573 lines
26 KiB
C++
573 lines
26 KiB
C++
/*
|
|
* Copyright (C) 2018-2021 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
*/
|
|
|
|
#include "program.h"
|
|
|
|
#include "shared/source/command_stream/command_stream_receiver.h"
|
|
#include "shared/source/compiler_interface/compiler_interface.h"
|
|
#include "shared/source/compiler_interface/intermediate_representations.h"
|
|
#include "shared/source/compiler_interface/oclc_extensions.h"
|
|
#include "shared/source/device_binary_format/device_binary_formats.h"
|
|
#include "shared/source/device_binary_format/elf/elf_encoder.h"
|
|
#include "shared/source/device_binary_format/elf/ocl_elf.h"
|
|
#include "shared/source/device_binary_format/patchtokens_decoder.h"
|
|
#include "shared/source/helpers/addressing_mode_helper.h"
|
|
#include "shared/source/helpers/api_specific_config.h"
|
|
#include "shared/source/helpers/compiler_options_parser.h"
|
|
#include "shared/source/helpers/debug_helpers.h"
|
|
#include "shared/source/helpers/hw_helper.h"
|
|
#include "shared/source/helpers/kernel_helpers.h"
|
|
#include "shared/source/helpers/string.h"
|
|
#include "shared/source/memory_manager/memory_manager.h"
|
|
#include "shared/source/memory_manager/unified_memory_manager.h"
|
|
#include "shared/source/os_interface/hw_info_config.h"
|
|
#include "shared/source/os_interface/os_context.h"
|
|
#include "shared/source/program/kernel_info.h"
|
|
|
|
#include "opencl/source/cl_device/cl_device.h"
|
|
#include "opencl/source/context/context.h"
|
|
#include "opencl/source/platform/platform.h"
|
|
#include "opencl/source/program/block_kernel_manager.h"
|
|
|
|
#include "compiler_options.h"
|
|
|
|
#include <sstream>
|
|
|
|
namespace NEO {
|
|
|
|
Program::Program(Context *context, bool isBuiltIn, const ClDeviceVector &clDevicesIn) : executionEnvironment(*clDevicesIn[0]->getExecutionEnvironment()),
|
|
context(context),
|
|
clDevices(clDevicesIn),
|
|
isBuiltIn(isBuiltIn) {
|
|
if (this->context && !this->isBuiltIn) {
|
|
this->context->incRefInternal();
|
|
}
|
|
blockKernelManager = new BlockKernelManager();
|
|
|
|
maxRootDeviceIndex = 0;
|
|
|
|
for (const auto &device : clDevicesIn) {
|
|
if (device->getRootDeviceIndex() > maxRootDeviceIndex) {
|
|
maxRootDeviceIndex = device->getRootDeviceIndex();
|
|
}
|
|
deviceBuildInfos[device] = {};
|
|
for (auto i = 0u; i < device->getNumSubDevices(); i++) {
|
|
auto subDevice = device->getSubDevice(i);
|
|
if (isDeviceAssociated(*subDevice)) {
|
|
deviceBuildInfos[device].associatedSubDevices.push_back(subDevice);
|
|
}
|
|
}
|
|
}
|
|
|
|
buildInfos.resize(maxRootDeviceIndex + 1);
|
|
kernelDebugEnabled = clDevices[0]->isDebuggerActive();
|
|
}
|
|
void Program::initInternalOptions(std::string &internalOptions) const {
|
|
auto pClDevice = clDevices[0];
|
|
auto force32BitAddressess = pClDevice->getSharedDeviceInfo().force32BitAddressess;
|
|
internalOptions = getOclVersionCompilerInternalOption(pClDevice->getEnabledClVersion());
|
|
|
|
if (force32BitAddressess && !isBuiltIn) {
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::arch32bit);
|
|
}
|
|
|
|
auto sharedSystemAllocationsAllowed = clDevices[0]->areSharedSystemAllocationsAllowed();
|
|
if ((isBuiltIn && is32bit) || AddressingModeHelper::forceToStatelessNeeded(options, CompilerOptions::smallerThan4gbBuffersOnly.str(), sharedSystemAllocationsAllowed) ||
|
|
DebugManager.flags.DisableStatelessToStatefulOptimization.get()) {
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::greaterThan4gbBuffersRequired);
|
|
}
|
|
|
|
if (ApiSpecificConfig::getBindlessConfiguration()) {
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::bindlessMode);
|
|
}
|
|
|
|
auto enableStatelessToStatefullWithOffset = HwHelper::get(pClDevice->getHardwareInfo().platform.eRenderCoreFamily).isStatelesToStatefullWithOffsetSupported();
|
|
if (DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != -1) {
|
|
enableStatelessToStatefullWithOffset = DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != 0;
|
|
}
|
|
|
|
if (enableStatelessToStatefullWithOffset) {
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::hasBufferOffsetArg);
|
|
}
|
|
|
|
auto &hwInfo = pClDevice->getHardwareInfo();
|
|
const auto &hwInfoConfig = *HwInfoConfig::get(hwInfo.platform.eProductFamily);
|
|
if (hwInfoConfig.isForceEmuInt32DivRemSPWARequired(hwInfo)) {
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::forceEmuInt32DivRemSP);
|
|
}
|
|
|
|
if (hwInfo.capabilityTable.supportsImages) {
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::enableImageSupport);
|
|
}
|
|
|
|
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::preserveVec3Type);
|
|
}
|
|
|
|
Program::~Program() {
|
|
for (auto i = 0u; i < buildInfos.size(); i++) {
|
|
cleanCurrentKernelInfo(i);
|
|
}
|
|
|
|
freeBlockResources();
|
|
|
|
delete blockKernelManager;
|
|
for (const auto &buildInfo : buildInfos) {
|
|
if (buildInfo.constantSurface) {
|
|
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(buildInfo.constantSurface->getGpuAddress())))) {
|
|
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(buildInfo.constantSurface->getGpuAddress()));
|
|
} else {
|
|
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(buildInfo.constantSurface);
|
|
}
|
|
}
|
|
|
|
if (buildInfo.globalSurface) {
|
|
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(buildInfo.globalSurface->getGpuAddress())))) {
|
|
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(buildInfo.globalSurface->getGpuAddress()));
|
|
} else {
|
|
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(buildInfo.globalSurface);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (context && !isBuiltIn) {
|
|
context->decRefInternal();
|
|
}
|
|
}
|
|
|
|
cl_int Program::createProgramFromBinary(
|
|
const void *pBinary,
|
|
size_t binarySize, ClDevice &clDevice) {
|
|
|
|
auto rootDeviceIndex = clDevice.getRootDeviceIndex();
|
|
cl_int retVal = CL_INVALID_BINARY;
|
|
|
|
this->irBinary.reset();
|
|
this->irBinarySize = 0U;
|
|
this->isSpirV = false;
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.reset();
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = 0U;
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinary.reset();
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = 0U;
|
|
this->createdFrom = CreatedFrom::BINARY;
|
|
|
|
ArrayRef<const uint8_t> archive(reinterpret_cast<const uint8_t *>(pBinary), binarySize);
|
|
bool isSpirV = NEO::isSpirVBitcode(archive);
|
|
|
|
if (isSpirV || NEO::isLlvmBitcode(archive)) {
|
|
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_INTERMEDIATE;
|
|
retVal = processSpirBinary(archive.begin(), archive.size(), isSpirV);
|
|
} else if (isAnyDeviceBinaryFormat(archive)) {
|
|
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_EXECUTABLE;
|
|
this->isCreatedFromBinary = true;
|
|
|
|
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
|
|
auto productAbbreviation = hardwarePrefix[hwInfo->platform.eProductFamily];
|
|
|
|
TargetDevice targetDevice = {};
|
|
targetDevice.coreFamily = hwInfo->platform.eRenderCoreFamily;
|
|
targetDevice.stepping = hwInfo->platform.usRevId;
|
|
targetDevice.maxPointerSizeInBytes = sizeof(uintptr_t);
|
|
std::string decodeErrors;
|
|
std::string decodeWarnings;
|
|
auto singleDeviceBinary = unpackSingleDeviceBinary(archive, ConstStringRef(productAbbreviation, strlen(productAbbreviation)), targetDevice,
|
|
decodeErrors, decodeWarnings);
|
|
if (decodeWarnings.empty() == false) {
|
|
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeWarnings.c_str());
|
|
}
|
|
|
|
if (singleDeviceBinary.intermediateRepresentation.empty() && singleDeviceBinary.deviceBinary.empty()) {
|
|
retVal = CL_INVALID_BINARY;
|
|
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeErrors.c_str());
|
|
} else {
|
|
retVal = CL_SUCCESS;
|
|
this->irBinary = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.intermediateRepresentation.begin()), singleDeviceBinary.intermediateRepresentation.size());
|
|
this->irBinarySize = singleDeviceBinary.intermediateRepresentation.size();
|
|
this->isSpirV = NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize));
|
|
this->options = singleDeviceBinary.buildOptions.str();
|
|
|
|
if (false == singleDeviceBinary.debugData.empty()) {
|
|
this->debugData = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.debugData.begin()), singleDeviceBinary.debugData.size());
|
|
this->debugDataSize = singleDeviceBinary.debugData.size();
|
|
}
|
|
bool forceRebuildBuiltInFromIr = isBuiltIn && DebugManager.flags.RebuildPrecompiledKernels.get();
|
|
if ((false == singleDeviceBinary.deviceBinary.empty()) && (false == forceRebuildBuiltInFromIr)) {
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(singleDeviceBinary.deviceBinary.begin()), singleDeviceBinary.deviceBinary.size());
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = singleDeviceBinary.deviceBinary.size();
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(archive.begin()), archive.size());
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = archive.size();
|
|
} else {
|
|
this->isCreatedFromBinary = false;
|
|
}
|
|
|
|
switch (singleDeviceBinary.format) {
|
|
default:
|
|
break;
|
|
case DeviceBinaryFormat::OclLibrary:
|
|
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_LIBRARY;
|
|
break;
|
|
case DeviceBinaryFormat::OclCompiledObject:
|
|
deviceBuildInfos[&clDevice].programBinaryType = CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return retVal;
|
|
}
|
|
|
|
cl_int Program::setProgramSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
|
|
if (!isSpirV) {
|
|
return CL_INVALID_PROGRAM;
|
|
}
|
|
|
|
static std::mutex mutex;
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
auto &device = clDevices[0]->getDevice();
|
|
|
|
if (!areSpecializationConstantsInitialized) {
|
|
auto pCompilerInterface = device.getCompilerInterface();
|
|
if (nullptr == pCompilerInterface) {
|
|
return CL_OUT_OF_HOST_MEMORY;
|
|
}
|
|
|
|
SpecConstantInfo specConstInfo;
|
|
auto retVal = pCompilerInterface->getSpecConstantsInfo(device, ArrayRef<const char>(irBinary.get(), irBinarySize), specConstInfo);
|
|
|
|
if (retVal != TranslationOutput::ErrorCode::Success) {
|
|
return CL_INVALID_VALUE;
|
|
}
|
|
|
|
this->specConstantsIds.reset(specConstInfo.idsBuffer.release());
|
|
this->specConstantsSizes.reset(specConstInfo.sizesBuffer.release());
|
|
|
|
areSpecializationConstantsInitialized = true;
|
|
}
|
|
|
|
return updateSpecializationConstant(specId, specSize, specValue);
|
|
}
|
|
|
|
cl_int Program::updateSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
|
|
for (uint32_t i = 0; i < specConstantsIds->GetSize<uint32_t>(); i++) {
|
|
if (specConstantsIds->GetMemory<uint32_t>()[i] == specId) {
|
|
if (specConstantsSizes->GetMemory<uint32_t>()[i] == static_cast<uint32_t>(specSize)) {
|
|
uint64_t specConstValue = 0u;
|
|
memcpy_s(&specConstValue, sizeof(uint64_t), specValue, specSize);
|
|
specConstantsValues[specId] = specConstValue;
|
|
return CL_SUCCESS;
|
|
} else {
|
|
return CL_INVALID_VALUE;
|
|
}
|
|
}
|
|
}
|
|
return CL_INVALID_SPEC_ID;
|
|
}
|
|
|
|
cl_int Program::getSource(std::string &binary) const {
|
|
cl_int retVal = CL_INVALID_PROGRAM;
|
|
binary = {};
|
|
if (!sourceCode.empty()) {
|
|
binary = sourceCode;
|
|
retVal = CL_SUCCESS;
|
|
}
|
|
return retVal;
|
|
}
|
|
|
|
void Program::updateBuildLog(uint32_t rootDeviceIndex, const char *pErrorString,
|
|
size_t errorStringSize) {
|
|
if ((pErrorString == nullptr) || (errorStringSize == 0) || (pErrorString[0] == '\0')) {
|
|
return;
|
|
}
|
|
|
|
if (pErrorString[errorStringSize - 1] == '\0') {
|
|
--errorStringSize;
|
|
}
|
|
|
|
auto ¤tLog = buildInfos[rootDeviceIndex].buildLog;
|
|
|
|
if (currentLog.empty()) {
|
|
currentLog.assign(pErrorString, pErrorString + errorStringSize);
|
|
return;
|
|
}
|
|
|
|
currentLog.append("\n");
|
|
currentLog.append(pErrorString, pErrorString + errorStringSize);
|
|
}
|
|
|
|
const char *Program::getBuildLog(uint32_t rootDeviceIndex) const {
|
|
auto ¤tLog = buildInfos[rootDeviceIndex].buildLog;
|
|
return currentLog.c_str();
|
|
}
|
|
|
|
void Program::separateBlockKernels(uint32_t rootDeviceIndex) {
|
|
if ((0 == buildInfos[rootDeviceIndex].parentKernelInfoArray.size()) && (0 == buildInfos[rootDeviceIndex].subgroupKernelInfoArray.size())) {
|
|
return;
|
|
}
|
|
|
|
auto allKernelInfos(buildInfos[rootDeviceIndex].kernelInfoArray);
|
|
buildInfos[rootDeviceIndex].kernelInfoArray.clear();
|
|
for (auto &i : allKernelInfos) {
|
|
auto end = i->kernelDescriptor.kernelMetadata.kernelName.rfind("_dispatch_");
|
|
if (end != std::string::npos) {
|
|
bool baseKernelFound = false;
|
|
std::string baseKernelName(i->kernelDescriptor.kernelMetadata.kernelName, 0, end);
|
|
for (auto &j : buildInfos[rootDeviceIndex].parentKernelInfoArray) {
|
|
if (j->kernelDescriptor.kernelMetadata.kernelName.compare(baseKernelName) == 0) {
|
|
baseKernelFound = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!baseKernelFound) {
|
|
for (auto &j : buildInfos[rootDeviceIndex].subgroupKernelInfoArray) {
|
|
if (j->kernelDescriptor.kernelMetadata.kernelName.compare(baseKernelName) == 0) {
|
|
baseKernelFound = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (baseKernelFound) {
|
|
//Parent or subgroup kernel found -> child kernel
|
|
blockKernelManager->addBlockKernelInfo(i);
|
|
} else {
|
|
buildInfos[rootDeviceIndex].kernelInfoArray.push_back(i);
|
|
}
|
|
} else {
|
|
//Regular kernel found
|
|
buildInfos[rootDeviceIndex].kernelInfoArray.push_back(i);
|
|
}
|
|
}
|
|
allKernelInfos.clear();
|
|
}
|
|
|
|
void Program::allocateBlockPrivateSurfaces(const ClDevice &clDevice) {
|
|
auto rootDeviceIndex = clDevice.getRootDeviceIndex();
|
|
size_t blockCount = blockKernelManager->getCount();
|
|
|
|
for (uint32_t i = 0; i < blockCount; i++) {
|
|
const KernelInfo *info = blockKernelManager->getBlockKernelInfo(i);
|
|
|
|
auto perHwThreadPrivateMemorySize = info->kernelDescriptor.kernelAttributes.perHwThreadPrivateMemorySize;
|
|
if (perHwThreadPrivateMemorySize > 0 && blockKernelManager->getPrivateSurface(i) == nullptr) {
|
|
auto privateSize = static_cast<size_t>(KernelHelper::getPrivateSurfaceSize(perHwThreadPrivateMemorySize, clDevice.getSharedDeviceInfo().computeUnitsUsedForScratch));
|
|
|
|
auto *privateSurface = this->executionEnvironment.memoryManager->allocateGraphicsMemoryWithProperties(
|
|
{rootDeviceIndex, privateSize, GraphicsAllocation::AllocationType::PRIVATE_SURFACE, clDevice.getDeviceBitfield()});
|
|
blockKernelManager->pushPrivateSurface(privateSurface, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Program::freeBlockResources() {
|
|
size_t blockCount = blockKernelManager->getCount();
|
|
|
|
for (uint32_t i = 0; i < blockCount; i++) {
|
|
|
|
auto *privateSurface = blockKernelManager->getPrivateSurface(i);
|
|
|
|
if (privateSurface != nullptr) {
|
|
blockKernelManager->pushPrivateSurface(nullptr, i);
|
|
this->executionEnvironment.memoryManager->freeGraphicsMemory(privateSurface);
|
|
}
|
|
auto kernelInfo = blockKernelManager->getBlockKernelInfo(i);
|
|
DEBUG_BREAK_IF(!kernelInfo->kernelAllocation);
|
|
if (kernelInfo->kernelAllocation) {
|
|
this->executionEnvironment.memoryManager->freeGraphicsMemory(kernelInfo->kernelAllocation);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Program::cleanCurrentKernelInfo(uint32_t rootDeviceIndex) {
|
|
auto &buildInfo = buildInfos[rootDeviceIndex];
|
|
for (auto &kernelInfo : buildInfo.kernelInfoArray) {
|
|
if (kernelInfo->kernelAllocation) {
|
|
//register cache flush in all csrs where kernel allocation was used
|
|
for (auto &engine : this->executionEnvironment.memoryManager->getRegisteredEngines()) {
|
|
auto contextId = engine.osContext->getContextId();
|
|
if (kernelInfo->kernelAllocation->isUsedByOsContext(contextId)) {
|
|
engine.commandStreamReceiver->registerInstructionCacheFlush();
|
|
}
|
|
}
|
|
|
|
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(kernelInfo->kernelAllocation);
|
|
}
|
|
delete kernelInfo;
|
|
}
|
|
buildInfo.kernelInfoArray.clear();
|
|
}
|
|
|
|
void Program::updateNonUniformFlag() {
|
|
//Look for -cl-std=CL substring and extract value behind which can be 1.2 2.0 2.1 and convert to value
|
|
auto pos = options.find(clStdOptionName);
|
|
if (pos == std::string::npos) {
|
|
programOptionVersion = 12u; //Default is 1.2
|
|
} else {
|
|
std::stringstream ss{options.c_str() + pos + clStdOptionName.size()};
|
|
uint32_t majorV = 0u, minorV = 0u;
|
|
char dot = 0u;
|
|
ss >> majorV;
|
|
ss >> dot;
|
|
ss >> minorV;
|
|
programOptionVersion = majorV * 10u + minorV;
|
|
}
|
|
|
|
if (programOptionVersion >= 20u && (false == CompilerOptions::contains(options, CompilerOptions::uniformWorkgroupSize))) {
|
|
allowNonUniform = true;
|
|
}
|
|
}
|
|
|
|
void Program::updateNonUniformFlag(const Program **inputPrograms, size_t numInputPrograms) {
|
|
bool allowNonUniform = true;
|
|
for (cl_uint i = 0; i < numInputPrograms; i++) {
|
|
allowNonUniform = allowNonUniform && inputPrograms[i]->getAllowNonUniform();
|
|
}
|
|
this->allowNonUniform = allowNonUniform;
|
|
}
|
|
|
|
void Program::replaceDeviceBinary(std::unique_ptr<char[]> &&newBinary, size_t newBinarySize, uint32_t rootDeviceIndex) {
|
|
if (isAnyPackedDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(newBinary.get()), newBinarySize))) {
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinary = std::move(newBinary);
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = newBinarySize;
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.reset();
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = 0U;
|
|
if (isAnySingleDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(this->buildInfos[rootDeviceIndex].packedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].packedDeviceBinarySize))) {
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy(buildInfos[rootDeviceIndex].packedDeviceBinary.get(), buildInfos[rootDeviceIndex].packedDeviceBinarySize);
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = buildInfos[rootDeviceIndex].packedDeviceBinarySize;
|
|
}
|
|
} else {
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinary.reset();
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = 0U;
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = std::move(newBinary);
|
|
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = newBinarySize;
|
|
}
|
|
}
|
|
|
|
cl_int Program::packDeviceBinary(ClDevice &clDevice) {
|
|
auto rootDeviceIndex = clDevice.getRootDeviceIndex();
|
|
if (nullptr != buildInfos[rootDeviceIndex].packedDeviceBinary) {
|
|
return CL_SUCCESS;
|
|
}
|
|
|
|
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
|
|
auto gfxCore = hwInfo->platform.eRenderCoreFamily;
|
|
auto stepping = hwInfo->platform.usRevId;
|
|
|
|
if (nullptr != this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()) {
|
|
SingleDeviceBinary singleDeviceBinary;
|
|
singleDeviceBinary.buildOptions = this->options;
|
|
singleDeviceBinary.targetDevice.coreFamily = gfxCore;
|
|
singleDeviceBinary.targetDevice.stepping = stepping;
|
|
singleDeviceBinary.deviceBinary = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize);
|
|
singleDeviceBinary.intermediateRepresentation = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize);
|
|
singleDeviceBinary.debugData = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->debugData.get()), this->debugDataSize);
|
|
|
|
std::string packWarnings;
|
|
std::string packErrors;
|
|
auto packedDeviceBinary = NEO::packDeviceBinary(singleDeviceBinary, packErrors, packWarnings);
|
|
if (packedDeviceBinary.empty()) {
|
|
DEBUG_BREAK_IF(true);
|
|
return CL_OUT_OF_HOST_MEMORY;
|
|
}
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy(packedDeviceBinary.data(), packedDeviceBinary.size());
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = packedDeviceBinary.size();
|
|
} else if (nullptr != this->irBinary.get()) {
|
|
NEO::Elf::ElfEncoder<> elfEncoder(true, true, 1U);
|
|
if (deviceBuildInfos[&clDevice].programBinaryType == CL_PROGRAM_BINARY_TYPE_LIBRARY) {
|
|
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_LIBRARY;
|
|
} else {
|
|
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_OBJECTS;
|
|
}
|
|
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_SPIRV, NEO::Elf::SectionNamesOpenCl::spirvObject, ArrayRef<const uint8_t>::fromAny(this->irBinary.get(), this->irBinarySize));
|
|
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_OPTIONS, NEO::Elf::SectionNamesOpenCl::buildOptions, this->options);
|
|
auto elfData = elfEncoder.encode();
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy(elfData.data(), elfData.size());
|
|
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = elfData.size();
|
|
} else {
|
|
return CL_INVALID_PROGRAM;
|
|
}
|
|
|
|
return CL_SUCCESS;
|
|
}
|
|
|
|
void Program::setBuildStatus(cl_build_status status) {
|
|
for (auto &deviceBuildInfo : deviceBuildInfos) {
|
|
deviceBuildInfo.second.buildStatus = status;
|
|
}
|
|
}
|
|
void Program::setBuildStatusSuccess(const ClDeviceVector &deviceVector, cl_program_binary_type binaryType) {
|
|
for (const auto &device : deviceVector) {
|
|
deviceBuildInfos[device].buildStatus = CL_BUILD_SUCCESS;
|
|
if (deviceBuildInfos[device].programBinaryType != binaryType) {
|
|
std::unique_lock<std::mutex> lock(lockMutex);
|
|
clDevicesInProgram.push_back(device);
|
|
}
|
|
deviceBuildInfos[device].programBinaryType = binaryType;
|
|
for (const auto &subDevice : deviceBuildInfos[device].associatedSubDevices) {
|
|
deviceBuildInfos[subDevice].buildStatus = CL_BUILD_SUCCESS;
|
|
if (deviceBuildInfos[subDevice].programBinaryType != binaryType) {
|
|
std::unique_lock<std::mutex> lock(lockMutex);
|
|
clDevicesInProgram.push_back(subDevice);
|
|
}
|
|
deviceBuildInfos[subDevice].programBinaryType = binaryType;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Program::isValidCallback(void(CL_CALLBACK *funcNotify)(cl_program program, void *userData), void *userData) {
|
|
return funcNotify != nullptr || userData == nullptr;
|
|
}
|
|
|
|
void Program::invokeCallback(void(CL_CALLBACK *funcNotify)(cl_program program, void *userData), void *userData) {
|
|
if (funcNotify != nullptr) {
|
|
(*funcNotify)(this, userData);
|
|
}
|
|
}
|
|
|
|
bool Program::isDeviceAssociated(const ClDevice &clDevice) const {
|
|
return std::any_of(clDevices.begin(), clDevices.end(), [&](auto programDevice) { return programDevice == &clDevice; });
|
|
}
|
|
|
|
cl_int Program::processInputDevices(ClDeviceVector *&deviceVectorPtr, cl_uint numDevices, const cl_device_id *deviceList, const ClDeviceVector &allAvailableDevices) {
|
|
if (deviceList == nullptr) {
|
|
if (numDevices == 0) {
|
|
deviceVectorPtr = const_cast<ClDeviceVector *>(&allAvailableDevices);
|
|
} else {
|
|
return CL_INVALID_VALUE;
|
|
}
|
|
|
|
} else {
|
|
if (numDevices == 0) {
|
|
return CL_INVALID_VALUE;
|
|
} else {
|
|
for (auto i = 0u; i < numDevices; i++) {
|
|
auto device = castToObject<ClDevice>(deviceList[i]);
|
|
if (!device || !std::any_of(allAvailableDevices.begin(), allAvailableDevices.end(), [&](auto validDevice) { return validDevice == device; })) {
|
|
return CL_INVALID_DEVICE;
|
|
}
|
|
deviceVectorPtr->push_back(device);
|
|
}
|
|
}
|
|
}
|
|
return CL_SUCCESS;
|
|
}
|
|
|
|
void Program::prependFilePathToOptions(const std::string &filename) {
|
|
ConstStringRef cmcOption = "-cmc";
|
|
if (!filename.empty() && options.compare(0, cmcOption.size(), cmcOption.data())) {
|
|
// Add "-s" flag first so it will be ignored by clang in case the options already have this flag set.
|
|
options = std::string("-s ") + filename + " " + options;
|
|
}
|
|
}
|
|
|
|
const ClDeviceVector &Program::getDevicesInProgram() const {
|
|
if (clDevicesInProgram.empty()) {
|
|
return clDevices;
|
|
} else {
|
|
return clDevicesInProgram;
|
|
}
|
|
}
|
|
|
|
} // namespace NEO
|