compute-runtime/unit_tests/command_queue/enqueue_copy_buffer_rect_te...

388 lines
15 KiB
C++

/*
* Copyright (c) 2017 - 2018, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "runtime/built_ins/built_ins.h"
#include "runtime/built_ins/builtins_dispatch_builder.h"
#include "reg_configs_common.h"
#include "runtime/helpers/dispatch_info.h"
#include "runtime/memory_manager/memory_constants.h"
#include "unit_tests/command_queue/enqueue_copy_buffer_rect_fixture.h"
#include "unit_tests/gen_common/gen_commands_common_validation.h"
#include "test.h"
using namespace OCLRT;
const size_t EnqueueCopyBufferRectTest::BufferRect::sizeInBytes = 100 * 100 * 100 * sizeof(cl_char);
HWTEST_F(EnqueueCopyBufferRectTest, null_src_mem_object) {
auto retVal = CL_SUCCESS;
size_t srcOrigin[] = {0, 0, 0};
size_t dstOrigin[] = {0, 0, 0};
size_t region[] = {1, 1, 0};
retVal = clEnqueueCopyBufferRect(
pCmdQ,
nullptr,
dstBuffer,
srcOrigin,
dstOrigin,
region,
10,
0,
10,
0,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_INVALID_MEM_OBJECT, retVal);
}
HWTEST_F(EnqueueCopyBufferRectTest, null_dst_mem_object) {
auto retVal = CL_SUCCESS;
size_t srcOrigin[] = {0, 0, 0};
size_t dstOrigin[] = {0, 0, 0};
size_t region[] = {1, 1, 0};
retVal = clEnqueueCopyBufferRect(
pCmdQ,
srcBuffer,
nullptr,
srcOrigin,
dstOrigin,
region,
10,
0,
10,
0,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_INVALID_MEM_OBJECT, retVal);
}
HWTEST_F(EnqueueCopyBufferRectTest, returnSuccess) {
auto retVal = CL_SUCCESS;
size_t srcOrigin[] = {0, 0, 0};
size_t dstOrigin[] = {0, 0, 0};
size_t region[] = {1, 1, 1};
retVal = clEnqueueCopyBufferRect(
pCmdQ,
srcBuffer,
dstBuffer,
srcOrigin,
dstOrigin,
region,
10,
0,
10,
0,
0,
nullptr,
nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, alignsToCSR) {
//this test case assumes IOQ
auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
csr.taskCount = pCmdQ->taskCount + 100;
csr.taskLevel = pCmdQ->taskLevel + 50;
enqueueCopyBufferRect2D<FamilyType>();
EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount);
EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_GPGPUWalker) {
typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER;
enqueueCopyBufferRect2D<FamilyType>();
auto *cmd = (GPGPU_WALKER *)cmdWalker;
ASSERT_NE(nullptr, cmd);
// Verify GPGPU_WALKER parameters
EXPECT_NE(0u, cmd->getThreadGroupIdXDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdYDimension());
EXPECT_EQ(1u, cmd->getThreadGroupIdZDimension());
EXPECT_NE(0u, cmd->getRightExecutionMask());
EXPECT_NE(0u, cmd->getBottomExecutionMask());
EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize());
EXPECT_NE(0u, cmd->getIndirectDataLength());
EXPECT_EQ(0u, cmd->getIndirectDataLength() % GPGPU_WALKER::INDIRECTDATASTARTADDRESS_ALIGN_SIZE);
EXPECT_FALSE(cmd->getIndirectParameterEnable());
// Compute the SIMD lane mask
size_t simd =
cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8;
uint64_t simdMask = (1ull << simd) - 1;
// Mask off lanes based on the execution masks
auto laneMaskRight = cmd->getRightExecutionMask() & simdMask;
auto lanesPerThreadX = 0;
while (laneMaskRight) {
lanesPerThreadX += laneMaskRight & 1;
laneMaskRight >>= 1;
}
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_bumpsTaskLevel) {
auto taskLevelBefore = pCmdQ->taskLevel;
enqueueCopyBufferRect2D<FamilyType>();
EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_addsCommands) {
auto usedCmdBufferBefore = pCS->getUsed();
enqueueCopyBufferRect2D<FamilyType>();
EXPECT_NE(usedCmdBufferBefore, pCS->getUsed());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_addsIndirectData) {
auto dshBefore = pDSH->getUsed();
auto iohBefore = pIOH->getUsed();
auto sshBefore = pSSH->getUsed();
enqueueCopyBufferRect2D<FamilyType>();
// Extract the kernel used
MultiDispatchInfo multiDispatchInfo;
auto &builder = BuiltIns::getInstance().getBuiltinDispatchInfoBuilder(EBuiltInOps::CopyBufferRect,
pCmdQ->getContext(), pCmdQ->getDevice());
ASSERT_NE(nullptr, &builder);
BuiltinDispatchInfoBuilder::BuiltinOpParams dc;
dc.srcMemObj = srcBuffer;
dc.dstMemObj = dstBuffer;
dc.srcOffset = {0, 0, 0};
dc.dstOffset = {0, 0, 0};
dc.size = {50, 50, 1};
dc.srcRowPitch = rowPitch;
dc.srcSlicePitch = slicePitch;
dc.dstRowPitch = rowPitch;
dc.dstSlicePitch = slicePitch;
builder.buildDispatchInfos(multiDispatchInfo, dc);
EXPECT_NE(0u, multiDispatchInfo.size());
auto kernel = multiDispatchInfo.begin()->getKernel();
ASSERT_NE(nullptr, kernel);
EXPECT_NE(dshBefore, pDSH->getUsed());
EXPECT_NE(iohBefore, pIOH->getUsed());
if (kernel->requiresSshForBuffers()) {
EXPECT_NE(sshBefore, pSSH->getUsed());
}
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_LoadRegisterImmediateL3CNTLREG) {
enqueueCopyBufferRect2D<FamilyType>();
validateL3Programming<FamilyType>(cmdList, itorWalker);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, When2DEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) {
enqueueCopyBufferRect2D<FamilyType>();
validateStateBaseAddress<FamilyType>(this->pDevice->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(),
pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_MediaInterfaceDescriptorLoad) {
typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueCopyBufferRect2D<FamilyType>();
auto *cmd = (MEDIA_INTERFACE_DESCRIPTOR_LOAD *)cmdMediaInterfaceDescriptorLoad;
ASSERT_NE(nullptr, cmd);
// Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA));
// Validate the start address
size_t alignmentStartAddress = 64 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress);
// Validate the length
EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength());
size_t alignmentTotalLength = 32 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength);
// Generically validate this command
FamilyType::PARSE::template validateCommand<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdList.begin(), itorMediaInterfaceDescriptorLoad);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_InterfaceDescriptorData) {
typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueCopyBufferRect2D<FamilyType>();
auto *cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress;
auto &IDD = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData;
// Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value.
auto kernelStartPointer = ((uint64_t)IDD.getKernelStartPointerHigh() << 32) + IDD.getKernelStartPointer();
EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize);
EXPECT_NE(0u, IDD.getNumberOfThreadsInGpgpuThreadGroup());
EXPECT_NE(0u, IDD.getCrossThreadConstantDataReadLength());
EXPECT_NE(0u, IDD.getConstantIndirectUrbEntryReadLength());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_PipelineSelect) {
enqueueCopyBufferRect2D<FamilyType>();
int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect<FamilyType>();
EXPECT_EQ(1, numCommands);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 2D_MediaVFEState) {
enqueueCopyBufferRect2D<FamilyType>();
validateMediaVFEState<FamilyType>(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_GPGPUWalker) {
typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER;
enqueueCopyBufferRect3D<FamilyType>();
auto *cmd = (GPGPU_WALKER *)cmdWalker;
ASSERT_NE(nullptr, cmd);
// Verify GPGPU_WALKER parameters
EXPECT_NE(0u, cmd->getThreadGroupIdXDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdYDimension());
EXPECT_LT(1u, cmd->getThreadGroupIdZDimension());
EXPECT_NE(0u, cmd->getRightExecutionMask());
EXPECT_NE(0u, cmd->getBottomExecutionMask());
EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize());
EXPECT_NE(0u, cmd->getIndirectDataLength());
EXPECT_EQ(0u, cmd->getIndirectDataLength() % GPGPU_WALKER::INDIRECTDATASTARTADDRESS_ALIGN_SIZE);
EXPECT_FALSE(cmd->getIndirectParameterEnable());
// Compute the SIMD lane mask
size_t simd =
cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8;
uint64_t simdMask = (1ull << simd) - 1;
// Mask off lanes based on the execution masks
auto laneMaskRight = cmd->getRightExecutionMask() & simdMask;
auto lanesPerThreadX = 0;
while (laneMaskRight) {
lanesPerThreadX += laneMaskRight & 1;
laneMaskRight >>= 1;
}
//auto numWorkItems = ( ( cmd->getThreadWidthCounterMaximum() - 1 ) * simd + lanesPerThreadX ) * cmd->getThreadGroupIdXDimension();
//EXPECT_EQ( expectedWorkItems, numWorkItems );
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_bumpsTaskLevel) {
auto taskLevelBefore = pCmdQ->taskLevel;
enqueueCopyBufferRect3D<FamilyType>();
EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_addsCommands) {
auto usedCmdBufferBefore = pCS->getUsed();
enqueueCopyBufferRect3D<FamilyType>();
EXPECT_NE(usedCmdBufferBefore, pCS->getUsed());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_addsIndirectData) {
auto usedIndirectHeapBefore = pDSH->getUsed();
enqueueCopyBufferRect3D<FamilyType>();
EXPECT_NE(usedIndirectHeapBefore, pDSH->getUsed());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_LoadRegisterImmediateL3CNTLREG) {
enqueueCopyBufferRect3D<FamilyType>();
validateL3Programming<FamilyType>(cmdList, itorWalker);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, When3DEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) {
enqueueCopyBufferRect3D<FamilyType>();
validateStateBaseAddress<FamilyType>(this->pDevice->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(),
pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_MediaInterfaceDescriptorLoad) {
typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueCopyBufferRect3D<FamilyType>();
auto *cmd = (MEDIA_INTERFACE_DESCRIPTOR_LOAD *)cmdMediaInterfaceDescriptorLoad;
ASSERT_NE(nullptr, cmd);
// Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA));
// Validate the start address
size_t alignmentStartAddress = 64 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress);
// Validate the length
EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength());
size_t alignmentTotalLength = 32 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength);
// Generically validate this command
FamilyType::PARSE::template validateCommand<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdList.begin(), itorMediaInterfaceDescriptorLoad);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_InterfaceDescriptorData) {
typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueCopyBufferRect3D<FamilyType>();
auto *cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress;
auto &IDD = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData;
// Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value.
auto kernelStartPointer = ((uint64_t)IDD.getKernelStartPointerHigh() << 32) + IDD.getKernelStartPointer();
EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize);
EXPECT_NE(0u, IDD.getNumberOfThreadsInGpgpuThreadGroup());
EXPECT_NE(0u, IDD.getCrossThreadConstantDataReadLength());
EXPECT_NE(0u, IDD.getConstantIndirectUrbEntryReadLength());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_PipelineSelect) {
enqueueCopyBufferRect3D<FamilyType>();
int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect<FamilyType>();
EXPECT_EQ(1, numCommands);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueCopyBufferRectTest, 3D_MediaVFEState) {
enqueueCopyBufferRect3D<FamilyType>();
validateMediaVFEState<FamilyType>(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState);
}