compute-runtime/opencl/source/event/event.cpp

1036 lines
39 KiB
C++

/*
* Copyright (C) 2018-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/source/event/event.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/command_stream/task_count_helper.h"
#include "shared/source/command_stream/wait_status.h"
#include "shared/source/device/device.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/flush_stamp.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/mt_helpers.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/utilities/perf_counter.h"
#include "shared/source/utilities/range.h"
#include "shared/source/utilities/tag_allocator.h"
#include "opencl/extensions/public/cl_ext_private.h"
#include "opencl/source/api/cl_types.h"
#include "opencl/source/command_queue/command_queue.h"
#include "opencl/source/context/context.h"
#include "opencl/source/event/async_events_handler.h"
#include "opencl/source/event/event_tracker.h"
#include "opencl/source/helpers/get_info_status_mapper.h"
#include "opencl/source/helpers/hardware_commands_helper.h"
#include "opencl/source/helpers/task_information.h"
#include <algorithm>
#include <iostream>
namespace NEO {
Event::Event(
Context *ctx,
CommandQueue *cmdQueue,
cl_command_type cmdType,
TaskCountType taskLevel,
TaskCountType taskCount)
: taskLevel(taskLevel),
ctx(ctx),
cmdQueue(cmdQueue),
cmdType(cmdType),
taskCount(taskCount) {
if (NEO::debugManager.flags.EventsTrackerEnable.get()) {
EventsTracker::getEventsTracker().notifyCreation(this);
}
flushStamp.reset(new FlushStampTracker(true));
DBG_LOG(EventsDebugEnable, "Event()", this);
// Event can live longer than command queue that created it,
// hence command queue refCount must be incremented
// non-null command queue is only passed when Base Event object is created
// any other Event types must increment refcount when setting command queue
if (cmdQueue != nullptr) {
cmdQueue->incRefInternal();
}
if ((this->ctx == nullptr) && (cmdQueue != nullptr)) {
this->ctx = &cmdQueue->getContext();
if (cmdQueue->getTimestampPacketContainer()) {
timestampPacketContainer = std::make_unique<TimestampPacketContainer>();
}
}
if (this->ctx != nullptr) {
this->ctx->incRefInternal();
}
profilingEnabled = !isUserEvent() &&
(cmdQueue ? cmdQueue->getCommandQueueProperties() & CL_QUEUE_PROFILING_ENABLE : false);
profilingCpuPath = ((cmdType == CL_COMMAND_MAP_BUFFER) || (cmdType == CL_COMMAND_MAP_IMAGE)) && profilingEnabled;
perfCountersEnabled = cmdQueue ? cmdQueue->isPerfCountersEnabled() : false;
}
Event::Event(
CommandQueue *cmdQueue,
cl_command_type cmdType,
TaskCountType taskLevel,
TaskCountType taskCount)
: Event(nullptr, cmdQueue, cmdType, taskLevel, taskCount) {
}
Event::~Event() {
if (NEO::debugManager.flags.EventsTrackerEnable.get()) {
EventsTracker::getEventsTracker().notifyDestruction(this);
}
DBG_LOG(EventsDebugEnable, "~Event()", this);
// no commands should be registred
DEBUG_BREAK_IF(this->cmdToSubmit.load());
submitCommand(true);
int32_t lastStatus = executionStatus;
if (isStatusCompleted(lastStatus) == false) {
transitionExecutionStatus(-1);
DEBUG_BREAK_IF(peekHasCallbacks() || peekHasChildEvents());
}
// Note from OCL spec:
// "All callbacks registered for an event object must be called.
// All enqueued callbacks shall be called before the event object is destroyed."
if (peekHasCallbacks()) {
executeCallbacks(lastStatus);
}
{
// clean-up submitted command if needed
std::unique_ptr<Command> submittedCommand(submittedCmd.exchange(nullptr));
}
if (cmdQueue != nullptr) {
{
TakeOwnershipWrapper<CommandQueue> queueOwnership(*cmdQueue);
cmdQueue->handlePostCompletionOperations(true);
}
if (timeStampNode != nullptr) {
timeStampNode->returnTag();
}
if (perfCounterNode != nullptr) {
cmdQueue->getPerfCounters()->deleteQuery(perfCounterNode->getQueryHandleRef());
perfCounterNode->getQueryHandleRef() = {};
perfCounterNode->returnTag();
}
cmdQueue->decRefInternal();
}
if (ctx != nullptr) {
ctx->decRefInternal();
}
// in case event did not unblock child events before
unblockEventsBlockedByThis(executionStatus);
}
cl_int Event::getEventProfilingInfo(cl_profiling_info paramName,
size_t paramValueSize,
void *paramValue,
size_t *paramValueSizeRet) {
cl_int retVal;
const void *src = nullptr;
size_t srcSize = GetInfo::invalidSourceSize;
// CL_PROFILING_INFO_NOT_AVAILABLE if event refers to the clEnqueueSVMFree command
if (isUserEvent() != CL_FALSE || // or is a user event object.
!updateStatusAndCheckCompletion() || // if the execution status of the command identified by event is not CL_COMPLETE
!profilingEnabled) // the CL_QUEUE_PROFILING_ENABLE flag is not set for the command-queue,
{
return CL_PROFILING_INFO_NOT_AVAILABLE;
}
uint64_t timestamp = 0u;
// if paramValue is NULL, it is ignored
switch (paramName) {
case CL_PROFILING_COMMAND_QUEUED:
calcProfilingData();
timestamp = getProfilingInfoData(queueTimeStamp);
src = &timestamp;
srcSize = sizeof(cl_ulong);
break;
case CL_PROFILING_COMMAND_SUBMIT:
calcProfilingData();
timestamp = getProfilingInfoData(submitTimeStamp);
src = &timestamp;
srcSize = sizeof(cl_ulong);
break;
case CL_PROFILING_COMMAND_START:
calcProfilingData();
timestamp = getProfilingInfoData(startTimeStamp);
src = &timestamp;
srcSize = sizeof(cl_ulong);
break;
case CL_PROFILING_COMMAND_END:
calcProfilingData();
timestamp = getProfilingInfoData(endTimeStamp);
src = &timestamp;
srcSize = sizeof(cl_ulong);
break;
case CL_PROFILING_COMMAND_COMPLETE:
calcProfilingData();
timestamp = getProfilingInfoData(completeTimeStamp);
src = &timestamp;
srcSize = sizeof(cl_ulong);
break;
case CL_PROFILING_COMMAND_PERFCOUNTERS_INTEL:
if (!perfCountersEnabled) {
return CL_INVALID_VALUE;
}
if (!cmdQueue->getPerfCounters()->getApiReport(perfCounterNode,
paramValueSize,
paramValue,
paramValueSizeRet,
updateStatusAndCheckCompletion())) {
return CL_PROFILING_INFO_NOT_AVAILABLE;
}
return CL_SUCCESS;
default:
return CL_INVALID_VALUE;
}
auto getInfoStatus = GetInfo::getInfo(paramValue, paramValueSize, src, srcSize);
retVal = changeGetInfoStatusToCLResultType(getInfoStatus);
GetInfo::setParamValueReturnSize(paramValueSizeRet, srcSize, getInfoStatus);
return retVal;
} // namespace NEO
void Event::setupBcs(aub_stream::EngineType bcsEngineType) {
DEBUG_BREAK_IF(!EngineHelpers::isBcs(bcsEngineType));
this->bcsState.engineType = bcsEngineType;
}
TaskCountType Event::peekBcsTaskCountFromCommandQueue() {
if (bcsState.isValid()) {
return this->cmdQueue->peekBcsTaskCount(bcsState.engineType);
} else {
return 0u;
}
}
bool Event::isBcsEvent() const {
return bcsState.isValid() && bcsState.taskCount > 0;
}
aub_stream::EngineType Event::getBcsEngineType() const {
return bcsState.engineType;
}
TaskCountType Event::getCompletionStamp() const {
return this->taskCount;
}
void Event::updateCompletionStamp(TaskCountType gpgpuTaskCount, TaskCountType bcsTaskCount, TaskCountType tasklevel, FlushStamp flushStamp) {
this->taskCount = gpgpuTaskCount;
this->bcsState.taskCount = bcsTaskCount;
this->taskLevel = tasklevel;
this->flushStamp->setStamp(flushStamp);
}
cl_ulong Event::getDelta(cl_ulong startTime,
cl_ulong endTime) {
auto &hwInfo = cmdQueue->getDevice().getHardwareInfo();
cl_ulong max = maxNBitValue(hwInfo.capabilityTable.kernelTimestampValidBits);
cl_ulong delta = 0;
startTime &= max;
endTime &= max;
if (startTime > endTime) {
delta = max - startTime;
delta += endTime;
} else {
delta = endTime - startTime;
}
return delta;
}
void Event::setupRelativeProfilingInfo(ProfilingInfo &profilingInfo) {
UNRECOVERABLE_IF(!cmdQueue);
auto &device = cmdQueue->getDevice();
double resolution = device.getDeviceInfo().profilingTimerResolution;
UNRECOVERABLE_IF(resolution == 0.0);
if (profilingInfo.cpuTimeInNs > submitTimeStamp.cpuTimeInNs) {
auto timeDiff = profilingInfo.cpuTimeInNs - submitTimeStamp.cpuTimeInNs;
auto gpuTicksDiff = static_cast<uint64_t>(timeDiff / resolution);
profilingInfo.gpuTimeInNs = submitTimeStamp.gpuTimeInNs + timeDiff;
profilingInfo.gpuTimeStamp = submitTimeStamp.gpuTimeStamp + std::max<uint64_t>(gpuTicksDiff, 1ul);
} else if (profilingInfo.cpuTimeInNs < submitTimeStamp.cpuTimeInNs) {
auto timeDiff = submitTimeStamp.cpuTimeInNs - profilingInfo.cpuTimeInNs;
auto gpuTicksDiff = static_cast<uint64_t>(timeDiff / resolution);
profilingInfo.gpuTimeInNs = submitTimeStamp.gpuTimeInNs - timeDiff;
profilingInfo.gpuTimeStamp = submitTimeStamp.gpuTimeStamp - std::max<uint64_t>(gpuTicksDiff, 1ul);
} else {
profilingInfo.gpuTimeInNs = submitTimeStamp.gpuTimeInNs;
profilingInfo.gpuTimeStamp = submitTimeStamp.gpuTimeStamp;
}
}
void Event::setSubmitTimeStamp() {
UNRECOVERABLE_IF(!cmdQueue);
auto &device = cmdQueue->getDevice();
auto &gfxCoreHelper = device.getGfxCoreHelper();
double resolution = device.getDeviceInfo().profilingTimerResolution;
UNRECOVERABLE_IF(resolution == 0.0);
this->cmdQueue->getDevice().getOSTime()->getCpuTime(&this->submitTimeStamp.cpuTimeInNs);
TimeStampData submitCpuGpuTime{};
this->cmdQueue->getDevice().getOSTime()->getGpuCpuTime(&submitCpuGpuTime);
this->submitTimeStamp.gpuTimeInNs = gfxCoreHelper.getGpuTimeStampInNS(submitCpuGpuTime.gpuTimeStamp, resolution);
this->submitTimeStamp.gpuTimeStamp = submitCpuGpuTime.gpuTimeStamp;
setupRelativeProfilingInfo(queueTimeStamp);
}
uint64_t Event::getProfilingInfoData(const ProfilingInfo &profilingInfo) const {
if (debugManager.flags.ReturnRawGpuTimestamps.get()) {
return profilingInfo.gpuTimeStamp;
}
if (debugManager.flags.EnableDeviceBasedTimestamps.get()) {
return profilingInfo.gpuTimeInNs;
}
return profilingInfo.cpuTimeInNs;
}
bool Event::calcProfilingData() {
if (!dataCalculated && !profilingCpuPath) {
if (timestampPacketContainer && timestampPacketContainer->peekNodes().size() > 0) {
const auto timestamps = timestampPacketContainer->peekNodes();
if (debugManager.flags.PrintTimestampPacketContents.get()) {
for (auto i = 0u; i < timestamps.size(); i++) {
std::cout << "Timestamp " << i << ", "
<< "cmd type: " << this->cmdType << ", ";
for (auto j = 0u; j < timestamps[i]->getPacketsUsed(); j++) {
std::cout << "packet " << j << ": "
<< "global start: " << timestamps[i]->getGlobalStartValue(j) << ", "
<< "global end: " << timestamps[i]->getGlobalEndValue(j) << ", "
<< "context start: " << timestamps[i]->getContextStartValue(j) << ", "
<< "context end: " << timestamps[i]->getContextEndValue(j) << ", "
<< "global delta: " << timestamps[i]->getGlobalEndValue(j) - timestamps[i]->getGlobalStartValue(j) << ", "
<< "context delta: " << timestamps[i]->getContextEndValue(j) - timestamps[i]->getContextStartValue(j) << std::endl;
}
}
}
uint64_t globalStartTS = 0u;
uint64_t globalEndTS = 0u;
Event::getBoundaryTimestampValues(timestampPacketContainer.get(), globalStartTS, globalEndTS);
calculateProfilingDataInternal(globalStartTS, globalEndTS, &globalEndTS, globalStartTS);
} else if (timeStampNode) {
if (this->cmdQueue->getDevice().getGfxCoreHelper().useOnlyGlobalTimestamps()) {
calculateProfilingDataInternal(
timeStampNode->getGlobalStartValue(0),
timeStampNode->getGlobalEndValue(0),
&timeStampNode->getGlobalEndRef(),
timeStampNode->getGlobalStartValue(0));
} else {
calculateProfilingDataInternal(
timeStampNode->getContextStartValue(0),
timeStampNode->getContextEndValue(0),
&timeStampNode->getContextCompleteRef(),
timeStampNode->getGlobalStartValue(0));
}
}
}
return dataCalculated;
}
void Event::updateTimestamp(ProfilingInfo &timestamp, uint64_t newGpuTimestamp) const {
auto &device = this->cmdQueue->getDevice();
auto &gfxCoreHelper = device.getGfxCoreHelper();
auto resolution = device.getDeviceInfo().profilingTimerResolution;
timestamp.gpuTimeStamp = newGpuTimestamp;
timestamp.gpuTimeInNs = gfxCoreHelper.getGpuTimeStampInNS(timestamp.gpuTimeStamp, resolution);
timestamp.cpuTimeInNs = timestamp.gpuTimeInNs;
}
/**
* @brief Timestamp returned from GPU is initially 32 bits. This method performs XOR with
* other timestamp that tracks overflows, so passed timestamp will have correct overflow bits
*
* @param[out] timestamp Overflow bits will be added to this timestamp
* @param[in] timestampWithOverflow Timestamp that tracks overflows in remaining 32 most significant bits
*
*/
void Event::addOverflowToTimestamp(uint64_t &timestamp, uint64_t timestampWithOverflow) const {
auto &device = this->cmdQueue->getDevice();
auto &gfxCoreHelper = device.getGfxCoreHelper();
timestamp |= timestampWithOverflow & (maxNBitValue(64) - maxNBitValue(gfxCoreHelper.getGlobalTimeStampBits()));
}
void Event::calculateProfilingDataInternal(uint64_t contextStartTS, uint64_t contextEndTS, uint64_t *contextCompleteTS, uint64_t globalStartTS) {
auto &device = this->cmdQueue->getDevice();
auto &gfxCoreHelper = device.getGfxCoreHelper();
auto resolution = device.getDeviceInfo().profilingTimerResolution;
if (timestampsCopied) {
// Adjust startTS since we calculate profiling based on other event timestamps
contextStartTS = startTimeStamp.gpuTimeStamp;
}
// Calculate startTimestamp only if it was not already set on CPU
if (startTimeStamp.cpuTimeInNs == 0) {
startTimeStamp.gpuTimeStamp = globalStartTS;
addOverflowToTimestamp(startTimeStamp.gpuTimeStamp, submitTimeStamp.gpuTimeStamp);
if (startTimeStamp.gpuTimeStamp < submitTimeStamp.gpuTimeStamp) {
auto diff = submitTimeStamp.gpuTimeStamp - startTimeStamp.gpuTimeStamp;
auto diffInNS = gfxCoreHelper.getGpuTimeStampInNS(diff, resolution);
auto osTime = device.getOSTime();
if (diffInNS < osTime->getTimestampRefreshTimeout()) {
auto alignedSubmitTimestamp = startTimeStamp.gpuTimeStamp - 1;
auto alignedQueueTimestamp = startTimeStamp.gpuTimeStamp - 2;
if (startTimeStamp.gpuTimeStamp <= 2) {
alignedSubmitTimestamp = 0;
alignedQueueTimestamp = 0;
}
updateTimestamp(submitTimeStamp, alignedSubmitTimestamp);
updateTimestamp(queueTimeStamp, alignedQueueTimestamp);
osTime->setRefreshTimestampsFlag();
} else {
startTimeStamp.gpuTimeStamp += static_cast<uint64_t>(1ULL << gfxCoreHelper.getGlobalTimeStampBits());
}
}
}
UNRECOVERABLE_IF(startTimeStamp.gpuTimeStamp < submitTimeStamp.gpuTimeStamp);
auto gpuTicksDiff = startTimeStamp.gpuTimeStamp - submitTimeStamp.gpuTimeStamp;
auto timeDiff = static_cast<uint64_t>(gpuTicksDiff * resolution);
startTimeStamp.cpuTimeInNs = submitTimeStamp.cpuTimeInNs + timeDiff;
startTimeStamp.gpuTimeInNs = gfxCoreHelper.getGpuTimeStampInNS(startTimeStamp.gpuTimeStamp, resolution);
// If device enqueue has not updated complete timestamp, assign end timestamp
uint64_t gpuDuration = 0;
uint64_t cpuDuration = 0;
uint64_t gpuCompleteDuration = 0;
uint64_t cpuCompleteDuration = 0;
gpuDuration = getDelta(contextStartTS, contextEndTS);
if (*contextCompleteTS == 0) {
*contextCompleteTS = contextEndTS;
gpuCompleteDuration = gpuDuration;
} else {
gpuCompleteDuration = getDelta(contextStartTS, *contextCompleteTS);
}
cpuDuration = static_cast<uint64_t>(gpuDuration * resolution);
cpuCompleteDuration = static_cast<uint64_t>(gpuCompleteDuration * resolution);
endTimeStamp.cpuTimeInNs = startTimeStamp.cpuTimeInNs + cpuDuration;
endTimeStamp.gpuTimeInNs = startTimeStamp.gpuTimeInNs + cpuDuration;
endTimeStamp.gpuTimeStamp = startTimeStamp.gpuTimeStamp + gpuDuration;
completeTimeStamp.cpuTimeInNs = startTimeStamp.cpuTimeInNs + cpuCompleteDuration;
completeTimeStamp.gpuTimeInNs = startTimeStamp.gpuTimeInNs + cpuCompleteDuration;
completeTimeStamp.gpuTimeStamp = startTimeStamp.gpuTimeStamp + gpuCompleteDuration;
if (debugManager.flags.ReturnRawGpuTimestamps.get()) {
startTimeStamp.gpuTimeStamp = contextStartTS;
endTimeStamp.gpuTimeStamp = contextEndTS;
completeTimeStamp.gpuTimeStamp = *contextCompleteTS;
}
dataCalculated = true;
}
void Event::getBoundaryTimestampValues(TimestampPacketContainer *timestampContainer, uint64_t &globalStartTS, uint64_t &globalEndTS) {
const auto timestamps = timestampContainer->peekNodes();
globalStartTS = timestamps[0]->getGlobalStartValue(0);
globalEndTS = timestamps[0]->getGlobalEndValue(0);
for (const auto &timestamp : timestamps) {
if (!timestamp->isProfilingCapable()) {
continue;
}
for (auto i = 0u; i < timestamp->getPacketsUsed(); ++i) {
if (globalStartTS > timestamp->getGlobalStartValue(i)) {
globalStartTS = timestamp->getGlobalStartValue(i);
}
if (globalEndTS < timestamp->getGlobalEndValue(i)) {
globalEndTS = timestamp->getGlobalEndValue(i);
}
}
}
}
inline WaitStatus Event::wait(bool blocking, bool useQuickKmdSleep) {
while (this->taskCount == CompletionStamp::notReady) {
if (blocking == false) {
return WaitStatus::notReady;
}
}
Range<CopyEngineState> states{&bcsState, bcsState.isValid() ? 1u : 0u};
auto waitStatus = WaitStatus::notReady;
auto waitedOnTimestamps = cmdQueue->waitForTimestamps(states, waitStatus, this->timestampPacketContainer.get(), nullptr);
waitStatus = cmdQueue->waitUntilComplete(taskCount.load(), states, flushStamp->peekStamp(), useQuickKmdSleep, true, waitedOnTimestamps);
if (waitStatus == WaitStatus::gpuHang) {
return WaitStatus::gpuHang;
}
this->gpuStateWaited = true;
updateExecutionStatus();
DEBUG_BREAK_IF(this->taskLevel == CompletionStamp::notReady && this->executionStatus >= 0);
{
TakeOwnershipWrapper<CommandQueue> queueOwnership(*cmdQueue);
bool checkQueueCompletionForPostSyncOperations = !(waitedOnTimestamps && !cmdQueue->isOOQEnabled() &&
(this->timestampPacketContainer->peekNodes() == cmdQueue->getTimestampPacketContainer()->peekNodes()));
cmdQueue->handlePostCompletionOperations(checkQueueCompletionForPostSyncOperations);
}
auto *allocationStorage = cmdQueue->getGpgpuCommandStreamReceiver().getInternalAllocationStorage();
allocationStorage->cleanAllocationList(this->taskCount, TEMPORARY_ALLOCATION);
allocationStorage->cleanAllocationList(this->taskCount, DEFERRED_DEALLOCATION);
return WaitStatus::ready;
}
void Event::updateExecutionStatus() {
if (taskLevel == CompletionStamp::notReady) {
return;
}
int32_t statusSnapshot = executionStatus;
if (isStatusCompleted(statusSnapshot)) {
executeCallbacks(statusSnapshot);
return;
}
if (peekIsBlocked()) {
transitionExecutionStatus(CL_QUEUED);
executeCallbacks(CL_QUEUED);
return;
}
if (statusSnapshot == CL_QUEUED) {
bool abortBlockedTasks = isStatusCompletedByTermination(statusSnapshot);
submitCommand(abortBlockedTasks);
transitionExecutionStatus(CL_SUBMITTED);
executeCallbacks(CL_SUBMITTED);
unblockEventsBlockedByThis(CL_SUBMITTED);
// Note : Intentional fallthrough (no return) to check for CL_COMPLETE
}
if ((cmdQueue != nullptr) && this->isCompleted()) {
transitionExecutionStatus(CL_COMPLETE);
executeCallbacks(CL_COMPLETE);
unblockEventsBlockedByThis(CL_COMPLETE);
auto *allocationStorage = cmdQueue->getGpgpuCommandStreamReceiver().getInternalAllocationStorage();
allocationStorage->cleanAllocationList(this->taskCount, TEMPORARY_ALLOCATION);
allocationStorage->cleanAllocationList(this->taskCount, DEFERRED_DEALLOCATION);
return;
}
transitionExecutionStatus(CL_SUBMITTED);
}
void Event::addChild(Event &childEvent) {
childEvent.parentCount++;
childEvent.incRefInternal();
childEventsToNotify.pushRefFrontOne(childEvent);
DBG_LOG(EventsDebugEnable, "addChild: Parent event:", this, "child:", &childEvent);
if (debugManager.flags.TrackParentEvents.get()) {
childEvent.parentEvents.push_back(this);
}
if (executionStatus == CL_COMPLETE) {
unblockEventsBlockedByThis(CL_COMPLETE);
}
}
void Event::unblockEventsBlockedByThis(int32_t transitionStatus) {
int32_t status = transitionStatus;
(void)status;
DEBUG_BREAK_IF(!(isStatusCompleted(status) || (peekIsSubmitted(status))));
TaskCountType taskLevelToPropagate = CompletionStamp::notReady;
if (isStatusCompletedByTermination(transitionStatus) == false) {
// if we are event on top of the tree , obtain taskLevel from CSR
if (taskLevel == CompletionStamp::notReady) {
this->taskLevel = getTaskLevel(); // NOLINT(clang-analyzer-optin.cplusplus.VirtualCall)
taskLevelToPropagate = this->taskLevel;
} else {
taskLevelToPropagate = taskLevel + 1;
}
}
auto childEventRef = childEventsToNotify.detachNodes();
while (childEventRef != nullptr) {
auto childEvent = childEventRef->ref;
childEvent->unblockEventBy(*this, taskLevelToPropagate, transitionStatus);
childEvent->decRefInternal();
auto next = childEventRef->next;
delete childEventRef;
childEventRef = next;
}
}
bool Event::setStatus(cl_int status) {
int32_t prevStatus = executionStatus;
DBG_LOG(EventsDebugEnable, "setStatus event", this, " new status", status, "previousStatus", prevStatus);
if (isStatusCompleted(prevStatus)) {
return false;
}
if (status == prevStatus) {
return false;
}
if (peekIsBlocked() && (isStatusCompletedByTermination(status) == false)) {
return false;
}
if ((status == CL_SUBMITTED) || (isStatusCompleted(status))) {
bool abortBlockedTasks = isStatusCompletedByTermination(status);
submitCommand(abortBlockedTasks);
}
this->incRefInternal();
transitionExecutionStatus(status);
if (isStatusCompleted(status) || (status == CL_SUBMITTED)) {
unblockEventsBlockedByThis(status);
}
executeCallbacks(status);
this->decRefInternal();
return true;
}
void Event::transitionExecutionStatus(int32_t newExecutionStatus) const {
int32_t prevStatus = executionStatus;
DBG_LOG(EventsDebugEnable, "transitionExecutionStatus event", this, " new status", newExecutionStatus, "previousStatus", prevStatus);
while (prevStatus > newExecutionStatus) {
if (NEO::MultiThreadHelpers::atomicCompareExchangeWeakSpin(executionStatus, prevStatus, newExecutionStatus)) {
break;
}
}
if (NEO::debugManager.flags.EventsTrackerEnable.get()) {
EventsTracker::getEventsTracker().notifyTransitionedExecutionStatus();
}
}
void Event::submitCommand(bool abortTasks) {
std::unique_ptr<Command> cmdToProcess(cmdToSubmit.exchange(nullptr));
if (cmdToProcess.get() != nullptr) {
getCommandQueue()->initializeBcsEngine(getCommandQueue()->isSpecial());
auto lockCSR = getCommandQueue()->getGpgpuCommandStreamReceiver().obtainUniqueOwnership();
if (this->isProfilingEnabled()) {
if (timeStampNode) {
this->cmdQueue->getGpgpuCommandStreamReceiver().makeResident(*timeStampNode->getBaseGraphicsAllocation());
cmdToProcess->timestamp = timeStampNode;
}
this->setSubmitTimeStamp();
if (profilingCpuPath) {
setStartTimeStamp();
}
if (perfCountersEnabled && perfCounterNode) {
this->cmdQueue->getGpgpuCommandStreamReceiver().makeResident(*perfCounterNode->getBaseGraphicsAllocation());
}
}
auto &complStamp = cmdToProcess->submit(taskLevel, abortTasks);
if (profilingCpuPath && this->isProfilingEnabled()) {
setEndTimeStamp();
}
if (complStamp.taskCount > CompletionStamp::notReady) {
abortExecutionDueToGpuHang();
return;
}
updateTaskCount(complStamp.taskCount, peekBcsTaskCountFromCommandQueue());
flushStamp->setStamp(complStamp.flushStamp);
submittedCmd.exchange(cmdToProcess.release());
} else if (profilingCpuPath && endTimeStamp.gpuTimeInNs == 0) {
setEndTimeStamp();
}
if (this->taskCount == CompletionStamp::notReady) {
if (!this->isUserEvent() && this->eventWithoutCommand) {
if (this->cmdQueue) {
auto lockCSR = this->getCommandQueue()->getGpgpuCommandStreamReceiver().obtainUniqueOwnership();
updateTaskCount(this->cmdQueue->getGpgpuCommandStreamReceiver().peekTaskCount(), peekBcsTaskCountFromCommandQueue());
}
}
// make sure that task count is synchronized for events with kernels
if (!this->eventWithoutCommand && !abortTasks) {
this->synchronizeTaskCount();
}
}
}
cl_int Event::waitForEvents(cl_uint numEvents,
const cl_event *eventList) {
if (numEvents == 0) {
return CL_SUCCESS;
}
// flush all command queues
for (const cl_event *it = eventList, *end = eventList + numEvents; it != end; ++it) {
Event *event = castToObjectOrAbort<Event>(*it);
if (event->cmdQueue) {
if (event->taskLevel != CompletionStamp::notReady) {
event->cmdQueue->flush();
}
}
}
using WorkerListT = StackVec<cl_event, 64>;
WorkerListT workerList1(eventList, eventList + numEvents);
WorkerListT workerList2;
workerList2.reserve(numEvents);
// pointers to workerLists - for fast swap operations
WorkerListT *currentlyPendingEvents = &workerList1;
WorkerListT *pendingEventsLeft = &workerList2;
WaitStatus eventWaitStatus = WaitStatus::notReady;
while (currentlyPendingEvents->size() > 0) {
for (auto current = currentlyPendingEvents->begin(), end = currentlyPendingEvents->end(); current != end; ++current) {
Event *event = castToObjectOrAbort<Event>(*current);
if (event->peekExecutionStatus() < CL_COMPLETE) {
return CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST;
}
eventWaitStatus = event->wait(false, false);
if (eventWaitStatus == WaitStatus::notReady) {
pendingEventsLeft->push_back(event);
} else if (eventWaitStatus == WaitStatus::gpuHang) {
setExecutionStatusToAbortedDueToGpuHang(pendingEventsLeft->begin(), pendingEventsLeft->end());
setExecutionStatusToAbortedDueToGpuHang(current, end);
return CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST;
}
}
std::swap(currentlyPendingEvents, pendingEventsLeft);
pendingEventsLeft->clear();
}
return CL_SUCCESS;
}
void Event::setCommand(std::unique_ptr<Command> newCmd) {
UNRECOVERABLE_IF(cmdToSubmit.load());
cmdToSubmit.exchange(newCmd.release());
eventWithoutCommand = false;
}
inline void Event::setExecutionStatusToAbortedDueToGpuHang(cl_event *first, cl_event *last) {
std::for_each(first, last, [](cl_event &e) {
Event *event = castToObjectOrAbort<Event>(e);
event->abortExecutionDueToGpuHang();
});
}
bool Event::isCompleted() {
if (gpuStateWaited) {
return true;
}
Range<CopyEngineState> states{&bcsState, bcsState.isValid() ? 1u : 0u};
if (cmdQueue->isCompleted(getCompletionStamp(), states)) {
gpuStateWaited = true;
} else {
if (this->areTimestampsCompleted()) {
if (cmdQueue->getGpgpuCommandStreamReceiver().getDcFlushSupport()) {
// also flush L3 and wait for cmd queue when L3 flush required
auto waitStatus = cmdQueue->waitUntilComplete(taskCount.load(), states, flushStamp->peekStamp(), false, true, false);
if (waitStatus == WaitStatus::ready) {
this->gpuStateWaited = true;
}
} else {
gpuStateWaited = true;
}
}
}
return gpuStateWaited;
}
bool Event::isWaitForTimestampsEnabled() const {
const auto &productHelper = cmdQueue->getDevice().getRootDeviceEnvironment().getHelper<ProductHelper>();
auto enabled = cmdQueue->isTimestampWaitEnabled();
enabled &= productHelper.isTimestampWaitSupportedForEvents();
enabled &= !cmdQueue->getDevice().getRootDeviceEnvironment().isWddmOnLinux();
switch (debugManager.flags.EnableTimestampWaitForEvents.get()) {
case 0:
enabled = false;
break;
case 1:
enabled = cmdQueue->getGpgpuCommandStreamReceiver().isUpdateTagFromWaitEnabled();
break;
case 2:
enabled = cmdQueue->getGpgpuCommandStreamReceiver().isDirectSubmissionEnabled();
break;
case 3:
enabled = cmdQueue->getGpgpuCommandStreamReceiver().isAnyDirectSubmissionEnabled();
break;
case 4:
enabled = true;
break;
}
return enabled;
}
bool Event::areTimestampsCompleted() {
if (this->timestampPacketContainer.get()) {
if (this->isWaitForTimestampsEnabled()) {
for (const auto &timestamp : this->timestampPacketContainer->peekNodes()) {
for (uint32_t i = 0; i < timestamp->getPacketsUsed(); i++) {
this->cmdQueue->getGpgpuCommandStreamReceiver().downloadAllocation(*timestamp->getBaseGraphicsAllocation()->getGraphicsAllocation(this->cmdQueue->getGpgpuCommandStreamReceiver().getRootDeviceIndex()));
if (timestamp->getContextEndValue(i) == 1) {
return false;
}
}
}
this->cmdQueue->getGpgpuCommandStreamReceiver().downloadAllocations();
const auto &bcsStates = this->cmdQueue->peekActiveBcsStates();
for (auto currentBcsIndex = 0u; currentBcsIndex < bcsStates.size(); currentBcsIndex++) {
const auto &state = bcsStates[currentBcsIndex];
if (state.isValid()) {
this->cmdQueue->getBcsCommandStreamReceiver(state.engineType)->downloadAllocations();
}
}
return true;
}
}
return false;
}
TaskCountType Event::getTaskLevel() {
return taskLevel;
}
inline void Event::unblockEventBy(Event &event, TaskCountType taskLevel, int32_t transitionStatus) {
int32_t numEventsBlockingThis = --parentCount;
DEBUG_BREAK_IF(numEventsBlockingThis < 0);
int32_t blockerStatus = transitionStatus;
DEBUG_BREAK_IF(!(isStatusCompleted(blockerStatus) || peekIsSubmitted(blockerStatus)));
if ((numEventsBlockingThis > 0) && (isStatusCompletedByTermination(blockerStatus) == false)) {
return;
}
DBG_LOG(EventsDebugEnable, "Event", this, "is unblocked by", &event);
if (this->taskLevel == CompletionStamp::notReady) {
this->taskLevel = std::max(cmdQueue->getGpgpuCommandStreamReceiver().peekTaskLevel(), taskLevel);
} else {
this->taskLevel = std::max(this->taskLevel.load(), taskLevel);
}
int32_t statusToPropagate = CL_SUBMITTED;
if (isStatusCompletedByTermination(blockerStatus)) {
statusToPropagate = blockerStatus;
}
setStatus(statusToPropagate);
// event may be completed after this operation, transtition the state to not block others.
this->updateExecutionStatus();
}
bool Event::updateStatusAndCheckCompletion() {
auto currentStatus = updateEventAndReturnCurrentStatus();
return isStatusCompleted(currentStatus);
}
bool Event::isReadyForSubmission() {
return taskLevel != CompletionStamp::notReady ? true : false;
}
void Event::addCallback(Callback::ClbFuncT fn, cl_int type, void *data) {
ECallbackTarget target = translateToCallbackTarget(type);
if (target == ECallbackTarget::invalid) {
DEBUG_BREAK_IF(true);
return;
}
incRefInternal();
// Note from spec :
// "All callbacks registered for an event object must be called.
// All enqueued callbacks shall be called before the event object is destroyed."
// That's why each registered calback increments the internal refcount
incRefInternal();
DBG_LOG(EventsDebugEnable, "event", this, "addCallback", "ECallbackTarget", (uint32_t)type);
callbacks[(uint32_t)target].pushFrontOne(*new Callback(this, fn, type, data));
// Callback added after event reached its "completed" state
if (updateStatusAndCheckCompletion()) {
int32_t status = executionStatus;
DBG_LOG(EventsDebugEnable, "event", this, "addCallback executing callbacks with status", status);
executeCallbacks(status);
}
if (peekHasCallbacks() && !isUserEvent() && debugManager.flags.EnableAsyncEventsHandler.get()) {
ctx->getAsyncEventsHandler().registerEvent(this);
}
decRefInternal();
}
void Event::executeCallbacks(int32_t executionStatusIn) {
int32_t execStatus = executionStatusIn;
bool terminated = isStatusCompletedByTermination(execStatus);
ECallbackTarget target;
if (terminated) {
target = ECallbackTarget::completed;
} else {
target = translateToCallbackTarget(execStatus);
if (target == ECallbackTarget::invalid) {
DEBUG_BREAK_IF(true);
return;
}
}
// run through all needed callback targets and execute callbacks
for (uint32_t i = 0; i <= (uint32_t)target; ++i) {
auto cb = callbacks[i].detachNodes();
auto curr = cb;
while (curr != nullptr) {
auto next = curr->next;
if (terminated) {
curr->overrideCallbackExecutionStatusTarget(execStatus);
}
DBG_LOG(EventsDebugEnable, "event", this, "executing callback", "ECallbackTarget", (uint32_t)target);
curr->execute();
decRefInternal();
delete curr;
curr = next;
}
}
}
bool Event::tryFlushEvent() {
// only if event is not completed, completed event has already been flushed
if (cmdQueue && updateStatusAndCheckCompletion() == false) {
// flush the command queue only if it is not blocked event
if (taskLevel != CompletionStamp::notReady) {
return cmdQueue->getGpgpuCommandStreamReceiver().flushBatchedSubmissions();
}
}
return true;
}
void Event::setQueueTimeStamp() {
UNRECOVERABLE_IF(!cmdQueue);
this->cmdQueue->getDevice().getOSTime()->getCpuTime(&queueTimeStamp.cpuTimeInNs);
}
void Event::setStartTimeStamp() {
UNRECOVERABLE_IF(!cmdQueue);
this->cmdQueue->getDevice().getOSTime()->getCpuTime(&startTimeStamp.cpuTimeInNs);
setupRelativeProfilingInfo(startTimeStamp);
}
void Event::setEndTimeStamp() {
UNRECOVERABLE_IF(!cmdQueue);
this->cmdQueue->getDevice().getOSTime()->getCpuTime(&endTimeStamp.cpuTimeInNs);
setupRelativeProfilingInfo(endTimeStamp);
completeTimeStamp = endTimeStamp;
}
TagNodeBase *Event::getHwTimeStampNode() {
if (!cmdQueue->getTimestampPacketContainer() && !timeStampNode) {
timeStampNode = cmdQueue->getGpgpuCommandStreamReceiver().getEventTsAllocator()->getTag();
}
return timeStampNode;
}
TagNodeBase *Event::getHwPerfCounterNode() {
if (!perfCounterNode && cmdQueue->getPerfCounters()) {
const uint32_t gpuReportSize = HwPerfCounter::getSize(*(cmdQueue->getPerfCounters()));
perfCounterNode = cmdQueue->getGpgpuCommandStreamReceiver().getEventPerfCountAllocator(gpuReportSize)->getTag();
}
return perfCounterNode;
}
TagNodeBase *Event::getMultiRootTimestampSyncNode() {
auto lock = getContext()->obtainOwnershipForMultiRootDeviceAllocator();
if (getContext()->getMultiRootDeviceTimestampPacketAllocator() == nullptr) {
auto allocator = cmdQueue->getGpgpuCommandStreamReceiver().createMultiRootDeviceTimestampPacketAllocator(getContext()->getRootDeviceIndices());
getContext()->setMultiRootDeviceTimestampPacketAllocator(allocator);
}
lock.unlock();
if (multiRootDeviceTimestampPacketContainer.get() == nullptr) {
multiRootDeviceTimestampPacketContainer = std::make_unique<TimestampPacketContainer>();
}
multiRootTimeStampSyncNode = getContext()->getMultiRootDeviceTimestampPacketAllocator()->getTag();
multiRootDeviceTimestampPacketContainer->add(multiRootTimeStampSyncNode);
return multiRootTimeStampSyncNode;
}
void Event::addTimestampPacketNodes(const TimestampPacketContainer &inputTimestampPacketContainer) {
timestampPacketContainer->assignAndIncrementNodesRefCounts(inputTimestampPacketContainer);
}
TimestampPacketContainer *Event::getTimestampPacketNodes() const { return timestampPacketContainer.get(); }
TimestampPacketContainer *Event::getMultiRootDeviceTimestampPacketNodes() const { return multiRootDeviceTimestampPacketContainer.get(); }
bool Event::checkUserEventDependencies(cl_uint numEventsInWaitList, const cl_event *eventWaitList) {
bool userEventsDependencies = false;
for (uint32_t i = 0; i < numEventsInWaitList; i++) {
auto event = castToObjectOrAbort<Event>(eventWaitList[i]);
if (!event->isReadyForSubmission()) {
userEventsDependencies = true;
break;
}
}
return userEventsDependencies;
}
TaskCountType Event::peekTaskLevel() const {
return taskLevel;
}
} // namespace NEO