleDeviceBinary.intermediateRepresentation.size());
this->irBinarySize = singleDeviceBinary.intermediateRepresentation.size();
this->isSpirV = NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize));
this->options = singleDeviceBinary.buildOptions.str();
if (false == singleDeviceBinary.debugData.empty()) {
this->debugData = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.debugData.begin()), singleDeviceBinary.debugData.size());
this->debugDataSize = singleDeviceBinary.debugData.size();
}
bool forceRebuildBuiltInFromIr = isBuiltIn && DebugManager.flags.RebuildPrecompiledKernels.get();
if ((false == singleDeviceBinary.deviceBinary.empty()) && (false == forceRebuildBuiltInFromIr)) {
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(singleDeviceBinary.deviceBinary.begin()), singleDeviceBinary.deviceBinary.size());
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = singleDeviceBinary.deviceBinary.size();
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(archive.begin()), archive.size());
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = archive.size();
} else {
this->isCreatedFromBinary = false;
}
switch (singleDeviceBinary.format) {
default:
break;
case DeviceBinaryFormat::OclLibrary:
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_LIBRARY;
break;
case DeviceBinaryFormat::OclCompiledObject:
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT;
break;
}
}
}
return retVal;
}
cl_int Program::setProgramSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
if (!isSpirV) {
return CL_INVALID_PROGRAM;
}
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
auto &device = clDevices[0]->getDevice();
if (!areSpecializationConstantsInitialized) {
auto pCompilerInterface = device.getCompilerInterface();
if (nullptr == pCompilerInterface) {
return CL_OUT_OF_HOST_MEMORY;
}
SpecConstantInfo specConstInfo;
auto retVal = pCompilerInterface->getSpecConstantsInfo(device, ArrayRef<const char>(irBinary.get(), irBinarySize), specConstInfo);
if (retVal != TranslationOutput::ErrorCode::Success) {
return CL_INVALID_VALUE;
}
this->specConstantsIds.reset(specConstInfo.idsBuffer.release());
this->specConstantsSizes.reset(specConstInfo.sizesBuffer.release());
areSpecializationConstantsInitialized = true;
}
return updateSpecializationConstant(specId, specSize, specValue);
}
cl_int Program::updateSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
for (uint32_t i = 0; i < specConstantsIds->GetSize<uint32_t>(); i++) {
if (specConstantsIds->GetMemory<uint32_t>()[i] == specId) {
if (specConstantsSizes->GetMemory<uint32_t>()[i] == static_cast<uint32_t>(specSize)) {
uint64_t specConstValue = 0u;
memcpy_s(&specConstValue, sizeof(uint64_t), specValue, specSize);
specConstantsValues[specId] = specConstValue;
return CL_SUCCESS;
} else {
return CL_INVALID_VALUE;
}
}
}
return CL_INVALID_SPEC_ID;
}
cl_int Program::getSource(std::string &binary) const {
cl_int retVal = CL_INVALID_PROGRAM;
binary = {};
if (!sourceCode.empty()) {
binary = sourceCode;
retVal = CL_SUCCESS;
}
return retVal;
}
void Program::updateBuildLog(uint32_t rootDeviceIndex, const char *pErrorString,
size_t errorStringSize) {
if ((pErrorString == nullptr) || (errorStringSize == 0) || (pErrorString[0] == '\0')) {
return;
}
if (pErrorString[errorStringSize - 1] == '\0') {
--errorStringSize;
}
auto &currentLog = buildInfos[rootDeviceIndex].buildLog;
if (currentLog.empty()) {
currentLog.assign(pErrorString, pErrorString + errorStringSize);
return;
}
currentLog.append("\n");
currentLog.append(pErrorString, pErrorString + errorStringSize);
}
const char *Program::getBuildLog(uint32_t rootDeviceIndex) const {
auto &currentLog = buildInfos[rootDeviceIndex].buildLog;
return currentLog.c_str();
}
void Program::separateBlockKernels(uint32_t rootDeviceIndex) {
if ((0 == buildInfos[rootDeviceIndex].parentKernelInfoArray.size()) && (0 == buildInfos[rootDeviceIndex].subgroupKernelInfoArray.size())) {
return;
}
auto allKernelInfos(buildInfos[rootDeviceIndex].kernelInfoArray);
buildInfos[rootDeviceIndex].kernelInfoArray.clear();
for (auto &i : allKernelInfos) {
auto end = i->kernelDescriptor.kernelMetadata.kernelName.rfind("_dispatch_");
if (end != std::string::npos) {
bool baseKernelFound = false;
std::string baseKernelName(i->kernelDescriptor.kernelMetadata.kernelName, 0, end);
for (auto &j : buildInfos[rootDeviceIndex].parentKernelInfoArray) {
if (j->kernelDescriptor.kernelMetadata.kernelName.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
if (!baseKernelFound) {
for (auto &j : buildInfos[rootDeviceIndex].subgroupKernelInfoArray) {
if (j->kernelDescriptor.kernelMetadata.kernelName.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
}
if (baseKernelFound) {
//Parent or subgroup kernel found -> child kernel
blockKernelManager->addBlockKernelInfo(i);
} else {
buildInfos[rootDeviceIndex].kernelInfoArray.push_back(i);
}
} else {
//Regular kernel found
buildInfos[rootDeviceIndex].kernelInfoArray.push_back(i);
}
}
allKernelInfos.clear();
}
void Program::allocateBlockPrivateSurfaces(const ClDevice &clDevice) {
auto rootDeviceIndex = clDevice.getRootDeviceIndex();
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *info = blockKernelManager->getBlockKernelInfo(i);
auto perHwThreadPrivateMemorySize = info->kernelDescriptor.kernelAttributes.perHwThreadPrivateMemorySize;
if (perHwThreadPrivateMemorySize > 0 && blockKernelManager->getPrivateSurface(i) == nullptr) {
auto privateSize = static_cast<size_t>(KernelHelper::getPrivateSurfaceSize(perHwThreadPrivateMemorySize, clDevice.getSharedDeviceInfo().computeUnitsUsedForScratch));
auto *privateSurface = this->executionEnvironment.memoryManager->allocateGraphicsMemoryWithProperties(
{rootDeviceIndex, privateSize, GraphicsAllocation::AllocationType::PRIVATE_SURFACE, clDevice.getDeviceBitfield()});
blockKernelManager->pushPrivateSurface(privateSurface, i);
}
}
}
void Program::freeBlockResources() {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
auto *privateSurface = blockKernelManager->getPrivateSurface(i);
if (privateSurface != nullptr) {
blockKernelManager->pushPrivateSurface(nullptr, i);
this->executionEnvironment.memoryManager->freeGraphicsMemory(privateSurface);
}
auto kernelInfo = blockKernelManager->getBlockKernelInfo(i);
DEBUG_BREAK_IF(!kernelInfo->kernelAllocation);
if (kernelInfo->kernelAllocation) {
this->executionEnvironment.memoryManager->freeGraphicsMemory(kernelInfo->kernelAllocation);
}
}
}
void Program::cleanCurrentKernelInfo(uint32_t rootDeviceIndex) {
auto &buildInfo = buildInfos[rootDeviceIndex];
for (auto &kernelInfo : buildInfo.kernelInfoArray) {
if (kernelInfo->kernelAllocation) {
//register cache flush in all csrs where kernel allocation was used
for (auto &engine : this->executionEnvironment.memoryManager->getRegisteredEngines()) {
auto contextId = engine.osContext->getContextId();
if (kernelInfo->kernelAllocation->isUsedByOsContext(contextId)) {
engine.commandStreamReceiver->registerInstructionCacheFlush();
}
}
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(kernelInfo->kernelAllocation);
}
delete kernelInfo;
}
buildInfo.kernelInfoArray.clear();
}
void Program::updateNonUniformFlag() {
//Look for -cl-std=CL substring and extract value behind which can be 1.2 2.0 2.1 and convert to value
auto pos = options.find(clStdOptionName);
if (pos == std::string::npos) {
programOptionVersion = 12u; //Default is 1.2
} else {
std::stringstream ss{options.c_str() + pos + clStdOptionName.size()};
uint32_t majorV = 0u, minorV = 0u;
char dot = 0u;
ss >> majorV;
ss >> dot;
ss >> minorV;
programOptionVersion = majorV * 10u + minorV;
}
if (programOptionVersion >= 20u && (false == CompilerOptions::contains(options, CompilerOptions::uniformWorkgroupSize))) {
allowNonUniform = true;
}
}
void Program::updateNonUniformFlag(const Program **inputPrograms, size_t numInputPrograms) {
bool allowNonUniform = true;
for (cl_uint i = 0; i < numInputPrograms; i++) {
allowNonUniform = allowNonUniform && inputPrograms[i]->getAllowNonUniform();
}
this->allowNonUniform = allowNonUniform;
}
void Program::replaceDeviceBinary(std::unique_ptr<char[]> &&newBinary, size_t newBinarySize, uint32_t rootDeviceIndex) {
if (isAnyPackedDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(newBinary.get()), newBinarySize))) {
this->buildInfos[rootDeviceIndex].packedDeviceBinary = std::move(newBinary);
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = newBinarySize;
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = 0U;
if (isAnySingleDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(this->buildInfos[rootDeviceIndex].packedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].packedDeviceBinarySize))) {
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy(buildInfos[rootDeviceIndex].packedDeviceBinary.get(), buildInfos[rootDeviceIndex].packedDeviceBinarySize);
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = buildInfos[rootDeviceIndex].packedDeviceBinarySize;
}
} else {
this->buildInfos[rootDeviceIndex].packedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = 0U;
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = std::move(newBinary);
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = newBinarySize;
}
}
cl_int Program::packDeviceBinary(ClDevice &clDevice) {
auto rootDeviceIndex = clDevice.getRootDeviceIndex();
if (nullptr != buildInfos[rootDeviceIndex].packedDeviceBinary) {
return CL_SUCCESS;
}
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto gfxCore = hwInfo->platform.eRenderCoreFamily;
auto stepping = hwInfo->platform.usRevId;
if (nullptr != this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()) {
SingleDeviceBinary singleDeviceBinary;
singleDeviceBinary.buildOptions = this->options;
singleDeviceBinary.targetDevice.coreFamily = gfxCore;
singleDeviceBinary.targetDevice.stepping = stepping;
singleDeviceBinary.deviceBinary = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize);
singleDeviceBinary.intermediateRepresentation = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize);
singleDeviceBinary.debugData = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->debugData.get()), this->debugDataSize);
std::string packWarnings;
std::string packErrors;
auto packedDeviceBinary = NEO::packDeviceBinary(singleDeviceBinary, packErrors, packWarnings);
if (packedDeviceBinary.empty()) {
DEBUG_BREAK_IF(true);
return CL_OUT_OF_HOST_MEMORY;
}
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy(packedDeviceBinary.data(), packedDeviceBinary.size());
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = packedDeviceBinary.size();
} else if (nullptr != this->irBinary.get()) {
NEO::Elf::ElfEncoder<> elfEncoder(true, true, 1U);
if (deviceBuildInfos[&clDevice].programBinaryType == CL_PROGRAM_BINARY_TYPE_LIBRARY) {
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_LIBRARY;
} else {
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_OBJECTS;
}
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_SPIRV, NEO::Elf::SectionNamesOpenCl::spirvObject, ArrayRef<const uint8_t>::fromAny(this->irBinary.get(), this->irBinarySize));
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_OPTIONS, NEO::Elf::SectionNamesOpenCl::buildOptions, this->options);
auto elfData = elfEncoder.encode();
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy(elfData.data(), elfData.size());
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = elfData.size();
} else {
return CL_INVALID_PROGRAM;
}
return CL_SUCCESS;
}
void Program::setBuildStatus(cl_build_status status) {
for (auto &deviceBuildInfo : deviceBuildInfos) {
deviceBuildInfo.second.buildStatus = status;
}
}
void Program::setBuildStatusSuccess(const ClDeviceVector &deviceVector, cl_program_binary_type binaryType) {
for (const auto &device : deviceVector) {
deviceBuildInfos[device].buildStatus = CL_BUILD_SUCCESS;
if (deviceBuildInfos[device].programBinaryType != binaryType) {
std::unique_lock<std::mutex> lock(lockMutex);
clDevicesInProgram.push_back(device);
}
deviceBuildInfos[device].programBinaryType = binaryType;
for (const auto &subDevice : deviceBuildInfos[device].associatedSubDevices) {
deviceBuildInfos[subDevice].buildStatus = CL_BUILD_SUCCESS;
if (deviceBuildInfos[subDevice].programBinaryType != binaryType) {
std::unique_lock<std::mutex> lock(lockMutex);
clDevicesInProgram.push_back(subDevice);
}
deviceBuildInfos[subDevice].programBinaryType = binaryType;
}
}
}
bool Program::isValidCallback(void(CL_CALLBACK *funcNotify)(cl_program program, void *userData), void *userData) {
return funcNotify != nullptr || userData == nullptr;
}
void Program::invokeCallback(void(CL_CALLBACK *funcNotify)(cl_program program, void *userData), void *userData) {
if (funcNotify != nullptr) {
(*funcNotify)(this, userData);
}
}
bool Program::isDeviceAssociated(const ClDevice &clDevice) const {
return std::any_of(clDevices.begin(), clDevices.end(), [&](auto programDevice) { return programDevice == &clDevice; });
}
cl_int Program::processInputDevices(ClDeviceVector *&deviceVectorPtr, cl_uint numDevices, const cl_device_id *deviceList, const ClDeviceVector &allAvailableDevices) {
if (deviceList == nullptr) {
if (numDevices == 0) {
deviceVectorPtr = const_cast<ClDeviceVector *>(&allAvailableDevices);
} else {
return CL_INVALID_VALUE;
}
} else {
if (numDevices == 0) {
return CL_INVALID_VALUE;
} else {
for (auto i = 0u; i < numDevices; i++) {
auto device = castToObject<ClDevice>(deviceList[i]);
if (!device || !std::any_of(allAvailableDevices.begin(), allAvailableDevices.end(), [&](auto validDevice) { return validDevice == device; })) {
return CL_INVALID_DEVICE;
}
deviceVectorPtr->push_back(device);
}
}
}
return CL_SUCCESS;
}
void Program::prependFilePathToOptions(const std::string &filename) {
ConstStringRef cmcOption = "-cmc";
if (!filename.empty() && options.compare(0, cmcOption.size(), cmcOption.data())) {
// Add "-s" flag first so it will be ignored by clang in case the options already have this flag set.
options = std::string("-s ") + filename + " " + options;
}
}
const ClDeviceVector &Program::getDevicesInProgram() const {
if (clDevicesInProgram.empty()) {
return clDevices;
} else {
return clDevicesInProgram;
}
}
} // namespace NEO