compute-runtime/shared/source/direct_submission/direct_submission_hw.inl

1096 lines
53 KiB
C++

/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/command_container/command_encoder.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/command_stream/submissions_aggregator.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/direct_submission/direct_submission_hw.h"
#include "shared/source/direct_submission/direct_submission_hw_diagnostic_mode.h"
#include "shared/source/direct_submission/relaxed_ordering_helper.h"
#include "shared/source/helpers/flush_stamp.h"
#include "shared/source/helpers/logical_state_helper.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/memory_manager/allocation_properties.h"
#include "shared/source/memory_manager/graphics_allocation.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/memory_operations_handler.h"
#include "shared/source/os_interface/hw_info_config.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/utilities/cpu_info.h"
#include "shared/source/utilities/cpuintrinsics.h"
#include "create_direct_submission_hw.inl"
#include <cstring>
namespace NEO {
template <typename GfxFamily, typename Dispatcher>
DirectSubmissionHw<GfxFamily, Dispatcher>::DirectSubmissionHw(const DirectSubmissionInputParams &inputParams)
: ringBuffers(RingBufferUse::initialRingBufferCount), osContext(inputParams.osContext), rootDeviceIndex(inputParams.rootDeviceIndex) {
memoryManager = inputParams.memoryManager;
globalFenceAllocation = inputParams.globalFenceAllocation;
logicalStateHelper = inputParams.logicalStateHelper;
hwInfo = inputParams.rootDeviceEnvironment.getHardwareInfo();
memoryOperationHandler = inputParams.rootDeviceEnvironment.memoryOperationsInterface.get();
auto hwInfoConfig = HwInfoConfig::get(hwInfo->platform.eProductFamily);
disableCacheFlush = UllsDefaults::defaultDisableCacheFlush;
disableMonitorFence = UllsDefaults::defaultDisableMonitorFence;
if (DebugManager.flags.DirectSubmissionMaxRingBuffers.get() != -1) {
this->maxRingBufferCount = DebugManager.flags.DirectSubmissionMaxRingBuffers.get();
}
if (DebugManager.flags.DirectSubmissionDisableCacheFlush.get() != -1) {
disableCacheFlush = !!DebugManager.flags.DirectSubmissionDisableCacheFlush.get();
}
miMemFenceRequired = hwInfoConfig->isGlobalFenceInDirectSubmissionRequired(*hwInfo);
if (DebugManager.flags.DirectSubmissionInsertExtraMiMemFenceCommands.get() == 0) {
miMemFenceRequired = false;
}
if (DebugManager.flags.DirectSubmissionInsertSfenceInstructionPriorToSubmission.get() != -1) {
sfenceMode = static_cast<DirectSubmissionSfenceMode>(DebugManager.flags.DirectSubmissionInsertSfenceInstructionPriorToSubmission.get());
}
int32_t disableCacheFlushKey = DebugManager.flags.DirectSubmissionDisableCpuCacheFlush.get();
if (disableCacheFlushKey != -1) {
disableCpuCacheFlush = disableCacheFlushKey == 1 ? true : false;
}
isDisablePrefetcherRequired = hwInfoConfig->isPrefetcherDisablingInDirectSubmissionRequired();
if (DebugManager.flags.DirectSubmissionDisablePrefetcher.get() != -1) {
isDisablePrefetcherRequired = !!DebugManager.flags.DirectSubmissionDisablePrefetcher.get();
}
UNRECOVERABLE_IF(!CpuInfo::getInstance().isFeatureSupported(CpuInfo::featureClflush) && !disableCpuCacheFlush);
createDiagnostic();
setPostSyncOffset();
dcFlushRequired = MemorySynchronizationCommands<GfxFamily>::getDcFlushEnable(true, *hwInfo);
relaxedOrderingEnabled = (DebugManager.flags.DirectSubmissionRelaxedOrdering.get() == 1);
if (EngineHelpers::isBcs(this->osContext.getEngineType()) && relaxedOrderingEnabled) {
relaxedOrderingEnabled = (DebugManager.flags.DirectSubmissionRelaxedOrderingForBcs.get() != 0);
}
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchStaticRelaxedOrderingScheduler() {
LinearStream schedulerCmdStream(this->relaxedOrderingSchedulerAllocation);
uint64_t schedulerStartAddress = schedulerCmdStream.getGpuBase();
uint64_t deferredTasksListGpuVa = deferredTasksListAllocation->getGpuAddress();
uint64_t loopSectionStartAddress = schedulerStartAddress + RelaxedOrderingHelper::StaticSchedulerSizeAndOffsetSection<GfxFamily>::loopStartSectionStart;
// 1. Init section
{
EncodeMiPredicate<GfxFamily>::encode(schedulerCmdStream, MiPredicateType::Disable);
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataRegBatchBufferStart(
schedulerCmdStream,
schedulerStartAddress + RelaxedOrderingHelper::StaticSchedulerSizeAndOffsetSection<GfxFamily>::semaphoreSectionJumpStart,
CS_GPR_R1, 0, CompareOperation::Equal, false);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R2, 0, true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R2 + 4, 0, true);
uint64_t removeTaskVa = schedulerStartAddress + RelaxedOrderingHelper::StaticSchedulerSizeAndOffsetSection<GfxFamily>::removeTaskSectionStart;
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R3, static_cast<uint32_t>(removeTaskVa & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R3 + 4, static_cast<uint32_t>(removeTaskVa >> 32), true);
uint64_t walkersLoopConditionCheckVa = schedulerStartAddress + RelaxedOrderingHelper::StaticSchedulerSizeAndOffsetSection<GfxFamily>::tasksListLoopCheckSectionStart;
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R4, static_cast<uint32_t>(walkersLoopConditionCheckVa & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R4 + 4, static_cast<uint32_t>(walkersLoopConditionCheckVa >> 32), true);
}
// 2. Dispatch task section (loop start)
{
EncodeMiPredicate<GfxFamily>::encode(schedulerCmdStream, MiPredicateType::Disable);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R6, 8, true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R6 + 4, 0, true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R8, static_cast<uint32_t>(deferredTasksListGpuVa & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R8 + 4, static_cast<uint32_t>(deferredTasksListGpuVa >> 32), true);
EncodeAluHelper<GfxFamily, 10> aluHelper;
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_2);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_6);
aluHelper.setNextAlu(AluRegisters::OPCODE_SHL);
aluHelper.setNextAlu(AluRegisters::OPCODE_STORE, AluRegisters::R_7, AluRegisters::R_ACCU);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_7);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_8);
aluHelper.setNextAlu(AluRegisters::OPCODE_ADD);
aluHelper.setNextAlu(AluRegisters::OPCODE_STORE, AluRegisters::R_6, AluRegisters::R_ACCU);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOADIND, AluRegisters::R_0, AluRegisters::R_ACCU);
aluHelper.setNextAlu(AluRegisters::OPCODE_FENCE_RD);
aluHelper.copyToCmdStream(schedulerCmdStream);
EncodeBatchBufferStartOrEnd<GfxFamily>::programBatchBufferStart(&schedulerCmdStream, 0, false, true, false);
}
// 3. Remove task section
{
EncodeMiPredicate<GfxFamily>::encode(schedulerCmdStream, MiPredicateType::Disable);
EncodeMathMMIO<GfxFamily>::encodeDecrement(schedulerCmdStream, AluRegisters::R_1);
EncodeMathMMIO<GfxFamily>::encodeDecrement(schedulerCmdStream, AluRegisters::R_2);
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataRegBatchBufferStart(
schedulerCmdStream,
schedulerStartAddress + RelaxedOrderingHelper::StaticSchedulerSizeAndOffsetSection<GfxFamily>::semaphoreSectionJumpStart,
CS_GPR_R1, 0, CompareOperation::Equal, false);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R7, 8, true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R7 + 4, 0, true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R8, static_cast<uint32_t>(deferredTasksListGpuVa & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R8 + 4, static_cast<uint32_t>(deferredTasksListGpuVa >> 32), true);
EncodeAluHelper<GfxFamily, 14> aluHelper;
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_1);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_7);
aluHelper.setNextAlu(AluRegisters::OPCODE_SHL);
aluHelper.setNextAlu(AluRegisters::OPCODE_STORE, AluRegisters::R_7, AluRegisters::R_ACCU);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_7);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_8);
aluHelper.setNextAlu(AluRegisters::OPCODE_ADD);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOADIND, AluRegisters::R_7, AluRegisters::R_ACCU);
aluHelper.setNextAlu(AluRegisters::OPCODE_FENCE_RD);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_6);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD0, AluRegisters::R_SRCB, AluRegisters::OPCODE_NONE);
aluHelper.setNextAlu(AluRegisters::OPCODE_ADD);
aluHelper.setNextAlu(AluRegisters::OPCODE_STOREIND, AluRegisters::R_ACCU, AluRegisters::R_7);
aluHelper.setNextAlu(AluRegisters::OPCODE_FENCE_WR);
aluHelper.copyToCmdStream(schedulerCmdStream);
}
// 4. List loop check section
{
EncodeMiPredicate<GfxFamily>::encode(schedulerCmdStream, MiPredicateType::Disable);
EncodeMathMMIO<GfxFamily>::encodeIncrement(schedulerCmdStream, AluRegisters::R_2);
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalRegRegBatchBufferStart(
schedulerCmdStream,
loopSectionStartAddress,
AluRegisters::R_1, AluRegisters::R_2, CompareOperation::NotEqual, false);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R2, 0, true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R2 + 4, 0, true);
}
// 5. Drain request section
{
*schedulerCmdStream.getSpaceForCmd<typename GfxFamily::MI_ARB_CHECK>() = GfxFamily::cmdInitArbCheck;
uint32_t queueSizeLimit = 2;
if (DebugManager.flags.DirectSubmissionRelaxedOrderingQueueSizeLimit.get() != -1) {
queueSizeLimit = static_cast<uint32_t>(DebugManager.flags.DirectSubmissionRelaxedOrderingQueueSizeLimit.get());
}
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataRegBatchBufferStart(
schedulerCmdStream,
loopSectionStartAddress,
CS_GPR_R1, queueSizeLimit, CompareOperation::GreaterOrEqual, false);
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataRegBatchBufferStart(
schedulerCmdStream,
loopSectionStartAddress,
CS_GPR_R5, 1, CompareOperation::Equal, false);
}
// Exit Static scheduler
// 6. Jump to scheduler loop check section (dynamic scheduler)
EncodeSetMMIO<GfxFamily>::encodeREG(schedulerCmdStream, CS_GPR_R0, CS_GPR_R9);
EncodeSetMMIO<GfxFamily>::encodeREG(schedulerCmdStream, CS_GPR_R0 + 4, CS_GPR_R9 + 4);
EncodeBatchBufferStartOrEnd<GfxFamily>::programBatchBufferStart(&schedulerCmdStream, 0, false, true, false);
// 7. Jump to Semaphore section (dynamic scheduler)
EncodeMiPredicate<GfxFamily>::encode(schedulerCmdStream, MiPredicateType::Disable);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R10, static_cast<uint32_t>(RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::schedulerLoopCheckSectionSize), true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R10 + 4, 0, true);
EncodeAluHelper<GfxFamily, 4> aluHelper;
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_9);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_10);
aluHelper.setNextAlu(AluRegisters::OPCODE_ADD);
aluHelper.setNextAlu(AluRegisters::OPCODE_STORE, AluRegisters::R_0, AluRegisters::R_ACCU);
aluHelper.copyToCmdStream(schedulerCmdStream);
EncodeBatchBufferStartOrEnd<GfxFamily>::programBatchBufferStart(&schedulerCmdStream, 0, false, true, false);
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchRelaxedOrderingSchedulerSection(uint32_t value) {
LinearStream schedulerCmdStream(this->preinitializedRelaxedOrderingScheduler.get(), RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize);
// 1. Init section
uint64_t schedulerStartVa = ringCommandStream.getCurrentGpuAddressPosition();
uint64_t schedulerLoopCheckVa = schedulerStartVa + RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::schedulerLoopCheckSectionStart;
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R9, static_cast<uint32_t>(schedulerLoopCheckVa & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&schedulerCmdStream, CS_GPR_R9 + 4, static_cast<uint32_t>(schedulerLoopCheckVa >> 32), true);
schedulerCmdStream.getSpace(sizeof(typename GfxFamily::MI_BATCH_BUFFER_START)); // skip patching
// 2. Scheduler loop check section
{
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataMemBatchBufferStart(
schedulerCmdStream, schedulerStartVa + RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::endSectionStart,
semaphoreGpuVa, value, CompareOperation::GreaterOrEqual, false);
schedulerCmdStream.getSpace(sizeof(typename GfxFamily::MI_BATCH_BUFFER_START)); // skip patching
}
// 3. Semaphore section
{
using MI_SEMAPHORE_WAIT = typename GfxFamily::MI_SEMAPHORE_WAIT;
using COMPARE_OPERATION = typename GfxFamily::MI_SEMAPHORE_WAIT::COMPARE_OPERATION;
schedulerCmdStream.getSpace(EncodeMiPredicate<GfxFamily>::getCmdSize()); // skip patching
EncodeSempahore<GfxFamily>::addMiSemaphoreWaitCommand(schedulerCmdStream, semaphoreGpuVa, value,
COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
// skip patching End section
auto dst = ringCommandStream.getSpace(RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize);
memcpy_s(dst, RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize,
this->preinitializedRelaxedOrderingScheduler.get(), RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize);
}
template <typename GfxFamily, typename Dispatcher>
DirectSubmissionHw<GfxFamily, Dispatcher>::~DirectSubmissionHw() = default;
template <typename GfxFamily, typename Dispatcher>
bool DirectSubmissionHw<GfxFamily, Dispatcher>::allocateResources() {
DirectSubmissionAllocations allocations;
bool isMultiOsContextCapable = osContext.getNumSupportedDevices() > 1u;
constexpr size_t minimumRequiredSize = 256 * MemoryConstants::kiloByte;
constexpr size_t additionalAllocationSize = MemoryConstants::pageSize;
const auto allocationSize = alignUp(minimumRequiredSize + additionalAllocationSize, MemoryConstants::pageSize64k);
const AllocationProperties commandStreamAllocationProperties{rootDeviceIndex,
true, allocationSize,
AllocationType::RING_BUFFER,
isMultiOsContextCapable, false, osContext.getDeviceBitfield()};
for (uint32_t ringBufferIndex = 0; ringBufferIndex < RingBufferUse::initialRingBufferCount; ringBufferIndex++) {
auto ringBuffer = memoryManager->allocateGraphicsMemoryWithProperties(commandStreamAllocationProperties);
this->ringBuffers[ringBufferIndex].ringBuffer = ringBuffer;
UNRECOVERABLE_IF(ringBuffer == nullptr);
allocations.push_back(ringBuffer);
memset(ringBuffer->getUnderlyingBuffer(), 0, allocationSize);
}
const AllocationProperties semaphoreAllocationProperties{rootDeviceIndex,
true, MemoryConstants::pageSize,
AllocationType::SEMAPHORE_BUFFER,
isMultiOsContextCapable, false, osContext.getDeviceBitfield()};
semaphores = memoryManager->allocateGraphicsMemoryWithProperties(semaphoreAllocationProperties);
UNRECOVERABLE_IF(semaphores == nullptr);
allocations.push_back(semaphores);
if (this->workPartitionAllocation != nullptr) {
allocations.push_back(workPartitionAllocation);
}
if (completionFenceAllocation != nullptr) {
allocations.push_back(completionFenceAllocation);
}
if (this->relaxedOrderingEnabled) {
const AllocationProperties allocationProperties(rootDeviceIndex,
true, MemoryConstants::pageSize64k,
AllocationType::DEFERRED_TASKS_LIST,
isMultiOsContextCapable, false, osContext.getDeviceBitfield());
deferredTasksListAllocation = memoryManager->allocateGraphicsMemoryWithProperties(allocationProperties);
UNRECOVERABLE_IF(deferredTasksListAllocation == nullptr);
allocations.push_back(deferredTasksListAllocation);
const AllocationProperties relaxedOrderingSchedulerAllocationProperties(rootDeviceIndex,
true, MemoryConstants::pageSize64k,
AllocationType::COMMAND_BUFFER,
isMultiOsContextCapable, false, osContext.getDeviceBitfield());
relaxedOrderingSchedulerAllocation = memoryManager->allocateGraphicsMemoryWithProperties(relaxedOrderingSchedulerAllocationProperties);
UNRECOVERABLE_IF(relaxedOrderingSchedulerAllocation == nullptr);
allocations.push_back(relaxedOrderingSchedulerAllocation);
}
if (DebugManager.flags.DirectSubmissionPrintBuffers.get()) {
for (uint32_t ringBufferIndex = 0; ringBufferIndex < RingBufferUse::initialRingBufferCount; ringBufferIndex++) {
const auto ringBuffer = this->ringBuffers[ringBufferIndex].ringBuffer;
printf("Ring buffer %u - gpu address: %" PRIx64 " - %" PRIx64 ", cpu address: %p - %p, size: %zu \n",
ringBufferIndex,
ringBuffer->getGpuAddress(),
ptrOffset(ringBuffer->getGpuAddress(), ringBuffer->getUnderlyingBufferSize()),
ringBuffer->getUnderlyingBuffer(),
ptrOffset(ringBuffer->getUnderlyingBuffer(), ringBuffer->getUnderlyingBufferSize()),
ringBuffer->getUnderlyingBufferSize());
}
}
handleResidency();
ringCommandStream.replaceBuffer(this->ringBuffers[0u].ringBuffer->getUnderlyingBuffer(), minimumRequiredSize);
ringCommandStream.replaceGraphicsAllocation(this->ringBuffers[0].ringBuffer);
semaphorePtr = semaphores->getUnderlyingBuffer();
semaphoreGpuVa = semaphores->getGpuAddress();
semaphoreData = static_cast<volatile RingSemaphoreData *>(semaphorePtr);
memset(semaphorePtr, 0, sizeof(RingSemaphoreData));
semaphoreData->QueueWorkCount = 0;
cpuCachelineFlush(semaphorePtr, MemoryConstants::cacheLineSize);
workloadModeOneStoreAddress = static_cast<volatile void *>(&semaphoreData->DiagnosticModeCounter);
*static_cast<volatile uint32_t *>(workloadModeOneStoreAddress) = 0u;
this->gpuVaForMiFlush = this->semaphoreGpuVa + offsetof(RingSemaphoreData, miFlushSpace);
auto ret = makeResourcesResident(allocations);
return ret && allocateOsResources();
}
template <typename GfxFamily, typename Dispatcher>
bool DirectSubmissionHw<GfxFamily, Dispatcher>::makeResourcesResident(DirectSubmissionAllocations &allocations) {
auto ret = memoryOperationHandler->makeResidentWithinOsContext(&this->osContext, ArrayRef<GraphicsAllocation *>(allocations), false) == MemoryOperationsStatus::SUCCESS;
return ret;
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::unblockGpu() {
if (sfenceMode >= DirectSubmissionSfenceMode::BeforeSemaphoreOnly) {
CpuIntrinsics::sfence();
}
semaphoreData->QueueWorkCount = currentQueueWorkCount;
if (sfenceMode == DirectSubmissionSfenceMode::BeforeAndAfterSemaphore) {
CpuIntrinsics::sfence();
}
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::cpuCachelineFlush(void *ptr, size_t size) {
if (disableCpuCacheFlush) {
return;
}
constexpr size_t cachlineBit = 6;
static_assert(MemoryConstants::cacheLineSize == 1 << cachlineBit, "cachlineBit has invalid value");
char *flushPtr = reinterpret_cast<char *>(ptr);
char *flushEndPtr = reinterpret_cast<char *>(ptr) + size;
flushPtr = alignDown(flushPtr, MemoryConstants::cacheLineSize);
flushEndPtr = alignUp(flushEndPtr, MemoryConstants::cacheLineSize);
size_t cachelines = (flushEndPtr - flushPtr) >> cachlineBit;
for (size_t i = 0; i < cachelines; i++) {
CpuIntrinsics::clFlush(flushPtr);
flushPtr += MemoryConstants::cacheLineSize;
}
}
template <typename GfxFamily, typename Dispatcher>
bool DirectSubmissionHw<GfxFamily, Dispatcher>::initialize(bool submitOnInit, bool useNotify) {
useNotifyForPostSync = useNotify;
bool ret = allocateResources();
initDiagnostic(submitOnInit);
if (ret && submitOnInit) {
size_t startBufferSize = Dispatcher::getSizePreemption() +
getSizeSemaphoreSection(false);
Dispatcher::dispatchPreemption(ringCommandStream);
if (this->partitionedMode) {
startBufferSize += getSizePartitionRegisterConfigurationSection();
dispatchPartitionRegisterConfiguration();
this->partitionConfigSet = true;
}
if (this->miMemFenceRequired) {
startBufferSize += getSizeSystemMemoryFenceAddress();
dispatchSystemMemoryFenceAddress();
this->systemMemoryFenceAddressSet = true;
}
if (this->relaxedOrderingEnabled) {
preinitializeRelaxedOrderingSections();
initRelaxedOrderingRegisters();
dispatchStaticRelaxedOrderingScheduler();
startBufferSize += RelaxedOrderingHelper::getSizeRegistersInit<GfxFamily>();
this->relaxedOrderingInitialized = true;
}
if (workloadMode == 1) {
dispatchDiagnosticModeSection();
startBufferSize += getDiagnosticModeSection();
}
dispatchSemaphoreSection(currentQueueWorkCount);
ringStart = submit(ringCommandStream.getGraphicsAllocation()->getGpuAddress(), startBufferSize);
performDiagnosticMode();
return ringStart;
}
return ret;
}
template <typename GfxFamily, typename Dispatcher>
bool DirectSubmissionHw<GfxFamily, Dispatcher>::startRingBuffer() {
if (ringStart) {
return true;
}
size_t startSize = getSizeSemaphoreSection(false);
if (!this->partitionConfigSet) {
startSize += getSizePartitionRegisterConfigurationSection();
}
if (this->miMemFenceRequired && !this->systemMemoryFenceAddressSet) {
startSize += getSizeSystemMemoryFenceAddress();
}
if (this->relaxedOrderingEnabled && !this->relaxedOrderingInitialized) {
startSize += RelaxedOrderingHelper::getSizeRegistersInit<GfxFamily>();
}
size_t requiredSize = startSize + getSizeDispatch(false) + getSizeEnd(false);
if (ringCommandStream.getAvailableSpace() < requiredSize) {
switchRingBuffers();
}
uint64_t gpuStartVa = ringCommandStream.getCurrentGpuAddressPosition();
if (!this->partitionConfigSet) {
dispatchPartitionRegisterConfiguration();
this->partitionConfigSet = true;
}
if (this->miMemFenceRequired && !this->systemMemoryFenceAddressSet) {
dispatchSystemMemoryFenceAddress();
this->systemMemoryFenceAddressSet = true;
}
if (this->relaxedOrderingEnabled && !this->relaxedOrderingInitialized) {
preinitializeRelaxedOrderingSections();
dispatchStaticRelaxedOrderingScheduler();
initRelaxedOrderingRegisters();
this->relaxedOrderingInitialized = true;
}
currentQueueWorkCount++;
dispatchSemaphoreSection(currentQueueWorkCount);
ringStart = submit(gpuStartVa, startSize);
return ringStart;
}
template <typename GfxFamily, typename Dispatcher>
bool DirectSubmissionHw<GfxFamily, Dispatcher>::stopRingBuffer() {
if (!ringStart) {
return true;
}
bool relaxedOrderingSchedulerWasRequired = this->relaxedOrderingSchedulerRequired;
if (this->relaxedOrderingEnabled && this->relaxedOrderingSchedulerRequired) {
dispatchRelaxedOrderingQueueStall();
}
void *flushPtr = ringCommandStream.getSpace(0);
Dispatcher::dispatchCacheFlush(ringCommandStream, *hwInfo, gpuVaForMiFlush);
if (disableMonitorFence) {
TagData currentTagData = {};
getTagAddressValue(currentTagData);
Dispatcher::dispatchMonitorFence(ringCommandStream, currentTagData.tagAddress, currentTagData.tagValue, *hwInfo,
this->useNotifyForPostSync, this->partitionedMode, this->dcFlushRequired);
}
Dispatcher::dispatchStopCommandBuffer(ringCommandStream);
auto bytesToPad = Dispatcher::getSizeStartCommandBuffer() - Dispatcher::getSizeStopCommandBuffer();
EncodeNoop<GfxFamily>::emitNoop(ringCommandStream, bytesToPad);
EncodeNoop<GfxFamily>::alignToCacheLine(ringCommandStream);
cpuCachelineFlush(flushPtr, getSizeEnd(relaxedOrderingSchedulerWasRequired));
this->unblockGpu();
cpuCachelineFlush(semaphorePtr, MemoryConstants::cacheLineSize);
this->handleStopRingBuffer();
this->ringStart = false;
return true;
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchSemaphoreSection(uint32_t value) {
using MI_SEMAPHORE_WAIT = typename GfxFamily::MI_SEMAPHORE_WAIT;
using COMPARE_OPERATION = typename GfxFamily::MI_SEMAPHORE_WAIT::COMPARE_OPERATION;
dispatchDisablePrefetcher(true);
if (this->relaxedOrderingEnabled && this->relaxedOrderingSchedulerRequired) {
dispatchRelaxedOrderingSchedulerSection(value);
} else {
EncodeSempahore<GfxFamily>::addMiSemaphoreWaitCommand(ringCommandStream,
semaphoreGpuVa,
value,
COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
if (miMemFenceRequired) {
MemorySynchronizationCommands<GfxFamily>::addAdditionalSynchronizationForDirectSubmission(ringCommandStream, this->gpuVaForAdditionalSynchronizationWA, true, *hwInfo);
}
dispatchPrefetchMitigation();
dispatchDisablePrefetcher(false);
}
template <typename GfxFamily, typename Dispatcher>
inline size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeSemaphoreSection(bool relaxedOrderingSchedulerRequired) {
size_t semaphoreSize = (this->relaxedOrderingEnabled && relaxedOrderingSchedulerRequired) ? RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize
: EncodeSempahore<GfxFamily>::getSizeMiSemaphoreWait();
semaphoreSize += getSizePrefetchMitigation();
if (isDisablePrefetcherRequired) {
semaphoreSize += 2 * getSizeDisablePrefetcher();
}
if (miMemFenceRequired) {
semaphoreSize += MemorySynchronizationCommands<GfxFamily>::getSizeForSingleAdditionalSynchronizationForDirectSubmission(*hwInfo);
}
return semaphoreSize;
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchStartSection(uint64_t gpuStartAddress) {
Dispatcher::dispatchStartCommandBuffer(ringCommandStream, gpuStartAddress);
}
template <typename GfxFamily, typename Dispatcher>
inline size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeStartSection() {
return Dispatcher::getSizeStartCommandBuffer();
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchSwitchRingBufferSection(uint64_t nextBufferGpuAddress) {
if (disableMonitorFence) {
TagData currentTagData = {};
getTagAddressValue(currentTagData);
Dispatcher::dispatchMonitorFence(ringCommandStream, currentTagData.tagAddress, currentTagData.tagValue, *hwInfo,
this->useNotifyForPostSync, this->partitionedMode, this->dcFlushRequired);
}
Dispatcher::dispatchStartCommandBuffer(ringCommandStream, nextBufferGpuAddress);
}
template <typename GfxFamily, typename Dispatcher>
inline size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeSwitchRingBufferSection() {
size_t size = Dispatcher::getSizeStartCommandBuffer();
if (disableMonitorFence) {
size += Dispatcher::getSizeMonitorFence(*hwInfo);
}
return size;
}
template <typename GfxFamily, typename Dispatcher>
inline size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeEnd(bool relaxedOrderingSchedulerRequired) {
size_t size = Dispatcher::getSizeStopCommandBuffer() +
Dispatcher::getSizeCacheFlush(*hwInfo) +
(Dispatcher::getSizeStartCommandBuffer() - Dispatcher::getSizeStopCommandBuffer()) +
MemoryConstants::cacheLineSize;
if (disableMonitorFence) {
size += Dispatcher::getSizeMonitorFence(*hwInfo);
}
if (this->relaxedOrderingEnabled && relaxedOrderingSchedulerRequired) {
size += getSizeDispatchRelaxedOrderingQueueStall();
}
return size;
}
template <typename GfxFamily, typename Dispatcher>
inline size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeDispatch(bool relaxedOrderingSchedulerRequired) {
size_t size = getSizeSemaphoreSection(relaxedOrderingSchedulerRequired);
if (workloadMode == 0) {
size += getSizeStartSection();
if (this->relaxedOrderingEnabled) {
size += RelaxedOrderingHelper::getSizeReturnPtrRegs<GfxFamily>();
}
} else if (workloadMode == 1) {
size += getDiagnosticModeSection();
}
// mode 2 does not dispatch any commands
if (!disableCacheFlush) {
size += Dispatcher::getSizeCacheFlush(*hwInfo);
}
if (!disableMonitorFence) {
size += Dispatcher::getSizeMonitorFence(*hwInfo);
}
size += getSizeNewResourceHandler();
return size;
}
template <typename GfxFamily, typename Dispatcher>
void *DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchWorkloadSection(BatchBuffer &batchBuffer) {
void *currentPosition = ringCommandStream.getSpace(0);
if (DebugManager.flags.DirectSubmissionPrintBuffers.get()) {
printf("Client buffer:\n");
printf("Command buffer allocation - gpu address: %" PRIx64 " - %" PRIx64 ", cpu address: %p - %p, size: %zu \n",
batchBuffer.commandBufferAllocation->getGpuAddress(),
ptrOffset(batchBuffer.commandBufferAllocation->getGpuAddress(), batchBuffer.commandBufferAllocation->getUnderlyingBufferSize()),
batchBuffer.commandBufferAllocation->getUnderlyingBuffer(),
ptrOffset(batchBuffer.commandBufferAllocation->getUnderlyingBuffer(), batchBuffer.commandBufferAllocation->getUnderlyingBufferSize()),
batchBuffer.commandBufferAllocation->getUnderlyingBufferSize());
printf("Command buffer - start gpu address: %" PRIx64 " - %" PRIx64 ", start cpu address: %p - %p, start offset: %zu, used size: %zu \n",
ptrOffset(batchBuffer.commandBufferAllocation->getGpuAddress(), batchBuffer.startOffset),
ptrOffset(ptrOffset(batchBuffer.commandBufferAllocation->getGpuAddress(), batchBuffer.startOffset), batchBuffer.usedSize),
ptrOffset(batchBuffer.commandBufferAllocation->getUnderlyingBuffer(), batchBuffer.startOffset),
ptrOffset(ptrOffset(batchBuffer.commandBufferAllocation->getUnderlyingBuffer(), batchBuffer.startOffset), batchBuffer.usedSize),
batchBuffer.startOffset,
batchBuffer.usedSize);
}
if (workloadMode == 0) {
auto commandStreamAddress = ptrOffset(batchBuffer.commandBufferAllocation->getGpuAddress(), batchBuffer.startOffset);
void *returnCmd = batchBuffer.endCmdPtr;
LinearStream relaxedOrderingReturnPtrCmdStream;
if (this->relaxedOrderingEnabled && batchBuffer.hasRelaxedOrderingDependencies) {
// preallocate and patch after start section
auto relaxedOrderingReturnPtrCmds = ringCommandStream.getSpace(RelaxedOrderingHelper::getSizeReturnPtrRegs<GfxFamily>());
relaxedOrderingReturnPtrCmdStream.replaceBuffer(relaxedOrderingReturnPtrCmds, RelaxedOrderingHelper::getSizeReturnPtrRegs<GfxFamily>());
}
dispatchStartSection(commandStreamAddress);
uint64_t returnGpuPointer = ringCommandStream.getCurrentGpuAddressPosition();
if (this->relaxedOrderingEnabled && batchBuffer.hasRelaxedOrderingDependencies) {
dispatchRelaxedOrderingReturnPtrRegs(relaxedOrderingReturnPtrCmdStream, returnGpuPointer);
} else {
setReturnAddress(returnCmd, returnGpuPointer);
}
} else if (workloadMode == 1) {
DirectSubmissionDiagnostics::diagnosticModeOneDispatch(diagnostic.get());
dispatchDiagnosticModeSection();
}
// mode 2 does not dispatch any commands
if (this->relaxedOrderingEnabled && batchBuffer.hasRelaxedOrderingDependencies) {
dispatchTaskStoreSection(batchBuffer.taskStartAddress);
}
if (!disableCacheFlush) {
Dispatcher::dispatchCacheFlush(ringCommandStream, *hwInfo, gpuVaForMiFlush);
}
if (!disableMonitorFence) {
TagData currentTagData = {};
getTagAddressValue(currentTagData);
Dispatcher::dispatchMonitorFence(ringCommandStream, currentTagData.tagAddress, currentTagData.tagValue, *hwInfo,
this->useNotifyForPostSync, this->partitionedMode, this->dcFlushRequired);
}
dispatchSemaphoreSection(currentQueueWorkCount + 1);
return currentPosition;
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchRelaxedOrderingQueueStall() {
LinearStream bbStartStream(ringCommandStream.getSpace(EncodeBatchBufferStartOrEnd<GfxFamily>::getCmdSizeConditionalDataRegBatchBufferStart()),
EncodeBatchBufferStartOrEnd<GfxFamily>::getCmdSizeConditionalDataRegBatchBufferStart());
LriHelper<GfxFamily>::program(&ringCommandStream, CS_GPR_R5, 1, true);
dispatchSemaphoreSection(currentQueueWorkCount);
// patch conditional bb_start with current GPU address
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataRegBatchBufferStart(bbStartStream, ringCommandStream.getCurrentGpuAddressPosition(),
CS_GPR_R1, 0, CompareOperation::Equal, false);
relaxedOrderingSchedulerRequired = false;
}
template <typename GfxFamily, typename Dispatcher>
size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeDispatchRelaxedOrderingQueueStall() {
return getSizeSemaphoreSection(true) + sizeof(typename GfxFamily::MI_LOAD_REGISTER_IMM) +
EncodeBatchBufferStartOrEnd<GfxFamily>::getCmdSizeConditionalDataRegBatchBufferStart();
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchRelaxedOrderingReturnPtrRegs(LinearStream &cmdStream, uint64_t returnPtr) {
LriHelper<GfxFamily>::program(&cmdStream, CS_GPR_R4, static_cast<uint32_t>(returnPtr & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&cmdStream, CS_GPR_R4 + 4, static_cast<uint32_t>(returnPtr >> 32), true);
uint64_t returnPtrAfterTaskStoreSection = returnPtr;
returnPtrAfterTaskStoreSection += RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>();
LriHelper<GfxFamily>::program(&cmdStream, CS_GPR_R3, static_cast<uint32_t>(returnPtrAfterTaskStoreSection & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&cmdStream, CS_GPR_R3 + 4, static_cast<uint32_t>(returnPtrAfterTaskStoreSection >> 32), true);
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::initRelaxedOrderingRegisters() {
LriHelper<GfxFamily>::program(&ringCommandStream, CS_GPR_R1, 0, true);
LriHelper<GfxFamily>::program(&ringCommandStream, CS_GPR_R1 + 4, 0, true);
LriHelper<GfxFamily>::program(&ringCommandStream, CS_GPR_R5, 0, true);
LriHelper<GfxFamily>::program(&ringCommandStream, CS_GPR_R5 + 4, 0, true);
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::preinitializeRelaxedOrderingSections() {
// Task store section
preinitializedTaskStoreSection = std::make_unique<uint8_t[]>(RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>());
LinearStream stream(preinitializedTaskStoreSection.get(), RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>());
EncodeMiPredicate<GfxFamily>::encode(stream, MiPredicateType::Disable);
uint64_t deferredTasksListGpuVa = deferredTasksListAllocation->getGpuAddress();
LriHelper<GfxFamily>::program(&stream, CS_GPR_R6, static_cast<uint32_t>(deferredTasksListGpuVa & 0xFFFF'FFFFULL), true);
LriHelper<GfxFamily>::program(&stream, CS_GPR_R6 + 4, static_cast<uint32_t>(deferredTasksListGpuVa >> 32), true);
// Task start VA
LriHelper<GfxFamily>::program(&stream, CS_GPR_R7, 0, true);
LriHelper<GfxFamily>::program(&stream, CS_GPR_R7 + 4, 0, true);
// Shift by 8 = multiply by 256. Address must by 64b aligned (shift by 6), but SHL accepts only 1, 2, 4, 8, 16 and 32
LriHelper<GfxFamily>::program(&stream, CS_GPR_R8, 8, true);
LriHelper<GfxFamily>::program(&stream, CS_GPR_R8 + 4, 0, true);
EncodeAluHelper<GfxFamily, 9> aluHelper;
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_1);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_8);
aluHelper.setNextAlu(AluRegisters::OPCODE_SHL);
aluHelper.setNextAlu(AluRegisters::OPCODE_STORE, AluRegisters::R_8, AluRegisters::R_ACCU);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCA, AluRegisters::R_8);
aluHelper.setNextAlu(AluRegisters::OPCODE_LOAD, AluRegisters::R_SRCB, AluRegisters::R_6);
aluHelper.setNextAlu(AluRegisters::OPCODE_ADD);
aluHelper.setNextAlu(AluRegisters::OPCODE_STOREIND, AluRegisters::R_ACCU, AluRegisters::R_7);
aluHelper.setNextAlu(AluRegisters::OPCODE_FENCE_WR);
aluHelper.copyToCmdStream(stream);
EncodeMathMMIO<GfxFamily>::encodeIncrement(stream, AluRegisters::R_1);
UNRECOVERABLE_IF(stream.getUsed() != RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>());
// Scheduler section
preinitializedRelaxedOrderingScheduler = std::make_unique<uint8_t[]>(RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize);
LinearStream schedulerStream(preinitializedRelaxedOrderingScheduler.get(), RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize);
uint64_t schedulerStartAddress = relaxedOrderingSchedulerAllocation->getGpuAddress();
// 1. Init section
LriHelper<GfxFamily>::program(&schedulerStream, CS_GPR_R9, 0, true);
LriHelper<GfxFamily>::program(&schedulerStream, CS_GPR_R9 + 4, 0, true);
EncodeBatchBufferStartOrEnd<GfxFamily>::programBatchBufferStart(&schedulerStream, schedulerStartAddress, false, false, false);
// 2. Scheduler loop check section
{
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataMemBatchBufferStart(schedulerStream, 0, 0, 0, CompareOperation::GreaterOrEqual, false);
EncodeBatchBufferStartOrEnd<GfxFamily>::programBatchBufferStart(&schedulerStream,
schedulerStartAddress + RelaxedOrderingHelper::StaticSchedulerSizeAndOffsetSection<GfxFamily>::loopStartSectionStart,
false, false, false);
}
// 3. Semaphore section
{
using MI_SEMAPHORE_WAIT = typename GfxFamily::MI_SEMAPHORE_WAIT;
using COMPARE_OPERATION = typename GfxFamily::MI_SEMAPHORE_WAIT::COMPARE_OPERATION;
EncodeMiPredicate<GfxFamily>::encode(schedulerStream, MiPredicateType::Disable);
EncodeSempahore<GfxFamily>::addMiSemaphoreWaitCommand(schedulerStream, 0, 0, COMPARE_OPERATION::COMPARE_OPERATION_SAD_GREATER_THAN_OR_EQUAL_SDD);
}
// 4. End section
{
EncodeMiPredicate<GfxFamily>::encode(schedulerStream, MiPredicateType::Disable);
LriHelper<GfxFamily>::program(&schedulerStream, CS_GPR_R5, 0, true);
}
UNRECOVERABLE_IF(schedulerStream.getUsed() != RelaxedOrderingHelper::DynamicSchedulerSizeAndOffsetSection<GfxFamily>::totalSize);
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchTaskStoreSection(uint64_t taskStartSectionVa) {
using MI_LOAD_REGISTER_IMM = typename GfxFamily::MI_LOAD_REGISTER_IMM;
constexpr size_t patchOffset = EncodeMiPredicate<GfxFamily>::getCmdSize() + (2 * sizeof(MI_LOAD_REGISTER_IMM));
auto lri = reinterpret_cast<MI_LOAD_REGISTER_IMM *>(ptrOffset(preinitializedTaskStoreSection.get(), patchOffset));
lri->setDataDword(static_cast<uint32_t>(taskStartSectionVa & 0xFFFF'FFFFULL));
lri++;
lri->setDataDword(static_cast<uint32_t>(taskStartSectionVa >> 32));
auto dst = ringCommandStream.getSpace(RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>());
memcpy_s(dst, RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>(), preinitializedTaskStoreSection.get(), RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>());
}
template <typename GfxFamily, typename Dispatcher>
bool DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchCommandBuffer(BatchBuffer &batchBuffer, FlushStampTracker &flushStamp) {
// for now workloads requiring cache coherency are not supported
UNRECOVERABLE_IF(batchBuffer.requiresCoherency);
if (batchBuffer.ringBufferRestartRequest) {
this->stopRingBuffer();
}
this->startRingBuffer();
bool relaxedOrderingSchedulerWillBeNeeded = (this->relaxedOrderingSchedulerRequired || batchBuffer.hasRelaxedOrderingDependencies);
size_t dispatchSize = getSizeDispatch(relaxedOrderingSchedulerWillBeNeeded);
size_t cycleSize = getSizeSwitchRingBufferSection();
size_t requiredMinimalSize = dispatchSize + cycleSize + getSizeEnd(relaxedOrderingSchedulerWillBeNeeded);
if (this->relaxedOrderingEnabled) {
requiredMinimalSize += +RelaxedOrderingHelper::getSizeReturnPtrRegs<GfxFamily>();
if (batchBuffer.hasStallingCmds && this->relaxedOrderingSchedulerRequired) {
requiredMinimalSize += getSizeDispatchRelaxedOrderingQueueStall();
}
if (batchBuffer.hasRelaxedOrderingDependencies) {
requiredMinimalSize += RelaxedOrderingHelper::getSizeTaskStoreSection<GfxFamily>();
}
}
if (ringCommandStream.getAvailableSpace() < requiredMinimalSize) {
switchRingBuffers();
}
if (this->relaxedOrderingEnabled && batchBuffer.hasStallingCmds && this->relaxedOrderingSchedulerRequired) {
dispatchRelaxedOrderingQueueStall();
}
this->relaxedOrderingSchedulerRequired |= batchBuffer.hasRelaxedOrderingDependencies;
handleNewResourcesSubmission();
void *currentPosition = dispatchWorkloadSection(batchBuffer);
cpuCachelineFlush(currentPosition, dispatchSize);
handleResidency();
if (DebugManager.flags.DirectSubmissionReadBackCommandBuffer.get() == 1) {
volatile auto cmdBufferStart = reinterpret_cast<uint32_t *>(batchBuffer.commandBufferAllocation->getUnderlyingBuffer());
reserved = *cmdBufferStart;
}
if (DebugManager.flags.DirectSubmissionReadBackRingBuffer.get() == 1) {
volatile auto ringBufferStart = reinterpret_cast<uint32_t *>(ringCommandStream.getSpace(0));
reserved = *ringBufferStart;
}
this->unblockGpu();
cpuCachelineFlush(semaphorePtr, MemoryConstants::cacheLineSize);
currentQueueWorkCount++;
DirectSubmissionDiagnostics::diagnosticModeOneSubmit(diagnostic.get());
uint64_t flushValue = updateTagValue();
flushStamp.setStamp(flushValue);
return ringStart;
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::setReturnAddress(void *returnCmd, uint64_t returnAddress) {
using MI_BATCH_BUFFER_START = typename GfxFamily::MI_BATCH_BUFFER_START;
MI_BATCH_BUFFER_START cmd = GfxFamily::cmdInitBatchBufferStart;
cmd.setBatchBufferStartAddress(returnAddress);
cmd.setAddressSpaceIndicator(MI_BATCH_BUFFER_START::ADDRESS_SPACE_INDICATOR_PPGTT);
MI_BATCH_BUFFER_START *returnBBStart = static_cast<MI_BATCH_BUFFER_START *>(returnCmd);
*returnBBStart = cmd;
}
template <typename GfxFamily, typename Dispatcher>
inline void DirectSubmissionHw<GfxFamily, Dispatcher>::handleNewResourcesSubmission() {
}
template <typename GfxFamily, typename Dispatcher>
inline size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeNewResourceHandler() {
return 0u;
}
template <typename GfxFamily, typename Dispatcher>
inline uint64_t DirectSubmissionHw<GfxFamily, Dispatcher>::switchRingBuffers() {
GraphicsAllocation *nextRingBuffer = switchRingBuffersAllocations();
void *flushPtr = ringCommandStream.getSpace(0);
uint64_t currentBufferGpuVa = ringCommandStream.getCurrentGpuAddressPosition();
if (ringStart) {
dispatchSwitchRingBufferSection(nextRingBuffer->getGpuAddress());
cpuCachelineFlush(flushPtr, getSizeSwitchRingBufferSection());
}
ringCommandStream.replaceBuffer(nextRingBuffer->getUnderlyingBuffer(), ringCommandStream.getMaxAvailableSpace());
ringCommandStream.replaceGraphicsAllocation(nextRingBuffer);
handleSwitchRingBuffers();
return currentBufferGpuVa;
}
template <typename GfxFamily, typename Dispatcher>
inline GraphicsAllocation *DirectSubmissionHw<GfxFamily, Dispatcher>::switchRingBuffersAllocations() {
this->previousRingBuffer = this->currentRingBuffer;
GraphicsAllocation *nextAllocation = nullptr;
for (uint32_t ringBufferIndex = 0; ringBufferIndex < this->ringBuffers.size(); ringBufferIndex++) {
if (ringBufferIndex != this->currentRingBuffer && this->isCompleted(ringBufferIndex)) {
this->currentRingBuffer = ringBufferIndex;
nextAllocation = this->ringBuffers[ringBufferIndex].ringBuffer;
break;
}
}
if (nextAllocation == nullptr) {
if (this->ringBuffers.size() == this->maxRingBufferCount) {
this->currentRingBuffer = (this->currentRingBuffer + 1) % this->ringBuffers.size();
nextAllocation = this->ringBuffers[this->currentRingBuffer].ringBuffer;
} else {
bool isMultiOsContextCapable = osContext.getNumSupportedDevices() > 1u;
constexpr size_t minimumRequiredSize = 256 * MemoryConstants::kiloByte;
constexpr size_t additionalAllocationSize = MemoryConstants::pageSize;
const auto allocationSize = alignUp(minimumRequiredSize + additionalAllocationSize, MemoryConstants::pageSize64k);
const AllocationProperties commandStreamAllocationProperties{rootDeviceIndex,
true, allocationSize,
AllocationType::RING_BUFFER,
isMultiOsContextCapable, false, osContext.getDeviceBitfield()};
nextAllocation = memoryManager->allocateGraphicsMemoryWithProperties(commandStreamAllocationProperties);
this->currentRingBuffer = static_cast<uint32_t>(this->ringBuffers.size());
this->ringBuffers.emplace_back(0ull, nextAllocation);
auto ret = memoryOperationHandler->makeResidentWithinOsContext(&this->osContext, ArrayRef<GraphicsAllocation *>(&nextAllocation, 1u), false) == MemoryOperationsStatus::SUCCESS;
UNRECOVERABLE_IF(!ret);
}
}
UNRECOVERABLE_IF(this->currentRingBuffer == this->previousRingBuffer);
return nextAllocation;
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::deallocateResources() {
for (uint32_t ringBufferIndex = 0; ringBufferIndex < this->ringBuffers.size(); ringBufferIndex++) {
memoryManager->freeGraphicsMemory(this->ringBuffers[ringBufferIndex].ringBuffer);
}
this->ringBuffers.clear();
if (semaphores) {
memoryManager->freeGraphicsMemory(semaphores);
semaphores = nullptr;
}
memoryManager->freeGraphicsMemory(deferredTasksListAllocation);
memoryManager->freeGraphicsMemory(relaxedOrderingSchedulerAllocation);
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::createDiagnostic() {
if (directSubmissionDiagnosticAvailable) {
workloadMode = DebugManager.flags.DirectSubmissionEnableDebugBuffer.get();
if (workloadMode > 0) {
disableCacheFlush = DebugManager.flags.DirectSubmissionDisableCacheFlush.get();
disableMonitorFence = DebugManager.flags.DirectSubmissionDisableMonitorFence.get();
uint32_t executions = static_cast<uint32_t>(DebugManager.flags.DirectSubmissionDiagnosticExecutionCount.get());
diagnostic = std::make_unique<DirectSubmissionDiagnosticsCollector>(
executions,
workloadMode == 1,
DebugManager.flags.DirectSubmissionBufferPlacement.get(),
DebugManager.flags.DirectSubmissionSemaphorePlacement.get(),
workloadMode,
disableCacheFlush,
disableMonitorFence);
}
}
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::initDiagnostic(bool &submitOnInit) {
if (directSubmissionDiagnosticAvailable) {
if (diagnostic.get()) {
submitOnInit = true;
diagnostic->diagnosticModeAllocation();
}
}
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::performDiagnosticMode() {
if (directSubmissionDiagnosticAvailable) {
if (diagnostic.get()) {
diagnostic->diagnosticModeDiagnostic();
if (workloadMode == 1) {
diagnostic->diagnosticModeOneWait(workloadModeOneStoreAddress, workloadModeOneExpectedValue);
}
BatchBuffer dummyBuffer = {};
FlushStampTracker dummyTracker(true);
for (uint32_t execution = 0; execution < diagnostic->getExecutionsCount(); execution++) {
dispatchCommandBuffer(dummyBuffer, dummyTracker);
if (workloadMode == 1) {
diagnostic->diagnosticModeOneWaitCollect(execution, workloadModeOneStoreAddress, workloadModeOneExpectedValue);
}
}
workloadMode = 0;
disableCacheFlush = UllsDefaults::defaultDisableCacheFlush;
disableMonitorFence = UllsDefaults::defaultDisableMonitorFence;
diagnostic.reset(nullptr);
}
}
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchDiagnosticModeSection() {
workloadModeOneExpectedValue++;
uint64_t storeAddress = semaphoreGpuVa;
storeAddress += ptrDiff(workloadModeOneStoreAddress, semaphorePtr);
Dispatcher::dispatchStoreDwordCommand(ringCommandStream, storeAddress, workloadModeOneExpectedValue);
}
template <typename GfxFamily, typename Dispatcher>
size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getDiagnosticModeSection() {
return Dispatcher::getSizeStoreDwordCommand();
}
template <typename GfxFamily, typename Dispatcher>
void DirectSubmissionHw<GfxFamily, Dispatcher>::dispatchSystemMemoryFenceAddress() {
EncodeMemoryFence<GfxFamily>::encodeSystemMemoryFence(ringCommandStream, this->globalFenceAllocation, this->logicalStateHelper);
if (logicalStateHelper) {
logicalStateHelper->writeStreamInline(ringCommandStream, false);
}
}
template <typename GfxFamily, typename Dispatcher>
size_t DirectSubmissionHw<GfxFamily, Dispatcher>::getSizeSystemMemoryFenceAddress() {
return EncodeMemoryFence<GfxFamily>::getSystemMemoryFenceSize();
}
} // namespace NEO