552 lines
22 KiB
C++
552 lines
22 KiB
C++
/*
|
|
* Copyright (C) 2023 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
*/
|
|
|
|
#include "level_zero/sysman/source/linux/zes_os_sysman_imp.h"
|
|
|
|
#include "shared/source/debug_settings/debug_settings_manager.h"
|
|
#include "shared/source/helpers/gfx_core_helper.h"
|
|
#include "shared/source/helpers/sleep.h"
|
|
#include "shared/source/os_interface/driver_info.h"
|
|
#include "shared/source/os_interface/linux/drm_neo.h"
|
|
#include "shared/source/os_interface/linux/pci_path.h"
|
|
#include "shared/source/os_interface/linux/system_info.h"
|
|
#include "shared/source/os_interface/os_interface.h"
|
|
|
|
#include "level_zero/sysman/source/firmware_util/sysman_firmware_util.h"
|
|
#include "level_zero/sysman/source/linux/pmt/sysman_pmt.h"
|
|
#include "level_zero/sysman/source/linux/pmu/sysman_pmu.h"
|
|
#include "level_zero/sysman/source/linux/sysman_fs_access.h"
|
|
#include "level_zero/sysman/source/pci/linux/sysman_os_pci_imp.h"
|
|
#include "level_zero/sysman/source/pci/sysman_pci_utils.h"
|
|
#include "level_zero/sysman/source/shared/linux/sysman_kmd_interface.h"
|
|
|
|
namespace L0 {
|
|
namespace Sysman {
|
|
|
|
const std::string LinuxSysmanImp::deviceDir("device");
|
|
|
|
ze_result_t LinuxSysmanImp::init() {
|
|
pFsAccess = FsAccess::create();
|
|
DEBUG_BREAK_IF(nullptr == pFsAccess);
|
|
|
|
if (pProcfsAccess == nullptr) {
|
|
pProcfsAccess = ProcfsAccess::create();
|
|
}
|
|
DEBUG_BREAK_IF(nullptr == pProcfsAccess);
|
|
|
|
ze_result_t result;
|
|
NEO::OSInterface &osInterface = *pParentSysmanDeviceImp->getRootDeviceEnvironment().osInterface;
|
|
if (osInterface.getDriverModel()->getDriverModelType() != NEO::DriverModelType::DRM) {
|
|
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
auto sysmanHwDeviceId = getSysmanHwDeviceId();
|
|
sysmanHwDeviceId->openFileDescriptor();
|
|
int myDeviceFd = sysmanHwDeviceId->getFileDescriptor();
|
|
std::string myDeviceName;
|
|
result = pProcfsAccess->getFileName(pProcfsAccess->myProcessId(), myDeviceFd, myDeviceName);
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
|
|
if (pSysfsAccess == nullptr) {
|
|
pSysfsAccess = SysfsAccess::create(myDeviceName);
|
|
}
|
|
DEBUG_BREAK_IF(nullptr == pSysfsAccess);
|
|
|
|
subDeviceCount = NEO::GfxCoreHelper::getSubDevicesCount(&pParentSysmanDeviceImp->getHardwareInfo());
|
|
if (subDeviceCount == 1) {
|
|
subDeviceCount = 0;
|
|
}
|
|
|
|
rootPath = NEO::getPciRootPath(myDeviceFd).value_or("");
|
|
pSysfsAccess->getRealPath(deviceDir, gtDevicePath);
|
|
|
|
pSysmanKmdInterface = SysmanKmdInterface::create(*getDrm());
|
|
|
|
osInterface.getDriverModel()->as<NEO::Drm>()->cleanup();
|
|
// Close Drm handles
|
|
sysmanHwDeviceId->closeFileDescriptor();
|
|
pPmuInterface = PmuInterface::create(this);
|
|
return createPmtHandles();
|
|
}
|
|
|
|
std::string &LinuxSysmanImp::getPciRootPath() {
|
|
return rootPath;
|
|
}
|
|
|
|
SysmanHwDeviceIdDrm *LinuxSysmanImp::getSysmanHwDeviceId() {
|
|
return static_cast<SysmanHwDeviceIdDrm *>(getDrm()->getHwDeviceId().get());
|
|
}
|
|
|
|
NEO::Drm *LinuxSysmanImp::getDrm() {
|
|
const auto &osInterface = *pParentSysmanDeviceImp->getRootDeviceEnvironment().osInterface;
|
|
return osInterface.getDriverModel()->as<NEO::Drm>();
|
|
}
|
|
|
|
ze_result_t LinuxSysmanImp::createPmtHandles() {
|
|
std::string gtDevicePCIPath;
|
|
auto result = pSysfsAccess->getRealPath("device", gtDevicePCIPath);
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
auto gpuUpstreamPortPath = getPciCardBusDirectoryPath(gtDevicePCIPath);
|
|
PlatformMonitoringTech::create(this, gpuUpstreamPortPath, mapOfSubDeviceIdToPmtObject);
|
|
return result;
|
|
}
|
|
|
|
static std::string modifyPathOnLevel(std::string realPciPath, uint8_t nLevel) {
|
|
size_t loc;
|
|
// we need to change the absolute path to 'nLevel' levels up
|
|
while (nLevel > 0) {
|
|
loc = realPciPath.find_last_of('/');
|
|
if (loc == std::string::npos) {
|
|
break;
|
|
}
|
|
realPciPath = realPciPath.substr(0, loc);
|
|
nLevel--;
|
|
}
|
|
return realPciPath;
|
|
}
|
|
std::string LinuxSysmanImp::getPciRootPortDirectoryPath(std::string realPciPath) {
|
|
// the rootport is always the first pci folder after the pcie slot.
|
|
// +-[0000:89]-+-00.0
|
|
// | +-00.1
|
|
// | +-00.2
|
|
// | +-00.4
|
|
// | \-02.0-[8a-8e]----00.0-[8b-8e]--+-01.0-[8c-8d]----00.0
|
|
// | \-02.0-[8e]--+-00.0
|
|
// | +-00.1
|
|
// | \-00.2
|
|
// /sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
|
|
// '/sys/devices/pci0000:89/0000:89:02.0/' will always be the same distance.
|
|
// from 0000:8c:00.0 i.e the 3rd PCI address from the gt tile
|
|
return modifyPathOnLevel(realPciPath, 3);
|
|
}
|
|
|
|
std::string LinuxSysmanImp::getPciCardBusDirectoryPath(std::string realPciPath) {
|
|
// the cardbus is always the second pci folder after the pcie slot.
|
|
// +-[0000:89]-+-00.0
|
|
// | +-00.1
|
|
// | +-00.2
|
|
// | +-00.4
|
|
// | \-02.0-[8a-8e]----00.0-[8b-8e]--+-01.0-[8c-8d]----00.0
|
|
// | \-02.0-[8e]--+-00.0
|
|
// | +-00.1
|
|
// | \-00.2
|
|
// /sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
|
|
// '/sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/' will always be the same distance.
|
|
// from 0000:8c:00.0 i.e the 2nd PCI address from the gt tile.
|
|
return modifyPathOnLevel(realPciPath, 2);
|
|
}
|
|
|
|
PlatformMonitoringTech *LinuxSysmanImp::getPlatformMonitoringTechAccess(uint32_t subDeviceId) {
|
|
auto subDeviceIdToPmtEntry = mapOfSubDeviceIdToPmtObject.find(subDeviceId);
|
|
if (subDeviceIdToPmtEntry == mapOfSubDeviceIdToPmtObject.end()) {
|
|
return nullptr;
|
|
}
|
|
return subDeviceIdToPmtEntry->second;
|
|
}
|
|
|
|
void LinuxSysmanImp::releasePmtObject() {
|
|
for (auto &subDeviceIdToPmtEntry : mapOfSubDeviceIdToPmtObject) {
|
|
if (subDeviceIdToPmtEntry.second) {
|
|
delete subDeviceIdToPmtEntry.second;
|
|
subDeviceIdToPmtEntry.second = nullptr;
|
|
}
|
|
}
|
|
mapOfSubDeviceIdToPmtObject.clear();
|
|
}
|
|
|
|
FsAccess &LinuxSysmanImp::getFsAccess() {
|
|
UNRECOVERABLE_IF(nullptr == pFsAccess);
|
|
return *pFsAccess;
|
|
}
|
|
|
|
ProcfsAccess &LinuxSysmanImp::getProcfsAccess() {
|
|
UNRECOVERABLE_IF(nullptr == pProcfsAccess);
|
|
return *pProcfsAccess;
|
|
}
|
|
|
|
SysfsAccess &LinuxSysmanImp::getSysfsAccess() {
|
|
UNRECOVERABLE_IF(nullptr == pSysfsAccess);
|
|
return *pSysfsAccess;
|
|
}
|
|
|
|
SysmanDeviceImp *LinuxSysmanImp::getSysmanDeviceImp() {
|
|
return pParentSysmanDeviceImp;
|
|
}
|
|
|
|
uint32_t LinuxSysmanImp::getSubDeviceCount() {
|
|
return subDeviceCount;
|
|
}
|
|
|
|
LinuxSysmanImp::LinuxSysmanImp(SysmanDeviceImp *pParentSysmanDeviceImp) {
|
|
this->pParentSysmanDeviceImp = pParentSysmanDeviceImp;
|
|
executionEnvironment = pParentSysmanDeviceImp->getExecutionEnvironment();
|
|
rootDeviceIndex = pParentSysmanDeviceImp->getRootDeviceIndex();
|
|
}
|
|
|
|
void LinuxSysmanImp::createFwUtilInterface() {
|
|
const auto pciBusInfo = pParentSysmanDeviceImp->getRootDeviceEnvironment().osInterface->getDriverModel()->getPciBusInfo();
|
|
const uint16_t domain = static_cast<uint16_t>(pciBusInfo.pciDomain);
|
|
const uint8_t bus = static_cast<uint8_t>(pciBusInfo.pciBus);
|
|
const uint8_t device = static_cast<uint8_t>(pciBusInfo.pciDevice);
|
|
const uint8_t function = static_cast<uint8_t>(pciBusInfo.pciFunction);
|
|
|
|
pFwUtilInterface = FirmwareUtil::create(domain, bus, device, function);
|
|
}
|
|
|
|
FirmwareUtil *LinuxSysmanImp::getFwUtilInterface() {
|
|
const std::lock_guard<std::mutex> lock(this->fwLock);
|
|
if (pFwUtilInterface == nullptr) {
|
|
createFwUtilInterface();
|
|
}
|
|
return pFwUtilInterface;
|
|
}
|
|
|
|
void LinuxSysmanImp::releaseFwUtilInterface() {
|
|
if (nullptr != pFwUtilInterface) {
|
|
delete pFwUtilInterface;
|
|
pFwUtilInterface = nullptr;
|
|
}
|
|
}
|
|
|
|
LinuxSysmanImp::~LinuxSysmanImp() {
|
|
if (nullptr != pSysfsAccess) {
|
|
delete pSysfsAccess;
|
|
pSysfsAccess = nullptr;
|
|
}
|
|
if (nullptr != pProcfsAccess) {
|
|
delete pProcfsAccess;
|
|
pProcfsAccess = nullptr;
|
|
}
|
|
if (nullptr != pFsAccess) {
|
|
delete pFsAccess;
|
|
pFsAccess = nullptr;
|
|
}
|
|
if (nullptr != pPmuInterface) {
|
|
delete pPmuInterface;
|
|
pPmuInterface = nullptr;
|
|
}
|
|
releaseFwUtilInterface();
|
|
releasePmtObject();
|
|
}
|
|
|
|
void LinuxSysmanImp::getPidFdsForOpenDevice(ProcfsAccess *pProcfsAccess, SysfsAccess *pSysfsAccess, const ::pid_t pid, std::vector<int> &deviceFds) {
|
|
// Return a list of all the file descriptors of this process that point to this device
|
|
std::vector<int> fds;
|
|
deviceFds.clear();
|
|
if (ZE_RESULT_SUCCESS != pProcfsAccess->getFileDescriptors(pid, fds)) {
|
|
// Process exited. Not an error. Just ignore.
|
|
return;
|
|
}
|
|
for (auto &&fd : fds) {
|
|
std::string file;
|
|
if (pProcfsAccess->getFileName(pid, fd, file) != ZE_RESULT_SUCCESS) {
|
|
// Process closed this file. Not an error. Just ignore.
|
|
continue;
|
|
}
|
|
if (pSysfsAccess->isMyDeviceFile(file)) {
|
|
deviceFds.push_back(fd);
|
|
}
|
|
}
|
|
}
|
|
|
|
ze_result_t LinuxSysmanImp::gpuProcessCleanup() {
|
|
::pid_t myPid = pProcfsAccess->myProcessId();
|
|
std::vector<::pid_t> processes;
|
|
std::vector<int> myPidFds;
|
|
ze_result_t result = pProcfsAccess->listProcesses(processes);
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr,
|
|
"gpuProcessCleanup: listProcesses() failed with error code: %ld\n", result);
|
|
return result;
|
|
}
|
|
|
|
for (auto &&pid : processes) {
|
|
std::vector<int> fds;
|
|
getPidFdsForOpenDevice(pProcfsAccess, pSysfsAccess, pid, fds);
|
|
if (pid == myPid) {
|
|
// L0 is expected to have this file open.
|
|
// Keep list of fds. Close before unbind.
|
|
myPidFds = fds;
|
|
continue;
|
|
}
|
|
if (!fds.empty()) {
|
|
pProcfsAccess->kill(pid);
|
|
}
|
|
}
|
|
|
|
for (auto &&fd : myPidFds) {
|
|
// Close open filedescriptors to the device
|
|
// before unbinding device.
|
|
// From this point forward, there is no
|
|
// graceful way to fail the reset call.
|
|
// All future ze calls by this process for this
|
|
// device will fail.
|
|
NEO::SysCalls::close(fd);
|
|
}
|
|
return ZE_RESULT_SUCCESS;
|
|
}
|
|
|
|
void LinuxSysmanImp::releaseSysmanDeviceResources() {
|
|
getSysmanDeviceImp()->pEngineHandleContext->releaseEngines();
|
|
getSysmanDeviceImp()->pRasHandleContext->releaseRasHandles();
|
|
if (!diagnosticsReset) {
|
|
getSysmanDeviceImp()->pDiagnosticsHandleContext->releaseDiagnosticsHandles();
|
|
}
|
|
getSysmanDeviceImp()->pFirmwareHandleContext->releaseFwHandles();
|
|
releasePmtObject();
|
|
if (!diagnosticsReset) {
|
|
releaseFwUtilInterface();
|
|
}
|
|
}
|
|
|
|
ze_result_t LinuxSysmanImp::reInitSysmanDeviceResources() {
|
|
createPmtHandles();
|
|
if (!diagnosticsReset) {
|
|
if (pFwUtilInterface == nullptr) {
|
|
createFwUtilInterface();
|
|
}
|
|
}
|
|
if (getSysmanDeviceImp()->pRasHandleContext->isRasInitDone()) {
|
|
getSysmanDeviceImp()->pRasHandleContext->init(getSubDeviceCount());
|
|
}
|
|
if (getSysmanDeviceImp()->pEngineHandleContext->isEngineInitDone()) {
|
|
getSysmanDeviceImp()->pEngineHandleContext->init(getSubDeviceCount());
|
|
}
|
|
if (!diagnosticsReset) {
|
|
if (getSysmanDeviceImp()->pDiagnosticsHandleContext->isDiagnosticsInitDone()) {
|
|
getSysmanDeviceImp()->pDiagnosticsHandleContext->init();
|
|
}
|
|
}
|
|
diagnosticsReset = false;
|
|
isMemoryDiagnostics = false;
|
|
if (getSysmanDeviceImp()->pFirmwareHandleContext->isFirmwareInitDone()) {
|
|
getSysmanDeviceImp()->pFirmwareHandleContext->init();
|
|
}
|
|
return ZE_RESULT_SUCCESS;
|
|
}
|
|
|
|
// function to clear Hot-Plug interrupt enable bit in the slot control register
|
|
// this is required to prevent interrupts from being raised in the warm reset path.
|
|
void LinuxSysmanImp::clearHPIE(int fd) {
|
|
uint8_t value = 0x00;
|
|
uint8_t resetValue = 0x00;
|
|
uint8_t offset = 0x0;
|
|
this->preadFunction(fd, &offset, 0x01, PCI_CAPABILITY_LIST);
|
|
// Bottom two bits of capability pointer register are reserved and
|
|
// software should mask these bits to get pointer to capability list.
|
|
// PCI_EXP_SLTCTL - offset for slot control register.
|
|
offset = (offset & 0xfc) + PCI_EXP_SLTCTL;
|
|
this->preadFunction(fd, &value, 0x01, offset);
|
|
resetValue = value & (~PCI_EXP_SLTCTL_HPIE);
|
|
this->pwriteFunction(fd, &resetValue, 0x01, offset);
|
|
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds just to make sure the change is propagated.
|
|
}
|
|
|
|
// Function to adjust VF BAR size i.e Modify VF BAR Control register.
|
|
// size param is an encoded value described as follows:
|
|
// 0 - 1 MB (2^20 bytes)
|
|
// 1 - 2 MB (2^21 bytes)
|
|
// 2 - 4 MB (2^22 bytes)
|
|
// 3 - 8 MB (2^23 bytes)
|
|
// .
|
|
// .
|
|
// .
|
|
// b - 2 GB (2^31 bytes)
|
|
// 43 - 8 EB (2^63 bytes)
|
|
ze_result_t LinuxSysmanImp::resizeVfBar(uint8_t size) {
|
|
std::string pciConfigNode;
|
|
pciConfigNode = gtDevicePath + "/config";
|
|
|
|
int fdConfig = -1;
|
|
fdConfig = this->openFunction(pciConfigNode.c_str(), O_RDWR);
|
|
if (fdConfig < 0) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Config node open failed\n");
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
std::unique_ptr<uint8_t[]> configMemory = std::make_unique<uint8_t[]>(PCI_CFG_SPACE_EXP_SIZE);
|
|
memset(configMemory.get(), 0, PCI_CFG_SPACE_EXP_SIZE);
|
|
if (this->preadFunction(fdConfig, configMemory.get(), PCI_CFG_SPACE_EXP_SIZE, 0) < 0) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Read to get config space failed\n");
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
auto reBarCapPos = L0::Sysman::LinuxPciImp::getRebarCapabilityPos(configMemory.get(), true);
|
|
if (!reBarCapPos) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"VF BAR capability not found\n");
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
|
|
auto barSizePos = reBarCapPos + PCI_REBAR_CTRL + 1; // position of VF(0) BAR SIZE.
|
|
if (this->pwriteFunction(fdConfig, &size, 0x01, barSizePos) < 0) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Write to change VF bar size failed\n");
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
if (this->closeFunction(fdConfig) < 0) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Config node close failed\n");
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
return ZE_RESULT_SUCCESS;
|
|
}
|
|
|
|
// A 'warm reset' is a conventional reset that is triggered across a PCI express link.
|
|
// A warm reset is triggered either when a link is forced into electrical idle or
|
|
// by sending TS1 and TS2 ordered sets with the hot reset bit set.
|
|
// Software can initiate a warm reset by setting and then clearing the secondary bus reset bit
|
|
// in the bridge control register in the PCI configuration space of the bridge port upstream of the device.
|
|
ze_result_t LinuxSysmanImp::osWarmReset() {
|
|
std::string rootPortPath;
|
|
rootPortPath = getPciRootPortDirectoryPath(gtDevicePath);
|
|
|
|
int fd = 0;
|
|
std::string configFilePath = rootPortPath + '/' + "config";
|
|
fd = this->openFunction(configFilePath.c_str(), O_RDWR);
|
|
if (fd < 0) {
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
|
|
std::string cardBusPath = getPciCardBusDirectoryPath(gtDevicePath);
|
|
ze_result_t result = pFsAccess->write(cardBusPath + '/' + "remove", "1");
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds to make sure that the config spaces of all devices are saved correctly.
|
|
|
|
clearHPIE(fd);
|
|
|
|
uint8_t offset = PCI_BRIDGE_CONTROL; // Bridge control offset in Header of PCI config space
|
|
uint8_t value = 0x00;
|
|
uint8_t resetValue = 0x00;
|
|
|
|
this->preadFunction(fd, &value, 0x01, offset);
|
|
resetValue = value | PCI_BRIDGE_CTL_BUS_RESET;
|
|
this->pwriteFunction(fd, &resetValue, 0x01, offset);
|
|
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds just to make sure the change is propagated.
|
|
this->pwriteFunction(fd, &value, 0x01, offset);
|
|
|
|
if (isMemoryDiagnostics) {
|
|
int32_t delayDurationForPPR = 6; // Sleep for 6 minutes to allow PPR to complete.
|
|
if (NEO::DebugManager.flags.DebugSetMemoryDiagnosticsDelay.get() != -1) {
|
|
delayDurationForPPR = NEO::DebugManager.flags.DebugSetMemoryDiagnosticsDelay.get();
|
|
}
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Delay of %d mins introduced to allow HBM IFR to complete\n", delayDurationForPPR);
|
|
NEO::sleep(std::chrono::seconds(delayDurationForPPR * 60));
|
|
} else {
|
|
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10 seconds to make sure writing to bridge control offset is propagated.
|
|
}
|
|
|
|
result = pFsAccess->write(rootPortPath + '/' + "rescan", "1");
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds, allows the rescan to complete on all devices attached to the root port.
|
|
|
|
int ret = this->closeFunction(fd);
|
|
if (ret < 0) {
|
|
return ZE_RESULT_ERROR_UNKNOWN;
|
|
}
|
|
|
|
// PCIe port driver uses the BIOS allocated VF bars on bootup. A known bug exists in pcie port driver
|
|
// and is causing VF bar allocation failure in PCIe port driver after an SBR - https://bugzilla.kernel.org/show_bug.cgi?id=216795
|
|
|
|
// WA to adjust VF bar size to 2GB. The default VF bar size is 8GB and for 63VFs, 504GB need to be allocated which is failing on SBR.
|
|
// When configured VF bar size to 2GB, an allocation of 126GB is successful. This WA resizes VF0 bar to 2GB. Once pcie port driver
|
|
// issue is resolved, this WA may not be necessary. Description for 0xb is explained at function definition - resizeVfVar.
|
|
if (NEO::DebugManager.flags.VfBarResourceAllocationWa.get()) {
|
|
if (ZE_RESULT_SUCCESS != (result = resizeVfBar(0xb))) {
|
|
return result;
|
|
}
|
|
|
|
result = pFsAccess->write(cardBusPath + '/' + "remove", "1");
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Card Bus remove after resizing VF bar failed\n");
|
|
return result;
|
|
}
|
|
|
|
result = pFsAccess->write(rootPortPath + '/' + "rescan", "1");
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stdout,
|
|
"Rescanning root port failed after resizing VF bar failed\n");
|
|
return result;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::string LinuxSysmanImp::getAddressFromPath(std::string &rootPortPath) {
|
|
size_t loc;
|
|
loc = rootPortPath.find_last_of('/'); // we get the pci address of the root port from rootPortPath
|
|
return rootPortPath.substr(loc + 1, std::string::npos);
|
|
}
|
|
|
|
ze_result_t LinuxSysmanImp::osColdReset() {
|
|
const std::string slotPath("/sys/bus/pci/slots/"); // holds the directories matching to the number of slots in the PC
|
|
std::string cardBusPath; // will hold the PCIe Root port directory path (the address of the PCIe slot).
|
|
// will hold the absolute real path (not symlink) to the selected Device
|
|
cardBusPath = getPciCardBusDirectoryPath(gtDevicePath); // e.g cardBusPath=/sys/devices/pci0000:89/0000:89:02.0/
|
|
std::string rootAddress = getAddressFromPath(cardBusPath); // e.g rootAddress = 0000:8a:00.0
|
|
|
|
std::vector<std::string> dir;
|
|
ze_result_t result = pFsAccess->listDirectory(slotPath, dir); // get list of slot directories from /sys/bus/pci/slots/
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
for (auto &slot : dir) {
|
|
std::string slotAddress;
|
|
result = pFsAccess->read((slotPath + slot + "/address"), slotAddress); // extract slot address from the slot directory /sys/bus/pci/slots/<slot num>/address
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
if (slotAddress.compare(rootAddress) == 0) { // compare slot address to root port address
|
|
result = pFsAccess->write((slotPath + slot + "/power"), "0"); // turn off power
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
NEO::sleep(std::chrono::milliseconds(100)); // Sleep for 100 milliseconds just to make sure, 1 ms is defined as part of spec
|
|
result = pFsAccess->write((slotPath + slot + "/power"), "1"); // turn on power
|
|
if (ZE_RESULT_SUCCESS != result) {
|
|
return result;
|
|
}
|
|
return ZE_RESULT_SUCCESS;
|
|
}
|
|
}
|
|
return ZE_RESULT_ERROR_DEVICE_LOST; // incase the reset fails inform upper layers.
|
|
}
|
|
|
|
uint32_t LinuxSysmanImp::getMemoryType() {
|
|
if (memType == unknownMemoryType) {
|
|
NEO::Drm *pDrm = getDrm();
|
|
auto hwDeviceId = getSysmanHwDeviceId();
|
|
|
|
hwDeviceId->openFileDescriptor();
|
|
if (pDrm->querySystemInfo()) {
|
|
auto memSystemInfo = getDrm()->getSystemInfo();
|
|
if (memSystemInfo != nullptr) {
|
|
memType = memSystemInfo->getMemoryType();
|
|
}
|
|
}
|
|
hwDeviceId->closeFileDescriptor();
|
|
}
|
|
return memType;
|
|
}
|
|
|
|
OsSysman *OsSysman::create(SysmanDeviceImp *pParentSysmanDeviceImp) {
|
|
LinuxSysmanImp *pLinuxSysmanImp = new LinuxSysmanImp(pParentSysmanDeviceImp);
|
|
return static_cast<OsSysman *>(pLinuxSysmanImp);
|
|
}
|
|
|
|
} // namespace Sysman
|
|
} // namespace L0
|