compute-runtime/unit_tests/mem_obj/image2d_from_buffer_tests.cpp

425 lines
18 KiB
C++

/*
* Copyright (C) 2017-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "runtime/helpers/aligned_memory.h"
#include "runtime/helpers/hw_helper.h"
#include "runtime/mem_obj/buffer.h"
#include "runtime/mem_obj/image.h"
#include "test.h"
#include "unit_tests/fixtures/device_fixture.h"
#include "unit_tests/helpers/raii_hw_helper.h"
#include "unit_tests/mocks/mock_context.h"
#include "unit_tests/mocks/mock_gmm.h"
using namespace NEO;
namespace NEO {
extern HwHelper *hwHelperFactory[IGFX_MAX_CORE];
}
// Tests for cl_khr_image2d_from_buffer
class Image2dFromBufferTest : public DeviceFixture, public ::testing::Test {
public:
Image2dFromBufferTest() {}
protected:
void SetUp() override {
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_RGBA;
imageDesc.image_array_size = 0;
imageDesc.image_depth = 0;
imageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
imageDesc.image_height = 128;
imageDesc.image_width = 256;
imageDesc.num_mip_levels = 0;
imageDesc.image_row_pitch = 0;
imageDesc.image_slice_pitch = 0;
imageDesc.num_samples = 0;
size = 128 * 256 * 4;
hostPtr = alignedMalloc(size, 16);
ASSERT_NE(nullptr, hostPtr);
imageDesc.mem_object = clCreateBuffer(&context, CL_MEM_USE_HOST_PTR, size, hostPtr, &retVal);
ASSERT_NE(nullptr, imageDesc.mem_object);
}
void TearDown() override {
clReleaseMemObject(imageDesc.mem_object);
alignedFree(hostPtr);
}
Image *createImage() {
cl_mem_flags flags = CL_MEM_READ_ONLY;
auto surfaceFormat = (SurfaceFormatInfo *)Image::getSurfaceFormatFromTable(flags, &imageFormat);
return Image::create(&context, flags, surfaceFormat, &imageDesc, NULL, retVal);
}
cl_image_format imageFormat;
cl_image_desc imageDesc;
cl_int retVal = CL_SUCCESS;
MockContext context;
void *hostPtr;
size_t size;
};
TEST_F(Image2dFromBufferTest, CreateImage2dFromBuffer) {
auto buffer = castToObject<Buffer>(imageDesc.mem_object);
ASSERT_NE(nullptr, buffer);
EXPECT_EQ(1, buffer->getRefInternalCount());
auto imageFromBuffer = createImage();
ASSERT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(2, buffer->getRefInternalCount());
EXPECT_NE(nullptr, imageFromBuffer);
EXPECT_FALSE(imageFromBuffer->allowTiling());
EXPECT_EQ(imageFromBuffer->getCubeFaceIndex(), static_cast<uint32_t>(__GMM_NO_CUBE_MAP));
delete imageFromBuffer;
EXPECT_EQ(1, buffer->getRefInternalCount());
}
TEST_F(Image2dFromBufferTest, givenBufferWhenCreateImage2dArrayFromBufferThenImageDescriptorIsInvalid) {
imageDesc.image_type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
cl_mem_flags flags = CL_MEM_READ_ONLY;
auto surfaceFormat = (SurfaceFormatInfo *)Image::getSurfaceFormatFromTable(flags, &imageFormat);
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, CalculateRowPitch) {
auto imageFromBuffer = createImage();
ASSERT_NE(nullptr, imageFromBuffer);
EXPECT_NE(0u, imageFromBuffer->getImageDesc().image_row_pitch);
EXPECT_EQ(1024u, imageFromBuffer->getImageDesc().image_row_pitch);
delete imageFromBuffer;
}
TEST_F(Image2dFromBufferTest, givenInvalidRowPitchWhenCreateImage2dFromBufferThenReturnsError) {
char ptr[10];
imageDesc.image_row_pitch = 255;
cl_mem_flags flags = CL_MEM_READ_ONLY;
auto surfaceFormat = (SurfaceFormatInfo *)Image::getSurfaceFormatFromTable(flags, &imageFormat);
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, ptr);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, givenRowPitchThatIsGreaterThenComputedWhenImageIsCreatedThenPassedRowPitchIsUsedInsteadOfComputed) {
auto computedSize = imageDesc.image_width * 4;
auto passedSize = computedSize * 2;
imageDesc.image_row_pitch = passedSize;
auto imageFromBuffer = createImage();
EXPECT_EQ(passedSize, imageFromBuffer->getHostPtrRowPitch());
delete imageFromBuffer;
}
TEST_F(Image2dFromBufferTest, InvalidHostPtrAlignment) {
std::unique_ptr<void, decltype(free) *> myHostPtr(malloc(size + 1), free);
ASSERT_NE(nullptr, myHostPtr);
void *nonAlignedHostPtr = myHostPtr.get();
if ((reinterpret_cast<uint64_t>(myHostPtr.get()) % 4) == 0) {
nonAlignedHostPtr = reinterpret_cast<void *>((reinterpret_cast<uint64_t>(myHostPtr.get()) + 1));
}
cl_mem origBuffer = imageDesc.mem_object;
imageDesc.mem_object = clCreateBuffer(&context, CL_MEM_USE_HOST_PTR, size, nonAlignedHostPtr, &retVal);
ASSERT_NE(nullptr, imageDesc.mem_object);
cl_mem_flags flags = CL_MEM_READ_ONLY;
auto surfaceFormat = (SurfaceFormatInfo *)Image::getSurfaceFormatFromTable(flags, &imageFormat);
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
clReleaseMemObject(imageDesc.mem_object);
imageDesc.mem_object = origBuffer;
}
TEST_F(Image2dFromBufferTest, InvalidFlags) {
cl_mem_flags flags = CL_MEM_USE_HOST_PTR;
auto surfaceFormat = (SurfaceFormatInfo *)Image::getSurfaceFormatFromTable(flags, &imageFormat);
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, reinterpret_cast<void *>(0x12345));
EXPECT_EQ(CL_INVALID_VALUE, retVal);
}
TEST_F(Image2dFromBufferTest, givenOneChannel8BitColorsNoRowPitchSpecifiedAndTooLargeImageWhenValidatingSurfaceFormatThenReturnError) {
imageDesc.image_height = 1 + castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_R;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, givenOneChannel16BitColorsNoRowPitchSpecifiedAndTooLargeImageWhenValidatingSurfaceFormatThenReturnError) {
imageDesc.image_height = 1 + castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width / 2;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT16;
imageFormat.image_channel_order = CL_R;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, givenFourChannel8BitColorsNoRowPitchSpecifiedAndTooLargeImageWhenValidatingSurfaceFormatThenReturnError) {
imageDesc.image_height = 1 + castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width / 4;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_RGBA;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, givenFourChannel16BitColorsNoRowPitchSpecifiedAndTooLargeImageWhenValidatingSurfaceFormatThenReturnError) {
imageDesc.image_height = 1 + castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width / 8;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT16;
imageFormat.image_channel_order = CL_RGBA;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, givenFourChannel8BitColorsAndNotTooLargeRowPitchSpecifiedWhenValidatingSurfaceFormatThenDoNotReturnError) {
imageDesc.image_height = castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width;
imageDesc.image_row_pitch = imageDesc.image_width;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_RGBA;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_F(Image2dFromBufferTest, givenFourChannel8BitColorsAndTooLargeRowPitchSpecifiedWhenValidatingSurfaceFormatThenReturnError) {
const auto pitchAlignment = &DeviceInfoTable::Map<CL_DEVICE_IMAGE_PITCH_ALIGNMENT>::getValue(context.getDevice(0u)->getDeviceInfo());
imageDesc.image_height = castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width;
imageDesc.image_row_pitch = imageDesc.image_width + *pitchAlignment;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_RGBA;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, givenUnalignedImageWidthAndNoSpaceInBufferForAlignmentWhenValidatingSurfaceFormatThenReturnError) {
context.getDevice(0u)->getMutableDeviceInfo()->imagePitchAlignment = 128;
imageDesc.image_width = 64;
imageDesc.image_height = castToObject<Buffer>(imageDesc.mem_object)->getSize() / imageDesc.image_width;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_R;
const auto surfaceFormat = static_cast<const SurfaceFormatInfo *>(Image::getSurfaceFormatFromTable(flags, &imageFormat));
retVal = Image::validate(&context, flags, surfaceFormat, &imageDesc, NULL);
EXPECT_EQ(CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, retVal);
}
TEST_F(Image2dFromBufferTest, ExtensionString) {
auto device = std::unique_ptr<Device>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(platformDevices[0]));
const auto &caps = device->getDeviceInfo();
std::string extensions = caps.deviceExtensions;
size_t found = extensions.find("cl_khr_image2d_from_buffer");
EXPECT_NE(std::string::npos, found);
}
TEST_F(Image2dFromBufferTest, InterceptBuffersHostPtr) {
auto buffer = castToObject<Buffer>(imageDesc.mem_object);
ASSERT_NE(nullptr, buffer);
EXPECT_EQ(1, buffer->getRefInternalCount());
auto imageFromBuffer = createImage();
ASSERT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(buffer->getHostPtr(), imageFromBuffer->getHostPtr());
EXPECT_EQ(true, imageFromBuffer->isMemObjZeroCopy());
delete imageFromBuffer;
}
TEST_F(Image2dFromBufferTest, givenImageFromBufferWhenItIsRedescribedThenItReturnsProperImageFromBufferValue) {
std::unique_ptr<Image> imageFromBuffer(createImage());
EXPECT_TRUE(imageFromBuffer->isImageFromBuffer());
std::unique_ptr<Image> redescribedImage(imageFromBuffer->redescribe());
EXPECT_TRUE(redescribedImage->isImageFromBuffer());
std::unique_ptr<Image> redescribedfillImage(imageFromBuffer->redescribeFillImage());
EXPECT_TRUE(redescribedfillImage->isImageFromBuffer());
}
TEST_F(Image2dFromBufferTest, givenMemoryManagerNotSupportingVirtualPaddingWhenImageIsCreatedThenPaddingIsNotApplied) {
auto memoryManager = context.getMemoryManager();
memoryManager->setVirtualPaddingSupport(false);
auto buffer = castToObject<Buffer>(imageDesc.mem_object);
ASSERT_NE(nullptr, buffer);
EXPECT_EQ(1, buffer->getRefInternalCount());
std::unique_ptr<Image> imageFromBuffer(createImage());
ASSERT_EQ(CL_SUCCESS, retVal);
//graphics allocation for image and buffer is the same
auto bufferGraphicsAllocation = buffer->getGraphicsAllocation();
auto imageGraphicsAllocation = imageFromBuffer->getGraphicsAllocation();
EXPECT_EQ(bufferGraphicsAllocation, imageGraphicsAllocation);
}
TEST_F(Image2dFromBufferTest, givenMemoryManagerSupportingVirtualPaddingWhenImageIsCreatedThatFitsInTheBufferThenPaddingIsNotApplied) {
auto memoryManager = context.getMemoryManager();
memoryManager->setVirtualPaddingSupport(true);
auto buffer = castToObject<Buffer>(imageDesc.mem_object);
ASSERT_NE(nullptr, buffer);
EXPECT_EQ(1, buffer->getRefInternalCount());
std::unique_ptr<Image> imageFromBuffer(createImage());
ASSERT_EQ(CL_SUCCESS, retVal);
//graphics allocation for image and buffer is the same
auto bufferGraphicsAllocation = buffer->getGraphicsAllocation();
auto imageGraphicsAllocation = imageFromBuffer->getGraphicsAllocation();
EXPECT_EQ(this->size, bufferGraphicsAllocation->getUnderlyingBufferSize());
auto imgInfo = MockGmm::initImgInfo(imageDesc, 0, &imageFromBuffer->getSurfaceFormatInfo());
auto queryGmm = MockGmm::queryImgParams(imgInfo);
EXPECT_TRUE(queryGmm->gmmResourceInfo->getSizeAllocation() >= this->size);
EXPECT_EQ(bufferGraphicsAllocation, imageGraphicsAllocation);
}
TEST_F(Image2dFromBufferTest, givenMemoryManagerSupportingVirtualPaddingWhenImageIsCreatedThatDoesntFitInTheBufferThenPaddingIsApplied) {
imageFormat.image_channel_data_type = CL_FLOAT;
imageFormat.image_channel_order = CL_RGBA;
imageDesc.image_width = 29;
imageDesc.image_height = 29;
imageDesc.image_row_pitch = 512;
//application calcualted buffer size
auto bufferSize = imageDesc.image_row_pitch * imageDesc.image_height;
auto buffer2 = clCreateBuffer(&context, CL_MEM_READ_WRITE, bufferSize, nullptr, nullptr);
auto storeMem = imageDesc.mem_object;
imageDesc.mem_object = buffer2;
auto memoryManager = context.getMemoryManager();
memoryManager->setVirtualPaddingSupport(true);
auto buffer = castToObject<Buffer>(imageDesc.mem_object);
std::unique_ptr<Image> imageFromBuffer(createImage());
ASSERT_EQ(CL_SUCCESS, retVal);
//graphics allocation for image and buffer is the same
auto bufferGraphicsAllocation = buffer->getGraphicsAllocation();
auto imageGraphicsAllocation = imageFromBuffer->getGraphicsAllocation();
EXPECT_EQ(bufferSize, bufferGraphicsAllocation->getUnderlyingBufferSize());
auto imgInfo = MockGmm::initImgInfo(imageDesc, 0, &imageFromBuffer->getSurfaceFormatInfo());
auto queryGmm = MockGmm::queryImgParams(imgInfo);
EXPECT_GT(queryGmm->gmmResourceInfo->getSizeAllocation(), bufferSize);
EXPECT_NE(bufferGraphicsAllocation, imageGraphicsAllocation);
EXPECT_EQ(queryGmm->gmmResourceInfo->getSizeAllocation(), imageFromBuffer->getGraphicsAllocation()->getUnderlyingBufferSize());
EXPECT_EQ(bufferSize, imageFromBuffer->getSize());
imageDesc.mem_object = storeMem;
clReleaseMemObject(buffer2);
}
TEST_F(Image2dFromBufferTest, givenMemoryManagerSupportingVirtualPaddingWhen1DImageFromBufferImageIsCreatedThenVirtualPaddingIsNotApplied) {
imageFormat.image_channel_data_type = CL_FLOAT;
imageFormat.image_channel_order = CL_RGBA;
imageDesc.image_width = 1024;
imageDesc.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
//application calcualted buffer size
auto bufferSize = imageDesc.image_width * 16;
auto buffer2 = clCreateBuffer(&context, CL_MEM_READ_WRITE, bufferSize, nullptr, nullptr);
auto storeMem = imageDesc.mem_object;
imageDesc.mem_object = buffer2;
auto memoryManager = context.getMemoryManager();
memoryManager->setVirtualPaddingSupport(true);
auto buffer = castToObject<Buffer>(imageDesc.mem_object);
std::unique_ptr<Image> imageFromBuffer(createImage());
ASSERT_EQ(CL_SUCCESS, retVal);
//graphics allocation match
auto bufferGraphicsAllocation = buffer->getGraphicsAllocation();
auto imageGraphicsAllocation = imageFromBuffer->getGraphicsAllocation();
EXPECT_EQ(bufferGraphicsAllocation, imageGraphicsAllocation);
imageDesc.mem_object = storeMem;
clReleaseMemObject(buffer2);
}
TEST_F(Image2dFromBufferTest, givenMemoryManagerSupporting1DImageFromBufferWhenNoBufferThenCreatesImage) {
imageDesc.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
auto storeMem = imageDesc.mem_object;
imageDesc.mem_object = nullptr;
std::unique_ptr<Image> imageFromBuffer(createImage());
EXPECT_EQ(CL_SUCCESS, retVal);
imageDesc.mem_object = storeMem;
}
TEST_F(Image2dFromBufferTest, givenBufferWhenImageFromBufferThenIsImageFromBufferSetAndAllocationTypeIsBuffer) {
cl_int errCode = 0;
auto buffer = Buffer::create(&context, 0, 1, nullptr, errCode);
imageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
auto memObj = imageDesc.mem_object;
imageDesc.mem_object = buffer;
std::unique_ptr<Image> imageFromBuffer(createImage());
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(imageFromBuffer.get()->isImageFromBuffer());
EXPECT_TRUE(GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY == imageFromBuffer.get()->getGraphicsAllocation()->getAllocationType());
buffer->release();
imageDesc.mem_object = memObj;
}
HWTEST_F(Image2dFromBufferTest, givenBufferWhenImageFromBufferThenIsImageFromBufferSetAndAllocationTypeIsBufferNullptr) {
class MockHwHelperHw : public HwHelperHw<FamilyType> {
public:
void checkResourceCompatibility(Buffer *buffer, cl_int &errorCode) override {
errorCode = CL_INVALID_MEM_OBJECT;
}
};
auto raiiFactory = RAIIHwHelperFactory<MockHwHelperHw>(context.getDevice(0)->getHardwareInfo().pPlatform->eRenderCoreFamily);
cl_int errCode = CL_SUCCESS;
auto buffer = Buffer::create(&context, 0, 1, nullptr, errCode);
imageDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
auto memObj = imageDesc.mem_object;
imageDesc.mem_object = buffer;
Image *imageFromBuffer = createImage();
EXPECT_EQ(CL_INVALID_MEM_OBJECT, retVal);
EXPECT_EQ(imageFromBuffer, nullptr);
buffer->release();
imageDesc.mem_object = memObj;
}