compute-runtime/unit_tests/fixtures/memory_management_fixture.cpp

323 lines
13 KiB
C++

/*
* Copyright (c) 2017, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "runtime/helpers/options.h"
#include "unit_tests/fixtures/memory_management_fixture.h"
#include "unit_tests/helpers/memory_management.h"
#include <cinttypes>
#if defined(__linux__)
#include <cstdio>
#include <execinfo.h>
#include <cxxabi.h>
#include <dlfcn.h>
#elif defined(_WIN32)
#include <Windows.h>
#pragma warning(push) // Saves the current warning state.
#pragma warning(disable : 4091) // Temporarily disables warning 4091.
#include <DbgHelp.h>
#pragma warning(pop) // Restores the warning state.
#pragma comment(lib, "Dbghelp.lib")
#endif
namespace Os {
extern const char *frontEndDllName;
extern const char *igcDllName;
} // namespace Os
bool printMemoryOpCallStack = true;
void MemoryManagementFixture::SetUp() {
EXPECT_EQ(static_cast<size_t>(-1), MemoryManagement::failingAllocation);
MemoryManagement::indexAllocation = 0;
MemoryManagement::indexDeallocation = 0;
MemoryManagement::failingAllocation = -1;
previousAllocations = MemoryManagement::numAllocations.load();
MemoryManagement::logTraces = OCLRT::captureCallStacks;
}
void MemoryManagementFixture::TearDown() {
clearFailingAllocation();
checkForLeaks();
MemoryManagement::logTraces = false;
}
void MemoryManagementFixture::setFailingAllocation(size_t allocation) {
MemoryManagement::indexAllocation = 0;
MemoryManagement::failingAllocation = allocation;
}
void MemoryManagementFixture::clearFailingAllocation() {
MemoryManagement::failingAllocation = -1;
}
size_t MemoryManagementFixture::enumerateLeak(size_t indexAllocationTop, size_t indexDeallocationTop, bool lookFromBack, bool requireCallStack, bool fastLookup) {
using MemoryManagement::eventsAllocated;
using MemoryManagement::eventsDeallocated;
using MemoryManagement::AllocationEvent;
static auto start = invalidLeakIndex;
auto newIndex = start == invalidLeakIndex ? 0 : start;
bool potentialLeak = false;
auto potentialLeakIndex = newIndex;
for (; newIndex < indexAllocationTop; ++newIndex) {
auto currentIndex = lookFromBack ? indexAllocationTop - newIndex - 1 : newIndex;
auto &eventAllocation = eventsAllocated[currentIndex];
if (requireCallStack && eventAllocation.frames == 0) {
continue;
}
if (fastLookup && eventAllocation.fastLeakDetectionMode == 0) {
continue;
}
if (eventAllocation.event != AllocationEvent::EVENT_UNKNOWN) {
// Should be some sort of allocation
size_t deleteIndex = 0;
for (; deleteIndex < indexDeallocationTop; ++deleteIndex) {
auto &eventDeallocation = eventsDeallocated[deleteIndex];
if (eventDeallocation.address == eventAllocation.address &&
eventDeallocation.event != AllocationEvent::EVENT_UNKNOWN) {
//this memory was once freed, now it is allocated but not freed
if (requireCallStack && eventDeallocation.frames == 0) {
potentialLeak = true;
potentialLeakIndex = currentIndex;
continue;
}
//allocated with fast lookup, but deallocated other way, not a match
if (fastLookup && eventDeallocation.fastLeakDetectionMode != 1) {
continue;
}
// Clear the NEW and DELETE event.
eventAllocation.event = AllocationEvent::EVENT_UNKNOWN;
eventDeallocation.event = AllocationEvent::EVENT_UNKNOWN;
potentialLeak = false;
// Found a corresponding match
break;
}
}
if (potentialLeak) {
return potentialLeakIndex;
}
if (deleteIndex == indexDeallocationTop) {
start = newIndex + 1;
return currentIndex;
}
}
}
start = invalidLeakIndex;
return start;
}
std::string printCallStack(const MemoryManagement::AllocationEvent &event) {
std::string result = "";
printf("printCallStack.%d.%d\n", printMemoryOpCallStack, event.frames);
if (!OCLRT::captureCallStacks) {
printf("for detailed stack information turn on captureCallStacks in options.h\n");
}
if (printMemoryOpCallStack && event.frames > 0) {
#if defined(__linux__)
char **bt = backtrace_symbols(event.callstack, event.frames);
char *demangled;
int status;
char output[1024];
Dl_info info;
result += "\n";
for (int i = 0; i < event.frames; ++i) {
dladdr(event.callstack[i], &info);
if (info.dli_sname) {
demangled = nullptr;
status = -1;
if (info.dli_sname[0] == '_') {
demangled = abi::__cxa_demangle(info.dli_sname, nullptr, 0, &status);
}
snprintf(output, sizeof(output), "%-3d %*p %s + %zd\n",
(event.frames - i - 1), (int)(sizeof(void *) + 2), event.callstack[i],
status == 0 ? demangled : info.dli_sname == 0 ? bt[i] : info.dli_sname,
(char *)event.callstack[i] - (char *)info.dli_saddr);
free(demangled);
} else {
snprintf(output, sizeof(output), "%-3d %*p %s\n",
(event.frames - i - 1), (int)(sizeof(void *) + 2), event.callstack[i], bt[i]);
}
result += std::string(output);
}
result += "\n";
free(bt);
#elif defined(_WIN32)
SYMBOL_INFO *symbol;
HANDLE process;
process = GetCurrentProcess();
SymInitialize(process, NULL, TRUE);
symbol = (SYMBOL_INFO *)calloc(sizeof(SYMBOL_INFO) + 256 * sizeof(char), 1);
symbol->MaxNameLen = 255;
symbol->SizeOfStruct = sizeof(SYMBOL_INFO);
for (int i = 0; i < event.frames; i++) {
SymFromAddr(process, (DWORD64)(event.callstack[i]), 0, symbol);
printf("%i: %s - 0x%0" PRIx64 "\n", event.frames - i - 1, symbol->Name, symbol->Address);
}
free(symbol);
#endif
}
return result;
}
::testing::AssertionResult MemoryManagementFixture::assertLeak(
const char *leakExpr,
size_t leakIndex) {
using MemoryManagement::eventsAllocated;
using MemoryManagement::AllocationEvent;
if (leakIndex == invalidLeakIndex) {
return ::testing::AssertionSuccess();
}
auto &event = eventsAllocated[leakIndex];
switch (event.event) {
case AllocationEvent::EVENT_DELETE:
return ::testing::AssertionFailure() << "event[" << leakIndex
<< "]: delete doesn't have corresponding new. allocation address="
<< event.address
<< ", allocation size=" << event.size << printCallStack(event);
break;
case AllocationEvent::EVENT_DELETE_ARRAY:
return ::testing::AssertionFailure() << "event[" << leakIndex
<< "]: delete[] doesn't have corresponding new[]. allocation address="
<< event.address
<< ", allocation size=" << event.size << printCallStack(event);
break;
case AllocationEvent::EVENT_NEW:
return ::testing::AssertionFailure() << "event[" << leakIndex
<< "]: new doesn't have corresponding delete. allocation address="
<< event.address
<< ", allocation size=" << event.size << printCallStack(event);
break;
case AllocationEvent::EVENT_NEW_NOTHROW:
return ::testing::AssertionFailure() << "event[" << leakIndex
<< "]: new (std::nothrow) doesn't have corresponding delete. allocation address="
<< event.address
<< ", allocation size=" << event.size << printCallStack(event);
break;
case AllocationEvent::EVENT_NEW_ARRAY:
return ::testing::AssertionFailure() << "event[" << leakIndex
<< "]: new [] doesn't have corresponding delete[]. allocation address="
<< event.address
<< ", allocation size=" << event.size << printCallStack(event);
break;
case AllocationEvent::EVENT_NEW_ARRAY_NOTHROW:
return ::testing::AssertionFailure() << "event[" << leakIndex
<< "] new (std::nothrow) [] doesn't have corresponding delete[]. allocation address="
<< event.address
<< ", allocation size=" << event.size << printCallStack(event);
break;
case AllocationEvent::EVENT_NEW_ARRAY_NOTHROW_FAIL:
case AllocationEvent::EVENT_NEW_ARRAY_FAIL:
case AllocationEvent::EVENT_NEW_NOTHROW_FAIL:
case AllocationEvent::EVENT_NEW_FAIL:
case AllocationEvent::EVENT_UNKNOWN:
default:
return ::testing::AssertionFailure() << "Unknown event[" << leakIndex << "] detected. allocation size=" << event.size;
break;
}
}
void MemoryManagementFixture::checkForLeaks() {
// We have to alias MemoryManagement::numAllocations because
// the following EXPECT_EQ actually allocates more memory :-)
auto currentAllocations = MemoryManagement::numAllocations.load();
auto indexAllocationTop = MemoryManagement::indexAllocation.load();
auto indexDellocationTop = MemoryManagement::indexDeallocation.load();
if (previousAllocations != currentAllocations) {
auto testInfo = ::testing::UnitTest::GetInstance()->current_test_info();
auto testResult = testInfo->result();
if (testResult->Passed()) {
//EXPECT_EQ(previousAllocations, currentAllocations);
size_t leakEventIndex;
do {
leakEventIndex = enumerateLeak(indexAllocationTop, indexDellocationTop);
EXPECT_PRED_FORMAT1(assertLeak, leakEventIndex);
auto invalidLeakIndexValues = invalidLeakIndex;
EXPECT_EQ(leakEventIndex, invalidLeakIndexValues);
} while (leakEventIndex != invalidLeakIndex);
} else {
printf("*** WARNING: Leaks found but dumping disabled during test failure ***\n");
}
}
}
void MemoryManagementFixture::injectFailures(InjectedFunction &method, uint32_t maxIndex) {
MemoryManagement::indexAllocation = 0;
method(-1);
auto numCurrentAllocations = MemoryManagement::indexAllocation.load();
for (auto i = 0u; i < numCurrentAllocations; i++) {
// Force a failure
MemoryManagement::indexAllocation = numCurrentAllocations;
MemoryManagement::failingAllocation = i + numCurrentAllocations;
if (MemoryManagement::eventsAllocated[i].event == MemoryManagement::AllocationEvent::EVENT_NEW ||
MemoryManagement::eventsAllocated[i].event == MemoryManagement::AllocationEvent::EVENT_NEW_ARRAY) {
continue;
}
if (maxIndex != 0 && i > maxIndex) {
break;
}
// Call the method under test
method(i);
// Restore allocations
MemoryManagement::failingAllocation = -1;
}
MemoryManagement::failingAllocation = -1;
}
void MemoryManagementFixture::injectFailureOnIndex(InjectedFunction &method, uint32_t index) {
MemoryManagement::indexAllocation = 0;
method(-1);
auto numCurrentAllocations = MemoryManagement::indexAllocation.load();
// Force a failure
MemoryManagement::indexAllocation = numCurrentAllocations;
MemoryManagement::failingAllocation = index + numCurrentAllocations;
// Call the method under test
method(index);
// Restore allocations
MemoryManagement::failingAllocation = -1;
}