compute-runtime/runtime/kernel/kernel.cpp

2331 lines
109 KiB
C++

/*
* Copyright (C) 2018-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "runtime/kernel/kernel.h"
#include "core/helpers/aligned_memory.h"
#include "core/helpers/basic_math.h"
#include "core/helpers/debug_helpers.h"
#include "core/helpers/hw_helper.h"
#include "core/helpers/kernel_helpers.h"
#include "core/helpers/ptr_math.h"
#include "core/memory_manager/unified_memory_manager.h"
#include "runtime/accelerators/intel_accelerator.h"
#include "runtime/accelerators/intel_motion_estimation.h"
#include "runtime/built_ins/built_ins.h"
#include "runtime/built_ins/builtins_dispatch_builder.h"
#include "runtime/command_queue/command_queue.h"
#include "runtime/command_stream/command_stream_receiver.h"
#include "runtime/context/context.h"
#include "runtime/device_queue/device_queue.h"
#include "runtime/execution_model/device_enqueue.h"
#include "runtime/gmm_helper/gmm_helper.h"
#include "runtime/gtpin/gtpin_notify.h"
#include "runtime/helpers/get_info.h"
#include "runtime/helpers/per_thread_data.h"
#include "runtime/helpers/sampler_helpers.h"
#include "runtime/helpers/surface_formats.h"
#include "runtime/kernel/image_transformer.h"
#include "runtime/kernel/kernel.inl"
#include "runtime/mem_obj/buffer.h"
#include "runtime/mem_obj/image.h"
#include "runtime/mem_obj/pipe.h"
#include "runtime/memory_manager/memory_manager.h"
#include "runtime/memory_manager/surface.h"
#include "runtime/os_interface/debug_settings_manager.h"
#include "runtime/platform/platform.h"
#include "runtime/program/block_kernel_manager.h"
#include "runtime/program/kernel_info.h"
#include "runtime/sampler/sampler.h"
#include "patch_list.h"
#include <algorithm>
#include <cstdint>
#include <vector>
using namespace iOpenCL;
namespace NEO {
class Surface;
uint32_t Kernel::dummyPatchLocation = 0xbaddf00d;
Kernel::Kernel(Program *programArg, const KernelInfo &kernelInfoArg, const Device &deviceArg, bool schedulerKernel)
: globalWorkOffsetX(&Kernel::dummyPatchLocation),
globalWorkOffsetY(&Kernel::dummyPatchLocation),
globalWorkOffsetZ(&Kernel::dummyPatchLocation),
localWorkSizeX(&Kernel::dummyPatchLocation),
localWorkSizeY(&Kernel::dummyPatchLocation),
localWorkSizeZ(&Kernel::dummyPatchLocation),
localWorkSizeX2(&Kernel::dummyPatchLocation),
localWorkSizeY2(&Kernel::dummyPatchLocation),
localWorkSizeZ2(&Kernel::dummyPatchLocation),
globalWorkSizeX(&Kernel::dummyPatchLocation),
globalWorkSizeY(&Kernel::dummyPatchLocation),
globalWorkSizeZ(&Kernel::dummyPatchLocation),
enqueuedLocalWorkSizeX(&Kernel::dummyPatchLocation),
enqueuedLocalWorkSizeY(&Kernel::dummyPatchLocation),
enqueuedLocalWorkSizeZ(&Kernel::dummyPatchLocation),
numWorkGroupsX(&Kernel::dummyPatchLocation),
numWorkGroupsY(&Kernel::dummyPatchLocation),
numWorkGroupsZ(&Kernel::dummyPatchLocation),
maxWorkGroupSizeForCrossThreadData(&Kernel::dummyPatchLocation),
workDim(&Kernel::dummyPatchLocation),
dataParameterSimdSize(&Kernel::dummyPatchLocation),
parentEventOffset(&Kernel::dummyPatchLocation),
preferredWkgMultipleOffset(&Kernel::dummyPatchLocation),
slmTotalSize(kernelInfoArg.workloadInfo.slmStaticSize),
isBuiltIn(false),
isParentKernel((kernelInfoArg.patchInfo.executionEnvironment != nullptr) ? (kernelInfoArg.patchInfo.executionEnvironment->HasDeviceEnqueue != 0) : false),
isSchedulerKernel(schedulerKernel),
program(programArg),
context(nullptr),
device(deviceArg),
kernelInfo(kernelInfoArg),
numberOfBindingTableStates(0),
localBindingTableOffset(0),
sshLocalSize(0),
crossThreadData(nullptr),
crossThreadDataSize(0),
privateSurface(nullptr),
privateSurfaceSize(0),
kernelReflectionSurface(nullptr),
usingSharedObjArgs(false) {
program->retain();
imageTransformer.reset(new ImageTransformer);
maxKernelWorkGroupSize = static_cast<uint32_t>(device.getDeviceInfo().maxWorkGroupSize);
}
Kernel::~Kernel() {
delete[] crossThreadData;
crossThreadData = nullptr;
crossThreadDataSize = 0;
if (privateSurface) {
program->peekExecutionEnvironment().memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(privateSurface);
privateSurface = nullptr;
}
if (kernelReflectionSurface) {
program->peekExecutionEnvironment().memoryManager->freeGraphicsMemory(kernelReflectionSurface);
kernelReflectionSurface = nullptr;
}
for (uint32_t i = 0; i < patchedArgumentsNum; i++) {
if (kernelInfo.kernelArgInfo.at(i).isSampler) {
auto sampler = castToObject<Sampler>(kernelArguments.at(i).object);
if (sampler) {
sampler->decRefInternal();
}
}
}
kernelArgHandlers.clear();
program->release();
}
// Checks if patch offset is invalid (undefined)
inline bool isInvalidOffset(uint32_t offset) {
return (offset == KernelArgInfo::undefinedOffset);
}
// Checks if patch offset is valid
inline bool isValidOffset(uint32_t offset) {
return isInvalidOffset(offset) == false;
}
// If dstOffsetBytes is not an invalid offset, then patches dst at dstOffsetBytes
// with src casted to DstT type.
template <typename DstT, typename SrcT>
inline void patch(const SrcT &src, void *dst, uint32_t dstOffsetBytes) {
if (isInvalidOffset(dstOffsetBytes)) {
return;
}
DstT *patchLocation = reinterpret_cast<DstT *>(ptrOffset(dst, dstOffsetBytes));
*patchLocation = static_cast<DstT>(src);
}
template <typename PatchTokenT>
void Kernel::patchWithImplicitSurface(void *ptrToPatchInCrossThreadData, GraphicsAllocation &allocation, const PatchTokenT &patch) {
uint32_t crossThreadDataOffset = patch.DataParamOffset;
uint32_t pointerSize = patch.DataParamSize;
uint32_t sshOffset = patch.SurfaceStateHeapOffset;
void *crossThreadData = getCrossThreadData();
void *ssh = getSurfaceStateHeap();
if (crossThreadData != nullptr) {
auto pp = ptrOffset(crossThreadData, crossThreadDataOffset);
uintptr_t addressToPatch = reinterpret_cast<uintptr_t>(ptrToPatchInCrossThreadData);
patchWithRequiredSize(pp, pointerSize, addressToPatch);
if (DebugManager.flags.AddPatchInfoCommentsForAUBDump.get()) {
PatchInfoData patchInfoData(addressToPatch, 0u, PatchInfoAllocationType::KernelArg, reinterpret_cast<uint64_t>(getCrossThreadData()), crossThreadDataOffset, PatchInfoAllocationType::IndirectObjectHeap, pointerSize);
this->patchInfoDataList.push_back(patchInfoData);
}
}
if (ssh) {
auto surfaceState = ptrOffset(ssh, sshOffset);
void *addressToPatch = reinterpret_cast<void *>(allocation.getGpuAddressToPatch());
size_t sizeToPatch = allocation.getUnderlyingBufferSize();
Buffer::setSurfaceState(&getDevice(), surfaceState, sizeToPatch, addressToPatch, &allocation);
}
}
template void Kernel::patchWithImplicitSurface(void *ptrToPatchInCrossThreadData, GraphicsAllocation &allocation, const SPatchAllocateStatelessGlobalMemorySurfaceWithInitialization &patch);
template void Kernel::patchWithImplicitSurface(void *ptrToPatchInCrossThreadData, GraphicsAllocation &allocation, const SPatchAllocateStatelessPrivateSurface &patch);
template void Kernel::patchWithImplicitSurface(void *ptrToPatchInCrossThreadData, GraphicsAllocation &allocation, const SPatchAllocateStatelessConstantMemorySurfaceWithInitialization &patch);
cl_int Kernel::initialize() {
cl_int retVal = CL_OUT_OF_HOST_MEMORY;
do {
const auto &workloadInfo = kernelInfo.workloadInfo;
const auto &heapInfo = kernelInfo.heapInfo;
const auto &patchInfo = kernelInfo.patchInfo;
reconfigureKernel();
crossThreadDataSize = patchInfo.dataParameterStream
? patchInfo.dataParameterStream->DataParameterStreamSize
: 0;
// now allocate our own cross-thread data, if necessary
if (crossThreadDataSize) {
crossThreadData = new char[crossThreadDataSize];
if (kernelInfo.crossThreadData) {
memcpy_s(crossThreadData, crossThreadDataSize, kernelInfo.crossThreadData, crossThreadDataSize);
} else {
memset(crossThreadData, 0x00, crossThreadDataSize);
}
auto crossThread = reinterpret_cast<uint32_t *>(crossThreadData);
globalWorkOffsetX = workloadInfo.globalWorkOffsetOffsets[0] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.globalWorkOffsetOffsets[0]) : globalWorkOffsetX;
globalWorkOffsetY = workloadInfo.globalWorkOffsetOffsets[1] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.globalWorkOffsetOffsets[1]) : globalWorkOffsetY;
globalWorkOffsetZ = workloadInfo.globalWorkOffsetOffsets[2] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.globalWorkOffsetOffsets[2]) : globalWorkOffsetZ;
localWorkSizeX = workloadInfo.localWorkSizeOffsets[0] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.localWorkSizeOffsets[0]) : localWorkSizeX;
localWorkSizeY = workloadInfo.localWorkSizeOffsets[1] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.localWorkSizeOffsets[1]) : localWorkSizeY;
localWorkSizeZ = workloadInfo.localWorkSizeOffsets[2] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.localWorkSizeOffsets[2]) : localWorkSizeZ;
localWorkSizeX2 = workloadInfo.localWorkSizeOffsets2[0] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.localWorkSizeOffsets2[0]) : localWorkSizeX2;
localWorkSizeY2 = workloadInfo.localWorkSizeOffsets2[1] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.localWorkSizeOffsets2[1]) : localWorkSizeY2;
localWorkSizeZ2 = workloadInfo.localWorkSizeOffsets2[2] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.localWorkSizeOffsets2[2]) : localWorkSizeZ2;
globalWorkSizeX = workloadInfo.globalWorkSizeOffsets[0] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.globalWorkSizeOffsets[0]) : globalWorkSizeX;
globalWorkSizeY = workloadInfo.globalWorkSizeOffsets[1] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.globalWorkSizeOffsets[1]) : globalWorkSizeY;
globalWorkSizeZ = workloadInfo.globalWorkSizeOffsets[2] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.globalWorkSizeOffsets[2]) : globalWorkSizeZ;
enqueuedLocalWorkSizeX = workloadInfo.enqueuedLocalWorkSizeOffsets[0] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.enqueuedLocalWorkSizeOffsets[0]) : enqueuedLocalWorkSizeX;
enqueuedLocalWorkSizeY = workloadInfo.enqueuedLocalWorkSizeOffsets[1] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.enqueuedLocalWorkSizeOffsets[1]) : enqueuedLocalWorkSizeY;
enqueuedLocalWorkSizeZ = workloadInfo.enqueuedLocalWorkSizeOffsets[2] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.enqueuedLocalWorkSizeOffsets[2]) : enqueuedLocalWorkSizeZ;
numWorkGroupsX = workloadInfo.numWorkGroupsOffset[0] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.numWorkGroupsOffset[0]) : numWorkGroupsX;
numWorkGroupsY = workloadInfo.numWorkGroupsOffset[1] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.numWorkGroupsOffset[1]) : numWorkGroupsY;
numWorkGroupsZ = workloadInfo.numWorkGroupsOffset[2] != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.numWorkGroupsOffset[2]) : numWorkGroupsZ;
maxWorkGroupSizeForCrossThreadData = workloadInfo.maxWorkGroupSizeOffset != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.maxWorkGroupSizeOffset) : maxWorkGroupSizeForCrossThreadData;
workDim = workloadInfo.workDimOffset != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.workDimOffset) : workDim;
dataParameterSimdSize = workloadInfo.simdSizeOffset != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.simdSizeOffset) : dataParameterSimdSize;
parentEventOffset = workloadInfo.parentEventOffset != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.parentEventOffset) : parentEventOffset;
preferredWkgMultipleOffset = workloadInfo.preferredWkgMultipleOffset != WorkloadInfo::undefinedOffset ? ptrOffset(crossThread, workloadInfo.preferredWkgMultipleOffset) : preferredWkgMultipleOffset;
*maxWorkGroupSizeForCrossThreadData = maxKernelWorkGroupSize;
*dataParameterSimdSize = getKernelInfo().getMaxSimdSize();
*preferredWkgMultipleOffset = getKernelInfo().getMaxSimdSize();
*parentEventOffset = WorkloadInfo::invalidParentEvent;
}
// allocate our own SSH, if necessary
sshLocalSize = heapInfo.pKernelHeader
? heapInfo.pKernelHeader->SurfaceStateHeapSize
: 0;
if (sshLocalSize) {
pSshLocal = std::make_unique<char[]>(sshLocalSize);
// copy the ssh into our local copy
memcpy_s(pSshLocal.get(), sshLocalSize, heapInfo.pSsh, sshLocalSize);
}
numberOfBindingTableStates = (patchInfo.bindingTableState != nullptr) ? patchInfo.bindingTableState->Count : 0;
localBindingTableOffset = (patchInfo.bindingTableState != nullptr) ? patchInfo.bindingTableState->Offset : 0;
// patch crossthread data and ssh with inline surfaces, if necessary
privateSurfaceSize = patchInfo.pAllocateStatelessPrivateSurface
? patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize
: 0;
if (privateSurfaceSize) {
privateSurfaceSize *= device.getDeviceInfo().computeUnitsUsedForScratch * getKernelInfo().getMaxSimdSize();
DEBUG_BREAK_IF(privateSurfaceSize == 0);
if ((is32Bit() || device.getMemoryManager()->peekForce32BitAllocations()) && (privateSurfaceSize > std::numeric_limits<uint32_t>::max())) {
retVal = CL_OUT_OF_RESOURCES;
break;
}
privateSurface = device.getMemoryManager()->allocateGraphicsMemoryWithProperties({device.getRootDeviceIndex(), static_cast<size_t>(privateSurfaceSize), GraphicsAllocation::AllocationType::PRIVATE_SURFACE});
if (privateSurface == nullptr) {
retVal = CL_OUT_OF_RESOURCES;
break;
}
const auto &patch = patchInfo.pAllocateStatelessPrivateSurface;
patchWithImplicitSurface(reinterpret_cast<void *>(privateSurface->getGpuAddressToPatch()), *privateSurface, *patch);
}
if (patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization) {
DEBUG_BREAK_IF(program->getConstantSurface() == nullptr);
uintptr_t constMemory = isBuiltIn ? (uintptr_t)program->getConstantSurface()->getUnderlyingBuffer() : (uintptr_t)program->getConstantSurface()->getGpuAddressToPatch();
const auto &patch = patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization;
patchWithImplicitSurface(reinterpret_cast<void *>(constMemory), *program->getConstantSurface(), *patch);
}
if (patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization) {
DEBUG_BREAK_IF(program->getGlobalSurface() == nullptr);
uintptr_t globalMemory = isBuiltIn ? (uintptr_t)program->getGlobalSurface()->getUnderlyingBuffer() : (uintptr_t)program->getGlobalSurface()->getGpuAddressToPatch();
const auto &patch = patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization;
patchWithImplicitSurface(reinterpret_cast<void *>(globalMemory), *program->getGlobalSurface(), *patch);
}
if (patchInfo.pAllocateStatelessEventPoolSurface) {
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(reinterpret_cast<uintptr_t *>(getSurfaceStateHeap()),
patchInfo.pAllocateStatelessEventPoolSurface->SurfaceStateHeapOffset);
Buffer::setSurfaceState(&getDevice(), surfaceState, 0, nullptr);
}
}
if (patchInfo.pAllocateStatelessDefaultDeviceQueueSurface) {
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(reinterpret_cast<uintptr_t *>(getSurfaceStateHeap()),
patchInfo.pAllocateStatelessDefaultDeviceQueueSurface->SurfaceStateHeapOffset);
Buffer::setSurfaceState(&getDevice(), surfaceState, 0, nullptr);
}
}
patchBlocksSimdSize();
provideInitializationHints();
// resolve the new kernel info to account for kernel handlers
// I think by this time we have decoded the binary and know the number of args etc.
// double check this assumption
bool usingBuffers = false;
bool usingImages = false;
auto numArgs = kernelInfo.kernelArgInfo.size();
kernelArguments.resize(numArgs);
slmSizes.resize(numArgs);
kernelArgHandlers.resize(numArgs);
kernelArgRequiresCacheFlush.resize(numArgs);
for (uint32_t i = 0; i < numArgs; ++i) {
storeKernelArg(i, NONE_OBJ, nullptr, nullptr, 0);
slmSizes[i] = 0;
// set the argument handler
auto &argInfo = kernelInfo.kernelArgInfo[i];
if (argInfo.addressQualifier == CL_KERNEL_ARG_ADDRESS_LOCAL) {
kernelArgHandlers[i] = &Kernel::setArgLocal;
} else if (argInfo.isAccelerator) {
kernelArgHandlers[i] = &Kernel::setArgAccelerator;
} else if (argInfo.typeQualifierStr.find("pipe") != std::string::npos) {
kernelArgHandlers[i] = &Kernel::setArgPipe;
kernelArguments[i].type = PIPE_OBJ;
} else if (argInfo.isImage) {
kernelArgHandlers[i] = &Kernel::setArgImage;
kernelArguments[i].type = IMAGE_OBJ;
usingImages = true;
DEBUG_BREAK_IF(argInfo.typeStr.find("image") == std::string::npos);
} else if (argInfo.isSampler) {
kernelArgHandlers[i] = &Kernel::setArgSampler;
kernelArguments[i].type = SAMPLER_OBJ;
DEBUG_BREAK_IF(!(*argInfo.typeStr.c_str() == '\0' || argInfo.typeStr.find("sampler") != std::string::npos));
} else if (argInfo.isBuffer) {
kernelArgHandlers[i] = &Kernel::setArgBuffer;
kernelArguments[i].type = BUFFER_OBJ;
usingBuffers = true;
allBufferArgsStateful &= static_cast<uint32_t>(argInfo.pureStatefulBufferAccess);
this->auxTranslationRequired |= !kernelInfo.kernelArgInfo[i].pureStatefulBufferAccess &&
HwHelper::renderCompressedBuffersSupported(getDevice().getHardwareInfo());
} else if (argInfo.isDeviceQueue) {
kernelArgHandlers[i] = &Kernel::setArgDevQueue;
kernelArguments[i].type = DEVICE_QUEUE_OBJ;
} else {
kernelArgHandlers[i] = &Kernel::setArgImmediate;
}
}
auxTranslationRequired &= HwHelper::get(device.getHardwareInfo().platform.eRenderCoreFamily).requiresAuxResolves();
if (DebugManager.flags.DisableAuxTranslation.get()) {
auxTranslationRequired = false;
}
if (usingImages && !usingBuffers) {
usingImagesOnly = true;
}
if (isParentKernel) {
program->allocateBlockPrivateSurfaces(device.getRootDeviceIndex());
}
retVal = CL_SUCCESS;
} while (false);
return retVal;
}
cl_int Kernel::cloneKernel(Kernel *pSourceKernel) {
// copy cross thread data to store arguments set to source kernel with clSetKernelArg on immediate data (non-pointer types)
memcpy_s(crossThreadData, crossThreadDataSize, pSourceKernel->crossThreadData, pSourceKernel->crossThreadDataSize);
DEBUG_BREAK_IF(pSourceKernel->crossThreadDataSize != crossThreadDataSize);
// copy arguments set to source kernel with clSetKernelArg or clSetKernelArgSVMPointer
for (uint32_t i = 0; i < pSourceKernel->kernelArguments.size(); i++) {
if (0 == pSourceKernel->getKernelArgInfo(i).size) {
// skip copying arguments that haven't been set to source kernel
continue;
}
switch (pSourceKernel->kernelArguments[i].type) {
case NONE_OBJ:
// all arguments with immediate data (non-pointer types) have been copied in cross thread data
storeKernelArg(i, NONE_OBJ, nullptr, nullptr, pSourceKernel->getKernelArgInfo(i).size);
patchedArgumentsNum++;
kernelArguments[i].isPatched = true;
break;
case SVM_OBJ:
setArgSvm(i, pSourceKernel->getKernelArgInfo(i).size, const_cast<void *>(pSourceKernel->getKernelArgInfo(i).value),
pSourceKernel->getKernelArgInfo(i).pSvmAlloc, pSourceKernel->getKernelArgInfo(i).svmFlags);
break;
case SVM_ALLOC_OBJ:
setArgSvmAlloc(i, const_cast<void *>(pSourceKernel->getKernelArgInfo(i).value),
(GraphicsAllocation *)pSourceKernel->getKernelArgInfo(i).object);
break;
default:
setArg(i, pSourceKernel->getKernelArgInfo(i).size, pSourceKernel->getKernelArgInfo(i).value);
break;
}
}
// copy additional information other than argument values set to source kernel with clSetKernelExecInfo
for (auto gfxAlloc : pSourceKernel->kernelSvmGfxAllocations) {
kernelSvmGfxAllocations.push_back(gfxAlloc);
}
this->isBuiltIn = pSourceKernel->isBuiltIn;
return CL_SUCCESS;
}
cl_int Kernel::getInfo(cl_kernel_info paramName, size_t paramValueSize,
void *paramValue, size_t *paramValueSizeRet) const {
cl_int retVal;
const void *pSrc = nullptr;
size_t srcSize = 0;
cl_uint numArgs = 0;
const _cl_program *prog;
const _cl_context *ctxt;
cl_uint refCount = 0;
uint64_t nonCannonizedGpuAddress = 0llu;
switch (paramName) {
case CL_KERNEL_FUNCTION_NAME:
pSrc = kernelInfo.name.c_str();
srcSize = kernelInfo.name.length() + 1;
break;
case CL_KERNEL_NUM_ARGS:
srcSize = sizeof(cl_uint);
numArgs = (cl_uint)kernelInfo.kernelArgInfo.size();
pSrc = &numArgs;
break;
case CL_KERNEL_CONTEXT:
ctxt = &program->getContext();
srcSize = sizeof(ctxt);
pSrc = &ctxt;
break;
case CL_KERNEL_PROGRAM:
prog = program;
srcSize = sizeof(prog);
pSrc = &prog;
break;
case CL_KERNEL_REFERENCE_COUNT:
refCount = static_cast<cl_uint>(this->getReference());
srcSize = sizeof(refCount);
pSrc = &refCount;
break;
case CL_KERNEL_ATTRIBUTES:
pSrc = kernelInfo.attributes.c_str();
srcSize = kernelInfo.attributes.length() + 1;
break;
case CL_KERNEL_BINARY_PROGRAM_INTEL:
pSrc = getKernelHeap();
srcSize = getKernelHeapSize();
break;
case CL_KERNEL_BINARY_GPU_ADDRESS_INTEL:
nonCannonizedGpuAddress = GmmHelper::decanonize(kernelInfo.kernelAllocation->getGpuAddress());
pSrc = &nonCannonizedGpuAddress;
srcSize = sizeof(nonCannonizedGpuAddress);
break;
default:
getAdditionalInfo(paramName, pSrc, srcSize);
break;
}
retVal = ::getInfo(paramValue, paramValueSize, pSrc, srcSize);
if (paramValueSizeRet) {
*paramValueSizeRet = srcSize;
}
return retVal;
}
cl_int Kernel::getArgInfo(cl_uint argIndx, cl_kernel_arg_info paramName, size_t paramValueSize,
void *paramValue, size_t *paramValueSizeRet) const {
cl_int retVal;
const void *pSrc = nullptr;
size_t srcSize = 0;
auto numArgs = (cl_uint)kernelInfo.kernelArgInfo.size();
auto argInfoIdx = kernelInfo.kernelArgInfo[argIndx];
if (argIndx >= numArgs) {
retVal = CL_INVALID_ARG_INDEX;
return retVal;
}
switch (paramName) {
case CL_KERNEL_ARG_ADDRESS_QUALIFIER:
srcSize = sizeof(cl_uint);
pSrc = &argInfoIdx.addressQualifier;
break;
case CL_KERNEL_ARG_ACCESS_QUALIFIER:
srcSize = sizeof(cl_uint);
pSrc = &argInfoIdx.accessQualifier;
break;
case CL_KERNEL_ARG_TYPE_NAME:
srcSize = argInfoIdx.typeStr.length() + 1;
pSrc = argInfoIdx.typeStr.c_str();
break;
case CL_KERNEL_ARG_TYPE_QUALIFIER:
srcSize = sizeof(argInfoIdx.typeQualifier);
pSrc = &argInfoIdx.typeQualifier;
break;
case CL_KERNEL_ARG_NAME:
srcSize = argInfoIdx.name.length() + 1;
pSrc = argInfoIdx.name.c_str();
break;
default:
break;
}
retVal = ::getInfo(paramValue, paramValueSize, pSrc, srcSize);
if (paramValueSizeRet) {
*paramValueSizeRet = srcSize;
}
return retVal;
}
cl_int Kernel::getWorkGroupInfo(cl_device_id device, cl_kernel_work_group_info paramName,
size_t paramValueSize, void *paramValue,
size_t *paramValueSizeRet) const {
cl_int retVal = CL_INVALID_VALUE;
struct size_t3 {
size_t val[3];
} requiredWorkGroupSize;
cl_ulong localMemorySize;
const auto &patchInfo = kernelInfo.patchInfo;
size_t preferredWorkGroupSizeMultiple = 0;
cl_ulong scratchSize;
cl_ulong privateMemSize;
size_t maxWorkgroupSize;
GetInfoHelper info(paramValue, paramValueSize, paramValueSizeRet);
switch (paramName) {
case CL_KERNEL_WORK_GROUP_SIZE:
maxWorkgroupSize = this->maxKernelWorkGroupSize;
if (DebugManager.flags.UseMaxSimdSizeToDeduceMaxWorkgroupSize.get()) {
auto divisionSize = 32 / patchInfo.executionEnvironment->LargestCompiledSIMDSize;
maxWorkgroupSize /= divisionSize;
}
retVal = info.set<size_t>(maxWorkgroupSize);
break;
case CL_KERNEL_COMPILE_WORK_GROUP_SIZE:
DEBUG_BREAK_IF(!patchInfo.executionEnvironment);
requiredWorkGroupSize.val[0] = patchInfo.executionEnvironment->RequiredWorkGroupSizeX;
requiredWorkGroupSize.val[1] = patchInfo.executionEnvironment->RequiredWorkGroupSizeY;
requiredWorkGroupSize.val[2] = patchInfo.executionEnvironment->RequiredWorkGroupSizeZ;
retVal = info.set<size_t3>(requiredWorkGroupSize);
break;
case CL_KERNEL_LOCAL_MEM_SIZE:
localMemorySize = patchInfo.localsurface
? patchInfo.localsurface->TotalInlineLocalMemorySize
: 0;
retVal = info.set<cl_ulong>(localMemorySize);
break;
case CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE:
DEBUG_BREAK_IF(!patchInfo.executionEnvironment);
preferredWorkGroupSizeMultiple = patchInfo.executionEnvironment->LargestCompiledSIMDSize;
retVal = info.set<size_t>(preferredWorkGroupSizeMultiple);
break;
case CL_KERNEL_SPILL_MEM_SIZE_INTEL:
scratchSize = kernelInfo.patchInfo.mediavfestate ? kernelInfo.patchInfo.mediavfestate->PerThreadScratchSpace : 0;
retVal = info.set<cl_ulong>(scratchSize);
break;
case CL_KERNEL_PRIVATE_MEM_SIZE:
privateMemSize = kernelInfo.patchInfo.pAllocateStatelessPrivateSurface ? kernelInfo.patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize : 0;
retVal = info.set<cl_ulong>(privateMemSize);
break;
default:
retVal = CL_INVALID_VALUE;
break;
}
return retVal;
}
cl_int Kernel::getSubGroupInfo(cl_kernel_sub_group_info paramName,
size_t inputValueSize, const void *inputValue,
size_t paramValueSize, void *paramValue,
size_t *paramValueSizeRet) const {
size_t numDimensions = 0;
size_t WGS = 1;
auto maxSimdSize = static_cast<size_t>(getKernelInfo().getMaxSimdSize());
auto maxRequiredWorkGroupSize = static_cast<size_t>(getKernelInfo().getMaxRequiredWorkGroupSize(maxKernelWorkGroupSize));
auto largestCompiledSIMDSize = static_cast<size_t>(getKernelInfo().patchInfo.executionEnvironment->LargestCompiledSIMDSize);
GetInfoHelper info(paramValue, paramValueSize, paramValueSizeRet);
if ((paramName == CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT) ||
(paramName == CL_KERNEL_MAX_NUM_SUB_GROUPS) ||
(paramName == CL_KERNEL_COMPILE_NUM_SUB_GROUPS)) {
if (device.getEnabledClVersion() < 21) {
return CL_INVALID_VALUE;
}
}
if ((paramName == CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE_KHR) ||
(paramName == CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE_KHR)) {
if (!inputValue) {
return CL_INVALID_VALUE;
}
if (inputValueSize % sizeof(size_t) != 0) {
return CL_INVALID_VALUE;
}
numDimensions = inputValueSize / sizeof(size_t);
if (numDimensions == 0 ||
numDimensions > static_cast<size_t>(device.getDeviceInfo().maxWorkItemDimensions)) {
return CL_INVALID_VALUE;
}
}
if (paramName == CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT) {
if (!paramValue) {
return CL_INVALID_VALUE;
}
if (paramValueSize % sizeof(size_t) != 0) {
return CL_INVALID_VALUE;
}
numDimensions = paramValueSize / sizeof(size_t);
if (numDimensions == 0 ||
numDimensions > static_cast<size_t>(device.getDeviceInfo().maxWorkItemDimensions)) {
return CL_INVALID_VALUE;
}
}
switch (paramName) {
case CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE_KHR: {
for (size_t i = 0; i < numDimensions; i++) {
WGS *= ((size_t *)inputValue)[i];
}
return info.set<size_t>(std::min(WGS, maxSimdSize));
}
case CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE_KHR: {
for (size_t i = 0; i < numDimensions; i++) {
WGS *= ((size_t *)inputValue)[i];
}
return info.set<size_t>((WGS / maxSimdSize) +
std::min(static_cast<size_t>(1), WGS % maxSimdSize)); // add 1 if WGS % maxSimdSize != 0
}
case CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT: {
auto subGroupsNum = *(size_t *)inputValue;
auto workGroupSize = subGroupsNum * largestCompiledSIMDSize;
// return workgroup size in first dimension, the rest shall be 1 in positive case
if (workGroupSize > maxRequiredWorkGroupSize) {
workGroupSize = 0;
}
// If no work group size can accommodate the requested number of subgroups, return 0 in each element of the returned array.
switch (numDimensions) {
case 1:
return info.set<size_t>(workGroupSize);
case 2:
struct size_t2 {
size_t val[2];
} workGroupSize2;
workGroupSize2.val[0] = workGroupSize;
workGroupSize2.val[1] = (workGroupSize > 0) ? 1 : 0;
return info.set<size_t2>(workGroupSize2);
case 3:
default:
struct size_t3 {
size_t val[3];
} workGroupSize3;
workGroupSize3.val[0] = workGroupSize;
workGroupSize3.val[1] = (workGroupSize > 0) ? 1 : 0;
workGroupSize3.val[2] = (workGroupSize > 0) ? 1 : 0;
return info.set<size_t3>(workGroupSize3);
}
}
case CL_KERNEL_MAX_NUM_SUB_GROUPS: {
// round-up maximum number of subgroups
return info.set<size_t>(Math::divideAndRoundUp(maxRequiredWorkGroupSize, largestCompiledSIMDSize));
}
case CL_KERNEL_COMPILE_NUM_SUB_GROUPS: {
return info.set<size_t>(static_cast<size_t>(getKernelInfo().patchInfo.executionEnvironment->CompiledSubGroupsNumber));
}
case CL_KERNEL_COMPILE_SUB_GROUP_SIZE_INTEL: {
return info.set<size_t>(getKernelInfo().requiredSubGroupSize);
}
default:
return CL_INVALID_VALUE;
}
}
const void *Kernel::getKernelHeap() const {
return kernelInfo.heapInfo.pKernelHeap;
}
size_t Kernel::getKernelHeapSize() const {
return kernelInfo.heapInfo.pKernelHeader->KernelHeapSize;
}
void Kernel::substituteKernelHeap(void *newKernelHeap, size_t newKernelHeapSize) {
KernelInfo *pKernelInfo = const_cast<KernelInfo *>(&kernelInfo);
void **pKernelHeap = const_cast<void **>(&pKernelInfo->heapInfo.pKernelHeap);
*pKernelHeap = newKernelHeap;
SKernelBinaryHeaderCommon *pHeader = const_cast<SKernelBinaryHeaderCommon *>(pKernelInfo->heapInfo.pKernelHeader);
pHeader->KernelHeapSize = static_cast<uint32_t>(newKernelHeapSize);
pKernelInfo->isKernelHeapSubstituted = true;
auto memoryManager = device.getMemoryManager();
auto currentAllocationSize = pKernelInfo->kernelAllocation->getUnderlyingBufferSize();
bool status = false;
if (currentAllocationSize >= newKernelHeapSize) {
status = memoryManager->copyMemoryToAllocation(pKernelInfo->kernelAllocation, newKernelHeap, newKernelHeapSize);
} else {
memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(pKernelInfo->kernelAllocation);
pKernelInfo->kernelAllocation = nullptr;
status = pKernelInfo->createKernelAllocation(device.getRootDeviceIndex(), memoryManager);
}
UNRECOVERABLE_IF(!status);
}
bool Kernel::isKernelHeapSubstituted() const {
return kernelInfo.isKernelHeapSubstituted;
}
uint64_t Kernel::getKernelId() const {
return kernelInfo.kernelId;
}
void Kernel::setKernelId(uint64_t newKernelId) {
KernelInfo *pKernelInfo = const_cast<KernelInfo *>(&kernelInfo);
pKernelInfo->kernelId = newKernelId;
}
uint32_t Kernel::getStartOffset() const {
return this->startOffset;
}
void Kernel::setStartOffset(uint32_t offset) {
this->startOffset = offset;
}
const void *Kernel::getSurfaceStateHeap() const {
return kernelInfo.usesSsh ? pSshLocal.get() : nullptr;
}
void *Kernel::getSurfaceStateHeap() {
return kernelInfo.usesSsh ? pSshLocal.get() : nullptr;
}
size_t Kernel::getDynamicStateHeapSize() const {
return kernelInfo.heapInfo.pKernelHeader->DynamicStateHeapSize;
}
const void *Kernel::getDynamicStateHeap() const {
return kernelInfo.heapInfo.pDsh;
}
size_t Kernel::getSurfaceStateHeapSize() const {
return kernelInfo.usesSsh
? sshLocalSize
: 0;
}
size_t Kernel::getNumberOfBindingTableStates() const {
return numberOfBindingTableStates;
}
void Kernel::resizeSurfaceStateHeap(void *pNewSsh, size_t newSshSize, size_t newBindingTableCount, size_t newBindingTableOffset) {
pSshLocal.reset(static_cast<char *>(pNewSsh));
sshLocalSize = static_cast<uint32_t>(newSshSize);
numberOfBindingTableStates = newBindingTableCount;
localBindingTableOffset = newBindingTableOffset;
}
uint32_t Kernel::getScratchSizeValueToProgramMediaVfeState(int scratchSize) {
scratchSize >>= MemoryConstants::kiloByteShiftSize;
uint32_t valueToProgram = 0;
while (scratchSize >>= 1) {
valueToProgram++;
}
return valueToProgram;
}
cl_int Kernel::setArg(uint32_t argIndex, size_t argSize, const void *argVal) {
cl_int retVal = CL_SUCCESS;
bool updateExposedKernel = true;
auto argWasUncacheable = false;
if (getKernelInfo().builtinDispatchBuilder != nullptr) {
updateExposedKernel = getKernelInfo().builtinDispatchBuilder->setExplicitArg(argIndex, argSize, argVal, retVal);
}
if (updateExposedKernel) {
if (argIndex >= kernelArgHandlers.size()) {
return CL_INVALID_ARG_INDEX;
}
argWasUncacheable = kernelArguments[argIndex].isStatelessUncacheable;
auto argHandler = kernelArgHandlers[argIndex];
retVal = (this->*argHandler)(argIndex, argSize, argVal);
}
if (retVal == CL_SUCCESS) {
if (!kernelArguments[argIndex].isPatched) {
patchedArgumentsNum++;
kernelArguments[argIndex].isPatched = true;
}
auto argIsUncacheable = kernelArguments[argIndex].isStatelessUncacheable;
statelessUncacheableArgsCount += (argIsUncacheable ? 1 : 0) - (argWasUncacheable ? 1 : 0);
resolveArgs();
}
return retVal;
}
cl_int Kernel::setArg(uint32_t argIndex, uint32_t argVal) {
return setArg(argIndex, sizeof(argVal), &argVal);
}
cl_int Kernel::setArg(uint32_t argIndex, uint64_t argVal) {
return setArg(argIndex, sizeof(argVal), &argVal);
}
cl_int Kernel::setArg(uint32_t argIndex, cl_mem argVal) {
return setArg(argIndex, sizeof(argVal), &argVal);
}
cl_int Kernel::setArg(uint32_t argIndex, cl_mem argVal, uint32_t mipLevel) {
return setArgImageWithMipLevel(argIndex, sizeof(argVal), &argVal, mipLevel);
}
void *Kernel::patchBufferOffset(const KernelArgInfo &argInfo, void *svmPtr, GraphicsAllocation *svmAlloc) {
if (isInvalidOffset(argInfo.offsetBufferOffset)) {
return svmPtr;
}
void *ptrToPatch = svmPtr;
if (svmAlloc != nullptr) {
ptrToPatch = reinterpret_cast<void *>(svmAlloc->getGpuAddressToPatch());
}
constexpr uint32_t minimumAlignment = 4;
ptrToPatch = alignDown(ptrToPatch, minimumAlignment);
DEBUG_BREAK_IF(ptrDiff(svmPtr, ptrToPatch) != static_cast<uint32_t>(ptrDiff(svmPtr, ptrToPatch)));
uint32_t offsetToPatch = static_cast<uint32_t>(ptrDiff(svmPtr, ptrToPatch));
patch<uint32_t, uint32_t>(offsetToPatch, getCrossThreadData(), argInfo.offsetBufferOffset);
return ptrToPatch;
}
cl_int Kernel::setArgSvm(uint32_t argIndex, size_t svmAllocSize, void *svmPtr, GraphicsAllocation *svmAlloc, cl_mem_flags svmFlags) {
void *ptrToPatch = patchBufferOffset(kernelInfo.kernelArgInfo[argIndex], svmPtr, svmAlloc);
setArgImmediate(argIndex, sizeof(void *), &svmPtr);
storeKernelArg(argIndex, SVM_OBJ, nullptr, svmPtr, sizeof(void *), svmAlloc, svmFlags);
if (requiresSshForBuffers()) {
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
auto surfaceState = ptrOffset(getSurfaceStateHeap(), kernelArgInfo.offsetHeap);
Buffer::setSurfaceState(&getDevice(), surfaceState, svmAllocSize + ptrDiff(svmPtr, ptrToPatch), ptrToPatch, svmAlloc, svmFlags);
}
if (!kernelArguments[argIndex].isPatched) {
patchedArgumentsNum++;
kernelArguments[argIndex].isPatched = true;
}
addAllocationToCacheFlushVector(argIndex, svmAlloc);
return CL_SUCCESS;
}
cl_int Kernel::setArgSvmAlloc(uint32_t argIndex, void *svmPtr, GraphicsAllocation *svmAlloc) {
DBG_LOG_INPUTS("setArgBuffer svm_alloc", svmAlloc);
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
storeKernelArg(argIndex, SVM_ALLOC_OBJ, svmAlloc, svmPtr, sizeof(uintptr_t));
void *ptrToPatch = patchBufferOffset(kernelArgInfo, svmPtr, svmAlloc);
auto patchLocation = ptrOffset(getCrossThreadData(),
kernelArgInfo.kernelArgPatchInfoVector[0].crossthreadOffset);
auto patchSize = kernelArgInfo.kernelArgPatchInfoVector[0].size;
patchWithRequiredSize(patchLocation, patchSize, reinterpret_cast<uintptr_t>(svmPtr));
if (requiresSshForBuffers()) {
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
auto surfaceState = ptrOffset(getSurfaceStateHeap(), kernelArgInfo.offsetHeap);
size_t allocSize = 0;
if (svmAlloc != nullptr) {
allocSize = svmAlloc->getUnderlyingBufferSize();
size_t offset = ptrDiff(ptrToPatch, svmAlloc->getGpuAddressToPatch());
allocSize -= offset;
}
Buffer::setSurfaceState(&getDevice(), surfaceState, allocSize, ptrToPatch, nullptr);
}
if (!kernelArguments[argIndex].isPatched) {
patchedArgumentsNum++;
kernelArguments[argIndex].isPatched = true;
}
addAllocationToCacheFlushVector(argIndex, svmAlloc);
return CL_SUCCESS;
}
void Kernel::storeKernelArg(uint32_t argIndex, kernelArgType argType, void *argObject,
const void *argValue, size_t argSize,
GraphicsAllocation *argSvmAlloc, cl_mem_flags argSvmFlags) {
kernelArguments[argIndex].type = argType;
kernelArguments[argIndex].object = argObject;
kernelArguments[argIndex].value = argValue;
kernelArguments[argIndex].size = argSize;
kernelArguments[argIndex].pSvmAlloc = argSvmAlloc;
kernelArguments[argIndex].svmFlags = argSvmFlags;
}
const void *Kernel::getKernelArg(uint32_t argIndex) const {
return kernelArguments[argIndex].object;
}
const Kernel::SimpleKernelArgInfo &Kernel::getKernelArgInfo(uint32_t argIndex) const {
return kernelArguments[argIndex];
}
void Kernel::setSvmKernelExecInfo(GraphicsAllocation *argValue) {
kernelSvmGfxAllocations.push_back(argValue);
if (allocationForCacheFlush(argValue)) {
svmAllocationsRequireCacheFlush = true;
}
}
void Kernel::clearSvmKernelExecInfo() {
kernelSvmGfxAllocations.clear();
svmAllocationsRequireCacheFlush = false;
}
void Kernel::setUnifiedMemoryProperty(cl_kernel_exec_info infoType, bool infoValue) {
if (infoType == CL_KERNEL_EXEC_INFO_INDIRECT_DEVICE_ACCESS_INTEL) {
this->unifiedMemoryControls.indirectDeviceAllocationsAllowed = infoValue;
return;
}
if (infoType == CL_KERNEL_EXEC_INFO_INDIRECT_HOST_ACCESS_INTEL) {
this->unifiedMemoryControls.indirectHostAllocationsAllowed = infoValue;
return;
}
if (infoType == CL_KERNEL_EXEC_INFO_INDIRECT_SHARED_ACCESS_INTEL) {
this->unifiedMemoryControls.indirectSharedAllocationsAllowed = infoValue;
return;
}
}
void Kernel::setUnifiedMemoryExecInfo(GraphicsAllocation *unifiedMemoryAllocation) {
kernelUnifiedMemoryGfxAllocations.push_back(unifiedMemoryAllocation);
}
void Kernel::clearUnifiedMemoryExecInfo() {
kernelUnifiedMemoryGfxAllocations.clear();
}
uint32_t Kernel::getMaxWorkGroupCount(const cl_uint workDim, const size_t *localWorkSize) const {
auto &hardwareInfo = getDevice().getHardwareInfo();
auto executionEnvironment = kernelInfo.patchInfo.executionEnvironment;
auto dssCount = hardwareInfo.gtSystemInfo.DualSubSliceCount;
if (dssCount == 0) {
dssCount = hardwareInfo.gtSystemInfo.SubSliceCount;
}
auto &hwHelper = HwHelper::get(hardwareInfo.platform.eRenderCoreFamily);
auto availableThreadCount = hwHelper.calculateAvailableThreadCount(
hardwareInfo.platform.eProductFamily,
((executionEnvironment != nullptr) ? executionEnvironment->NumGRFRequired : GrfConfig::DefaultGrfNumber),
hardwareInfo.gtSystemInfo.EUCount, hardwareInfo.gtSystemInfo.ThreadCount / hardwareInfo.gtSystemInfo.EUCount);
auto hasBarriers = ((executionEnvironment != nullptr) ? executionEnvironment->HasBarriers : 0u);
return KernelHelper::getMaxWorkGroupCount(kernelInfo.getMaxSimdSize(),
availableThreadCount,
dssCount,
dssCount * KB * hardwareInfo.capabilityTable.slmSize,
hwHelper.alignSlmSize(slmTotalSize),
static_cast<uint32_t>(hwHelper.getMaxBarrierRegisterPerSlice()),
hwHelper.getBarriersCountFromHasBarriers(hasBarriers),
workDim,
localWorkSize);
}
inline void Kernel::makeArgsResident(CommandStreamReceiver &commandStreamReceiver) {
auto numArgs = kernelInfo.kernelArgInfo.size();
for (decltype(numArgs) argIndex = 0; argIndex < numArgs; argIndex++) {
if (kernelArguments[argIndex].object) {
if (kernelArguments[argIndex].type == SVM_ALLOC_OBJ) {
auto pSVMAlloc = (GraphicsAllocation *)kernelArguments[argIndex].object;
auto pageFaultManager = this->getContext().getMemoryManager()->getPageFaultManager();
if (pageFaultManager &&
this->isUnifiedMemorySyncRequired) {
pageFaultManager->moveAllocationToGpuDomain(reinterpret_cast<void *>(pSVMAlloc->getGpuAddress()));
}
commandStreamReceiver.makeResident(*pSVMAlloc);
} else if (Kernel::isMemObj(kernelArguments[argIndex].type)) {
auto clMem = const_cast<cl_mem>(static_cast<const _cl_mem *>(kernelArguments[argIndex].object));
auto memObj = castToObjectOrAbort<MemObj>(clMem);
auto image = castToObject<Image>(clMem);
if (image && image->isImageFromImage()) {
commandStreamReceiver.setSamplerCacheFlushRequired(CommandStreamReceiver::SamplerCacheFlushState::samplerCacheFlushBefore);
}
commandStreamReceiver.makeResident(*memObj->getGraphicsAllocation());
if (memObj->getMcsAllocation()) {
commandStreamReceiver.makeResident(*memObj->getMcsAllocation());
}
}
}
}
}
void Kernel::makeResident(CommandStreamReceiver &commandStreamReceiver) {
if (privateSurface) {
commandStreamReceiver.makeResident(*privateSurface);
}
if (program->getConstantSurface()) {
commandStreamReceiver.makeResident(*(program->getConstantSurface()));
}
if (program->getGlobalSurface()) {
commandStreamReceiver.makeResident(*(program->getGlobalSurface()));
}
if (program->getExportedFunctionsSurface()) {
commandStreamReceiver.makeResident(*(program->getExportedFunctionsSurface()));
}
for (auto gfxAlloc : kernelSvmGfxAllocations) {
commandStreamReceiver.makeResident(*gfxAlloc);
}
auto pageFaultManager = program->peekExecutionEnvironment().memoryManager->getPageFaultManager();
for (auto gfxAlloc : kernelUnifiedMemoryGfxAllocations) {
commandStreamReceiver.makeResident(*gfxAlloc);
if (pageFaultManager) {
pageFaultManager->moveAllocationToGpuDomain(reinterpret_cast<void *>(gfxAlloc->getGpuAddress()));
}
}
if (unifiedMemoryControls.indirectSharedAllocationsAllowed && pageFaultManager) {
pageFaultManager->moveAllocationsWithinUMAllocsManagerToGpuDomain(this->getContext().getSVMAllocsManager());
}
makeArgsResident(commandStreamReceiver);
auto kernelIsaAllocation = this->kernelInfo.kernelAllocation;
if (kernelIsaAllocation) {
commandStreamReceiver.makeResident(*kernelIsaAllocation);
}
gtpinNotifyMakeResident(this, &commandStreamReceiver);
if (unifiedMemoryControls.indirectDeviceAllocationsAllowed ||
unifiedMemoryControls.indirectHostAllocationsAllowed ||
unifiedMemoryControls.indirectSharedAllocationsAllowed) {
this->getContext().getSVMAllocsManager()->makeInternalAllocationsResident(commandStreamReceiver, unifiedMemoryControls.generateMask());
}
}
void Kernel::getResidency(std::vector<Surface *> &dst) {
if (privateSurface) {
GeneralSurface *surface = new GeneralSurface(privateSurface);
dst.push_back(surface);
}
if (program->getConstantSurface()) {
GeneralSurface *surface = new GeneralSurface(program->getConstantSurface());
dst.push_back(surface);
}
if (program->getGlobalSurface()) {
GeneralSurface *surface = new GeneralSurface(program->getGlobalSurface());
dst.push_back(surface);
}
if (program->getExportedFunctionsSurface()) {
GeneralSurface *surface = new GeneralSurface(program->getExportedFunctionsSurface());
dst.push_back(surface);
}
for (auto gfxAlloc : kernelSvmGfxAllocations) {
GeneralSurface *surface = new GeneralSurface(gfxAlloc);
dst.push_back(surface);
}
auto numArgs = kernelInfo.kernelArgInfo.size();
for (decltype(numArgs) argIndex = 0; argIndex < numArgs; argIndex++) {
if (kernelArguments[argIndex].object) {
if (kernelArguments[argIndex].type == SVM_ALLOC_OBJ) {
auto pSVMAlloc = (GraphicsAllocation *)kernelArguments[argIndex].object;
dst.push_back(new GeneralSurface(pSVMAlloc));
} else if (Kernel::isMemObj(kernelArguments[argIndex].type)) {
auto clMem = const_cast<cl_mem>(static_cast<const _cl_mem *>(kernelArguments[argIndex].object));
auto memObj = castToObject<MemObj>(clMem);
DEBUG_BREAK_IF(memObj == nullptr);
dst.push_back(new MemObjSurface(memObj));
}
}
}
auto kernelIsaAllocation = this->kernelInfo.kernelAllocation;
if (kernelIsaAllocation) {
GeneralSurface *surface = new GeneralSurface(kernelIsaAllocation);
dst.push_back(surface);
}
gtpinNotifyUpdateResidencyList(this, &dst);
}
bool Kernel::requiresCoherency() {
auto numArgs = kernelInfo.kernelArgInfo.size();
for (decltype(numArgs) argIndex = 0; argIndex < numArgs; argIndex++) {
if (kernelArguments[argIndex].object) {
if (kernelArguments[argIndex].type == SVM_ALLOC_OBJ) {
auto pSVMAlloc = (GraphicsAllocation *)kernelArguments[argIndex].object;
if (pSVMAlloc->isCoherent()) {
return true;
}
}
if (Kernel::isMemObj(kernelArguments[argIndex].type)) {
auto clMem = const_cast<cl_mem>(static_cast<const _cl_mem *>(kernelArguments[argIndex].object));
auto memObj = castToObjectOrAbort<MemObj>(clMem);
if (memObj->getGraphicsAllocation()->isCoherent()) {
return true;
}
}
}
}
return false;
}
cl_int Kernel::setArgLocal(uint32_t argIndex,
size_t argSize,
const void *argVal) {
auto crossThreadData = reinterpret_cast<uint32_t *>(getCrossThreadData());
storeKernelArg(argIndex, SLM_OBJ, nullptr, argVal, argSize);
slmSizes[argIndex] = argSize;
// Extract our current slmOffset
auto slmOffset = *ptrOffset(crossThreadData,
kernelInfo.kernelArgInfo[argIndex].kernelArgPatchInfoVector[0].crossthreadOffset);
// Add our size
slmOffset += static_cast<uint32_t>(argSize);
// Update all slm offsets after this argIndex
++argIndex;
while (argIndex < slmSizes.size()) {
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
auto slmAlignment = kernelArgInfo.slmAlignment;
// If an local argument, alignment should be non-zero
if (slmAlignment) {
// Align to specified alignment
slmOffset = alignUp(slmOffset, slmAlignment);
// Patch our new offset into cross thread data
auto patchLocation = ptrOffset(crossThreadData,
kernelArgInfo.kernelArgPatchInfoVector[0].crossthreadOffset);
*patchLocation = slmOffset;
}
slmOffset += static_cast<uint32_t>(slmSizes[argIndex]);
++argIndex;
}
slmTotalSize = kernelInfo.workloadInfo.slmStaticSize + alignUp(slmOffset, KB);
return CL_SUCCESS;
}
cl_int Kernel::setArgBuffer(uint32_t argIndex,
size_t argSize,
const void *argVal) {
if (argSize != sizeof(cl_mem *))
return CL_INVALID_ARG_SIZE;
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
auto clMem = reinterpret_cast<const cl_mem *>(argVal);
patchBufferOffset(kernelArgInfo, nullptr, nullptr);
if (clMem && *clMem) {
auto clMemObj = *clMem;
DBG_LOG_INPUTS("setArgBuffer cl_mem", clMemObj);
storeKernelArg(argIndex, BUFFER_OBJ, clMemObj, argVal, argSize);
auto buffer = castToObject<Buffer>(clMemObj);
if (!buffer)
return CL_INVALID_MEM_OBJECT;
if (buffer->peekSharingHandler()) {
usingSharedObjArgs = true;
}
auto patchLocation = ptrOffset(getCrossThreadData(),
kernelArgInfo.kernelArgPatchInfoVector[0].crossthreadOffset);
auto patchSize = kernelArgInfo.kernelArgPatchInfoVector[0].size;
uint64_t addressToPatch = buffer->setArgStateless(patchLocation, patchSize, !this->isBuiltIn);
if (DebugManager.flags.AddPatchInfoCommentsForAUBDump.get()) {
PatchInfoData patchInfoData(addressToPatch - buffer->getOffset(), static_cast<uint64_t>(buffer->getOffset()), PatchInfoAllocationType::KernelArg, reinterpret_cast<uint64_t>(getCrossThreadData()), static_cast<uint64_t>(kernelArgInfo.kernelArgPatchInfoVector[0].crossthreadOffset), PatchInfoAllocationType::IndirectObjectHeap, patchSize);
this->patchInfoDataList.push_back(patchInfoData);
}
bool disableL3 = false;
bool forceNonAuxMode = false;
bool isAuxTranslationKernel = (AuxTranslationDirection::None != auxTranslationDirection);
if (isAuxTranslationKernel) {
if (((AuxTranslationDirection::AuxToNonAux == auxTranslationDirection) && argIndex == 1) ||
((AuxTranslationDirection::NonAuxToAux == auxTranslationDirection) && argIndex == 0)) {
forceNonAuxMode = true;
}
disableL3 = (argIndex == 0);
} else if (buffer->getGraphicsAllocation()->getAllocationType() == GraphicsAllocation::AllocationType::BUFFER_COMPRESSED &&
!kernelArgInfo.pureStatefulBufferAccess) {
forceNonAuxMode = true;
}
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(getSurfaceStateHeap(), kernelArgInfo.offsetHeap);
buffer->setArgStateful(surfaceState, forceNonAuxMode, disableL3, isAuxTranslationKernel, kernelArgInfo.isReadOnly);
}
kernelArguments[argIndex].isStatelessUncacheable = kernelArgInfo.pureStatefulBufferAccess ? false : buffer->isMemObjUncacheable();
auto allocationForCacheFlush = buffer->getGraphicsAllocation();
//if we make object uncacheable for surface state and there are not stateless accessess , then ther is no need to flush caches
if (buffer->isMemObjUncacheableForSurfaceState() && kernelArgInfo.pureStatefulBufferAccess) {
allocationForCacheFlush = nullptr;
}
addAllocationToCacheFlushVector(argIndex, allocationForCacheFlush);
return CL_SUCCESS;
} else {
auto patchLocation = ptrOffset(getCrossThreadData(),
kernelArgInfo.kernelArgPatchInfoVector[0].crossthreadOffset);
patchWithRequiredSize(patchLocation, kernelArgInfo.kernelArgPatchInfoVector[0].size, 0u);
storeKernelArg(argIndex, BUFFER_OBJ, nullptr, argVal, argSize);
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(getSurfaceStateHeap(), kernelArgInfo.offsetHeap);
Buffer::setSurfaceState(&getDevice(), surfaceState, 0, nullptr);
}
return CL_SUCCESS;
}
}
cl_int Kernel::setArgPipe(uint32_t argIndex,
size_t argSize,
const void *argVal) {
if (argSize != sizeof(cl_mem *)) {
return CL_INVALID_ARG_SIZE;
}
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
auto clMem = reinterpret_cast<const cl_mem *>(argVal);
if (clMem && *clMem) {
auto clMemObj = *clMem;
DBG_LOG_INPUTS("setArgPipe cl_mem", clMemObj);
storeKernelArg(argIndex, PIPE_OBJ, clMemObj, argVal, argSize);
auto memObj = castToObject<MemObj>(clMemObj);
if (!memObj) {
return CL_INVALID_MEM_OBJECT;
}
auto pipe = castToObject<Pipe>(clMemObj);
if (!pipe) {
return CL_INVALID_ARG_VALUE;
}
if (memObj->getContext() != &(this->getContext())) {
return CL_INVALID_MEM_OBJECT;
}
auto patchLocation = ptrOffset(getCrossThreadData(),
kernelArgInfo.kernelArgPatchInfoVector[0].crossthreadOffset);
auto patchSize = kernelArgInfo.kernelArgPatchInfoVector[0].size;
pipe->setPipeArg(patchLocation, patchSize);
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(getSurfaceStateHeap(), kernelArgInfo.offsetHeap);
Buffer::setSurfaceState(&getDevice(), surfaceState,
pipe->getSize(), pipe->getCpuAddress(),
pipe->getGraphicsAllocation());
}
return CL_SUCCESS;
} else {
return CL_INVALID_MEM_OBJECT;
}
}
cl_int Kernel::setArgImage(uint32_t argIndex,
size_t argSize,
const void *argVal) {
return setArgImageWithMipLevel(argIndex, argSize, argVal, 0u);
}
cl_int Kernel::setArgImageWithMipLevel(uint32_t argIndex,
size_t argSize,
const void *argVal, uint32_t mipLevel) {
auto retVal = CL_INVALID_ARG_VALUE;
patchBufferOffset(kernelInfo.kernelArgInfo[argIndex], nullptr, nullptr);
auto clMemObj = *(static_cast<const cl_mem *>(argVal));
auto pImage = castToObject<Image>(clMemObj);
if (pImage && argSize == sizeof(cl_mem *)) {
if (pImage->peekSharingHandler()) {
usingSharedObjArgs = true;
}
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
DBG_LOG_INPUTS("setArgImage cl_mem", clMemObj);
storeKernelArg(argIndex, IMAGE_OBJ, clMemObj, argVal, argSize);
auto surfaceState = ptrOffset(getSurfaceStateHeap(), kernelArgInfo.offsetHeap);
DEBUG_BREAK_IF(!kernelArgInfo.isImage);
// Sets SS structure
if (kernelArgInfo.isMediaImage) {
DEBUG_BREAK_IF(!kernelInfo.isVmeWorkload);
pImage->setMediaImageArg(surfaceState);
} else {
pImage->setImageArg(surfaceState, kernelArgInfo.isMediaBlockImage, mipLevel);
}
auto crossThreadData = reinterpret_cast<uint32_t *>(getCrossThreadData());
auto &imageDesc = pImage->getImageDesc();
auto &imageFormat = pImage->getImageFormat();
if (imageDesc.image_type == CL_MEM_OBJECT_IMAGE3D) {
imageTransformer->registerImage3d(argIndex);
}
patch<uint32_t, size_t>(imageDesc.image_width, crossThreadData, kernelArgInfo.offsetImgWidth);
patch<uint32_t, size_t>(imageDesc.image_height, crossThreadData, kernelArgInfo.offsetImgHeight);
patch<uint32_t, size_t>(imageDesc.image_depth, crossThreadData, kernelArgInfo.offsetImgDepth);
patch<uint32_t, cl_uint>(imageDesc.num_samples, crossThreadData, kernelArgInfo.offsetNumSamples);
patch<uint32_t, size_t>(imageDesc.image_array_size, crossThreadData, kernelArgInfo.offsetArraySize);
patch<uint32_t, cl_channel_type>(imageFormat.image_channel_data_type, crossThreadData, kernelArgInfo.offsetChannelDataType);
patch<uint32_t, cl_channel_order>(imageFormat.image_channel_order, crossThreadData, kernelArgInfo.offsetChannelOrder);
patch<uint32_t, uint32_t>(kernelArgInfo.offsetHeap, crossThreadData, kernelArgInfo.offsetObjectId);
patch<uint32_t, cl_uint>(imageDesc.num_mip_levels, crossThreadData, kernelArgInfo.offsetNumMipLevels);
addAllocationToCacheFlushVector(argIndex, pImage->getGraphicsAllocation());
retVal = CL_SUCCESS;
}
return retVal;
}
cl_int Kernel::setArgImmediate(uint32_t argIndex,
size_t argSize,
const void *argVal) {
auto retVal = CL_INVALID_ARG_VALUE;
if (argVal) {
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
DEBUG_BREAK_IF(kernelArgInfo.kernelArgPatchInfoVector.size() <= 0);
storeKernelArg(argIndex, NONE_OBJ, nullptr, nullptr, argSize);
auto crossThreadData = getCrossThreadData();
auto crossThreadDataEnd = ptrOffset(crossThreadData, getCrossThreadDataSize());
for (const auto &kernelArgPatchInfo : kernelArgInfo.kernelArgPatchInfoVector) {
DEBUG_BREAK_IF(kernelArgPatchInfo.size <= 0);
auto pDst = ptrOffset(crossThreadData, kernelArgPatchInfo.crossthreadOffset);
auto pSrc = ptrOffset(argVal, kernelArgPatchInfo.sourceOffset);
DEBUG_BREAK_IF(!(ptrOffset(pDst, kernelArgPatchInfo.size) <= crossThreadDataEnd));
UNUSED_VARIABLE(crossThreadDataEnd);
if (kernelArgPatchInfo.sourceOffset < argSize) {
size_t maxBytesToCopy = argSize - kernelArgPatchInfo.sourceOffset;
size_t bytesToCopy = std::min(static_cast<size_t>(kernelArgPatchInfo.size), maxBytesToCopy);
memcpy_s(pDst, kernelArgPatchInfo.size, pSrc, bytesToCopy);
}
}
retVal = CL_SUCCESS;
}
return retVal;
}
cl_int Kernel::setArgSampler(uint32_t argIndex,
size_t argSize,
const void *argVal) {
auto retVal = CL_INVALID_SAMPLER;
if (!argVal) {
return retVal;
}
auto clSamplerObj = *(static_cast<const cl_sampler *>(argVal));
auto pSampler = castToObject<Sampler>(clSamplerObj);
if (pSampler) {
pSampler->incRefInternal();
}
if (kernelArguments.at(argIndex).object) {
auto oldSampler = castToObject<Sampler>(kernelArguments.at(argIndex).object);
UNRECOVERABLE_IF(!oldSampler);
oldSampler->decRefInternal();
}
if (pSampler && argSize == sizeof(cl_sampler *)) {
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
storeKernelArg(argIndex, SAMPLER_OBJ, clSamplerObj, argVal, argSize);
auto dsh = getDynamicStateHeap();
auto samplerState = ptrOffset(dsh, kernelArgInfo.offsetHeap);
pSampler->setArg(const_cast<void *>(samplerState));
auto crossThreadData = reinterpret_cast<uint32_t *>(getCrossThreadData());
patch<uint32_t, unsigned int>(pSampler->getSnapWaValue(), crossThreadData, kernelArgInfo.offsetSamplerSnapWa);
patch<uint32_t, uint32_t>(GetAddrModeEnum(pSampler->addressingMode), crossThreadData, kernelArgInfo.offsetSamplerAddressingMode);
patch<uint32_t, uint32_t>(GetNormCoordsEnum(pSampler->normalizedCoordinates), crossThreadData, kernelArgInfo.offsetSamplerNormalizedCoords);
patch<uint32_t, uint32_t>(SAMPLER_OBJECT_ID_SHIFT + kernelArgInfo.offsetHeap, crossThreadData, kernelArgInfo.offsetObjectId);
retVal = CL_SUCCESS;
}
return retVal;
}
cl_int Kernel::setArgAccelerator(uint32_t argIndex,
size_t argSize,
const void *argVal) {
auto retVal = CL_INVALID_ARG_VALUE;
if (argSize != sizeof(cl_accelerator_intel)) {
return CL_INVALID_ARG_SIZE;
}
if (!argVal) {
return retVal;
}
auto clAcceleratorObj = *(static_cast<const cl_accelerator_intel *>(argVal));
DBG_LOG_INPUTS("setArgAccelerator cl_mem", clAcceleratorObj);
const auto pAccelerator = castToObject<IntelAccelerator>(clAcceleratorObj);
if (pAccelerator) {
storeKernelArg(argIndex, ACCELERATOR_OBJ, clAcceleratorObj, argVal, argSize);
const auto &kernelArgInfo = kernelInfo.kernelArgInfo[argIndex];
if (kernelArgInfo.samplerArgumentType == iOpenCL::SAMPLER_OBJECT_VME) {
auto crossThreadData = getCrossThreadData();
const auto pVmeAccelerator = castToObjectOrAbort<VmeAccelerator>(pAccelerator);
auto pDesc = static_cast<const cl_motion_estimation_desc_intel *>(pVmeAccelerator->getDescriptor());
DEBUG_BREAK_IF(!pDesc);
auto pVmeMbBlockTypeDst = reinterpret_cast<cl_uint *>(ptrOffset(crossThreadData, kernelArgInfo.offsetVmeMbBlockType));
*pVmeMbBlockTypeDst = pDesc->mb_block_type;
auto pVmeSubpixelMode = reinterpret_cast<cl_uint *>(ptrOffset(crossThreadData, kernelArgInfo.offsetVmeSubpixelMode));
*pVmeSubpixelMode = pDesc->subpixel_mode;
auto pVmeSadAdjustMode = reinterpret_cast<cl_uint *>(ptrOffset(crossThreadData, kernelArgInfo.offsetVmeSadAdjustMode));
*pVmeSadAdjustMode = pDesc->sad_adjust_mode;
auto pVmeSearchPathType = reinterpret_cast<cl_uint *>(ptrOffset(crossThreadData, kernelArgInfo.offsetVmeSearchPathType));
*pVmeSearchPathType = pDesc->search_path_type;
retVal = CL_SUCCESS;
} else if (kernelArgInfo.samplerArgumentType == iOpenCL::SAMPLER_OBJECT_VE) {
retVal = CL_SUCCESS;
}
}
return retVal;
}
cl_int Kernel::setArgDevQueue(uint32_t argIndex,
size_t argSize,
const void *argVal) {
if (argVal == nullptr) {
return CL_INVALID_ARG_VALUE;
}
if (argSize != sizeof(cl_command_queue)) {
return CL_INVALID_ARG_SIZE;
}
auto clDeviceQueue = *(static_cast<const device_queue *>(argVal));
auto pDeviceQueue = castToObject<DeviceQueue>(clDeviceQueue);
if (pDeviceQueue == nullptr) {
return CL_INVALID_DEVICE_QUEUE;
}
storeKernelArg(argIndex, DEVICE_QUEUE_OBJ, clDeviceQueue, argVal, argSize);
const auto &kernelArgPatchInfo = kernelInfo.kernelArgInfo[argIndex].kernelArgPatchInfoVector[0];
auto patchLocation = ptrOffset(reinterpret_cast<uint32_t *>(getCrossThreadData()),
kernelArgPatchInfo.crossthreadOffset);
patchWithRequiredSize(patchLocation, kernelArgPatchInfo.size,
static_cast<uintptr_t>(pDeviceQueue->getQueueBuffer()->getGpuAddressToPatch()));
return CL_SUCCESS;
}
void Kernel::setKernelArgHandler(uint32_t argIndex, KernelArgHandler handler) {
if (kernelArgHandlers.size() <= argIndex) {
kernelArgHandlers.resize(argIndex + 1);
}
kernelArgHandlers[argIndex] = handler;
}
void Kernel::unsetArg(uint32_t argIndex) {
if (kernelArguments[argIndex].isPatched) {
patchedArgumentsNum--;
kernelArguments[argIndex].isPatched = false;
if (kernelArguments[argIndex].isStatelessUncacheable) {
statelessUncacheableArgsCount--;
kernelArguments[argIndex].isStatelessUncacheable = false;
}
}
}
void Kernel::createReflectionSurface() {
if (this->isParentKernel && kernelReflectionSurface == nullptr) {
auto &hwInfo = device.getHardwareInfo();
auto &hwHelper = HwHelper::get(hwInfo.platform.eRenderCoreFamily);
BlockKernelManager *blockManager = program->getBlockKernelManager();
uint32_t blockCount = static_cast<uint32_t>(blockManager->getCount());
ObjectCounts objectCount;
getParentObjectCounts(objectCount);
uint32_t parentImageCount = objectCount.imageCount;
uint32_t parentSamplerCount = objectCount.samplerCount;
size_t maxConstantBufferSize = 0;
std::vector<IGIL_KernelCurbeParams> *curbeParamsForBlocks = new std::vector<IGIL_KernelCurbeParams>[blockCount];
uint64_t *tokenMask = new uint64_t[blockCount];
uint32_t *sshTokenOffsetsFromKernelData = new uint32_t[blockCount];
size_t kernelReflectionSize = alignUp(sizeof(IGIL_KernelDataHeader) + blockCount * sizeof(IGIL_KernelAddressData), sizeof(void *));
uint32_t kernelDataOffset = static_cast<uint32_t>(kernelReflectionSize);
uint32_t parentSSHAlignedSize = alignUp(this->kernelInfo.heapInfo.pKernelHeader->SurfaceStateHeapSize, hwHelper.getBindingTableStateAlignement());
uint32_t btOffset = parentSSHAlignedSize;
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *pBlockInfo = blockManager->getBlockKernelInfo(i);
size_t samplerStateAndBorderColorSize = 0;
uint32_t firstSSHTokenIndex = 0;
ReflectionSurfaceHelper::getCurbeParams(curbeParamsForBlocks[i], tokenMask[i], firstSSHTokenIndex, *pBlockInfo, hwInfo);
maxConstantBufferSize = std::max(maxConstantBufferSize, static_cast<size_t>(pBlockInfo->patchInfo.dataParameterStream->DataParameterStreamSize));
samplerStateAndBorderColorSize = pBlockInfo->getSamplerStateArraySize(hwInfo);
samplerStateAndBorderColorSize = alignUp(samplerStateAndBorderColorSize, Sampler::samplerStateArrayAlignment);
samplerStateAndBorderColorSize += pBlockInfo->getBorderColorStateSize();
samplerStateAndBorderColorSize = alignUp(samplerStateAndBorderColorSize, sizeof(void *));
sshTokenOffsetsFromKernelData[i] = offsetof(IGIL_KernelData, m_data) + sizeof(IGIL_KernelCurbeParams) * firstSSHTokenIndex;
kernelReflectionSize += alignUp(sizeof(IGIL_KernelData) + sizeof(IGIL_KernelCurbeParams) * curbeParamsForBlocks[i].size(), sizeof(void *));
kernelReflectionSize += parentSamplerCount * sizeof(IGIL_SamplerParams) + samplerStateAndBorderColorSize;
}
maxConstantBufferSize = alignUp(maxConstantBufferSize, sizeof(void *));
kernelReflectionSize += blockCount * alignUp(maxConstantBufferSize, sizeof(void *));
kernelReflectionSize += parentImageCount * sizeof(IGIL_ImageParamters);
kernelReflectionSize += parentSamplerCount * sizeof(IGIL_ParentSamplerParams);
kernelReflectionSurface = device.getMemoryManager()->allocateGraphicsMemoryWithProperties({device.getRootDeviceIndex(), kernelReflectionSize, GraphicsAllocation::AllocationType::DEVICE_QUEUE_BUFFER});
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *pBlockInfo = blockManager->getBlockKernelInfo(i);
uint32_t newKernelDataOffset = ReflectionSurfaceHelper::setKernelData(kernelReflectionSurface->getUnderlyingBuffer(),
kernelDataOffset,
curbeParamsForBlocks[i],
tokenMask[i],
maxConstantBufferSize,
parentSamplerCount,
*pBlockInfo,
device.getHardwareInfo());
uint32_t offset = static_cast<uint32_t>(offsetof(IGIL_KernelDataHeader, m_data) + sizeof(IGIL_KernelAddressData) * i);
uint32_t samplerHeapOffset = static_cast<uint32_t>(alignUp(kernelDataOffset + sizeof(IGIL_KernelData) + curbeParamsForBlocks[i].size() * sizeof(IGIL_KernelCurbeParams), sizeof(void *)));
uint32_t samplerHeapSize = static_cast<uint32_t>(alignUp(pBlockInfo->getSamplerStateArraySize(device.getHardwareInfo()), Sampler::samplerStateArrayAlignment) + pBlockInfo->getBorderColorStateSize());
uint32_t constantBufferOffset = alignUp(samplerHeapOffset + samplerHeapSize, sizeof(void *));
uint32_t samplerParamsOffset = 0;
if (parentSamplerCount) {
samplerParamsOffset = newKernelDataOffset - sizeof(IGIL_SamplerParams) * parentSamplerCount;
IGIL_SamplerParams *pSamplerParams = (IGIL_SamplerParams *)ptrOffset(kernelReflectionSurface->getUnderlyingBuffer(), samplerParamsOffset);
uint32_t sampler = 0;
for (uint32_t argID = 0; argID < pBlockInfo->kernelArgInfo.size(); argID++) {
if (pBlockInfo->kernelArgInfo[argID].isSampler) {
pSamplerParams[sampler].m_ArgID = argID;
pSamplerParams[sampler].m_SamplerStateOffset = pBlockInfo->kernelArgInfo[argID].offsetHeap;
sampler++;
}
}
}
ReflectionSurfaceHelper::setKernelAddressData(kernelReflectionSurface->getUnderlyingBuffer(),
offset,
kernelDataOffset,
samplerHeapOffset,
constantBufferOffset,
samplerParamsOffset,
sshTokenOffsetsFromKernelData[i] + kernelDataOffset,
btOffset,
*pBlockInfo,
device.getHardwareInfo());
if (samplerHeapSize > 0) {
void *pDst = ptrOffset(kernelReflectionSurface->getUnderlyingBuffer(), samplerHeapOffset);
const void *pSrc = ptrOffset(pBlockInfo->heapInfo.pDsh, pBlockInfo->getBorderColorOffset());
memcpy_s(pDst, samplerHeapSize, pSrc, samplerHeapSize);
}
void *pDst = ptrOffset(kernelReflectionSurface->getUnderlyingBuffer(), constantBufferOffset);
const char *pSrc = pBlockInfo->crossThreadData;
memcpy_s(pDst, pBlockInfo->getConstantBufferSize(), pSrc, pBlockInfo->getConstantBufferSize());
btOffset += pBlockInfo->patchInfo.bindingTableState->Offset;
kernelDataOffset = newKernelDataOffset;
}
uint32_t samplerOffset = 0;
if (parentSamplerCount) {
samplerOffset = kernelDataOffset + parentImageCount * sizeof(IGIL_ImageParamters);
}
ReflectionSurfaceHelper::setKernelDataHeader(kernelReflectionSurface->getUnderlyingBuffer(), blockCount, parentImageCount, parentSamplerCount, kernelDataOffset, samplerOffset);
delete[] curbeParamsForBlocks;
delete[] tokenMask;
delete[] sshTokenOffsetsFromKernelData;
// Patch constant values once after reflection surface creation
patchBlocksCurbeWithConstantValues();
}
if (DebugManager.flags.ForceDispatchScheduler.get()) {
if (this->isSchedulerKernel && kernelReflectionSurface == nullptr) {
kernelReflectionSurface = device.getMemoryManager()->allocateGraphicsMemoryWithProperties({device.getRootDeviceIndex(), MemoryConstants::pageSize, GraphicsAllocation::AllocationType::DEVICE_QUEUE_BUFFER});
}
}
}
void Kernel::getParentObjectCounts(ObjectCounts &objectCount) {
objectCount.imageCount = 0;
objectCount.samplerCount = 0;
DEBUG_BREAK_IF(!isParentKernel);
for (const auto &arg : this->kernelArguments) {
if (arg.type == SAMPLER_OBJ) {
objectCount.samplerCount++;
} else if (arg.type == IMAGE_OBJ) {
objectCount.imageCount++;
}
}
}
bool Kernel::hasPrintfOutput() const {
return getKernelInfo().patchInfo.pAllocateStatelessPrintfSurface != nullptr;
}
size_t Kernel::getInstructionHeapSizeForExecutionModel() const {
BlockKernelManager *blockManager = program->getBlockKernelManager();
uint32_t blockCount = static_cast<uint32_t>(blockManager->getCount());
size_t totalSize = 0;
if (isParentKernel) {
totalSize = kernelBinaryAlignement - 1; // for initial alignment
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *pBlockInfo = blockManager->getBlockKernelInfo(i);
totalSize += pBlockInfo->heapInfo.pKernelHeader->KernelHeapSize;
totalSize = alignUp(totalSize, kernelBinaryAlignement);
}
}
return totalSize;
}
void Kernel::patchBlocksCurbeWithConstantValues() {
BlockKernelManager *blockManager = program->getBlockKernelManager();
uint32_t blockCount = static_cast<uint32_t>(blockManager->getCount());
uint64_t globalMemoryGpuAddress = program->getGlobalSurface() != nullptr ? program->getGlobalSurface()->getGpuAddressToPatch() : 0;
uint64_t constantMemoryGpuAddress = program->getConstantSurface() != nullptr ? program->getConstantSurface()->getGpuAddressToPatch() : 0;
for (uint32_t blockID = 0; blockID < blockCount; blockID++) {
const KernelInfo *pBlockInfo = blockManager->getBlockKernelInfo(blockID);
uint64_t globalMemoryCurbeOffset = ReflectionSurfaceHelper::undefinedOffset;
uint32_t globalMemoryPatchSize = 0;
uint64_t constantMemoryCurbeOffset = ReflectionSurfaceHelper::undefinedOffset;
uint32_t constantMemoryPatchSize = 0;
if (pBlockInfo->patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization) {
globalMemoryCurbeOffset = pBlockInfo->patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization->DataParamOffset;
globalMemoryPatchSize = pBlockInfo->patchInfo.pAllocateStatelessGlobalMemorySurfaceWithInitialization->DataParamSize;
}
if (pBlockInfo->patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization) {
constantMemoryCurbeOffset = pBlockInfo->patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization->DataParamOffset;
constantMemoryPatchSize = pBlockInfo->patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization->DataParamSize;
}
ReflectionSurfaceHelper::patchBlocksCurbeWithConstantValues(kernelReflectionSurface->getUnderlyingBuffer(), blockID,
globalMemoryCurbeOffset, globalMemoryPatchSize, globalMemoryGpuAddress,
constantMemoryCurbeOffset, constantMemoryPatchSize, constantMemoryGpuAddress,
ReflectionSurfaceHelper::undefinedOffset, 0, 0);
}
}
void Kernel::ReflectionSurfaceHelper::getCurbeParams(std::vector<IGIL_KernelCurbeParams> &curbeParamsOut, uint64_t &tokenMaskOut, uint32_t &firstSSHTokenIndex, const KernelInfo &kernelInfo, const HardwareInfo &hwInfo) {
size_t numArgs = kernelInfo.kernelArgInfo.size();
size_t patchTokenCount = +kernelInfo.kernelNonArgInfo.size();
uint64_t tokenMask = 0;
tokenMaskOut = 0;
firstSSHTokenIndex = 0;
curbeParamsOut.reserve(patchTokenCount * 5);
uint32_t bindingTableIndex = 253;
for (uint32_t argNumber = 0; argNumber < numArgs; argNumber++) {
IGIL_KernelCurbeParams curbeParam;
bindingTableIndex = 253;
auto sizeOfkernelArgForSSH = kernelInfo.gpuPointerSize;
if (kernelInfo.kernelArgInfo[argNumber].isBuffer) {
curbeParam.m_patchOffset = kernelInfo.kernelArgInfo[argNumber].kernelArgPatchInfoVector[0].crossthreadOffset;
curbeParam.m_parameterSize = kernelInfo.gpuPointerSize;
curbeParam.m_parameterType = COMPILER_DATA_PARAMETER_GLOBAL_SURFACE;
curbeParam.m_sourceOffset = argNumber;
curbeParamsOut.push_back(curbeParam);
tokenMask |= ((uint64_t)1 << 63);
} else if (kernelInfo.kernelArgInfo[argNumber].isImage) {
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetImgWidth)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_IMAGE_WIDTH + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetImgWidth, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetImgHeight)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_IMAGE_HEIGHT + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetImgHeight, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetImgDepth)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_IMAGE_DEPTH + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetImgDepth, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetChannelDataType)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_IMAGE_CHANNEL_DATA_TYPE + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetChannelDataType, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetChannelOrder)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_IMAGE_CHANNEL_ORDER + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetChannelOrder, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetArraySize)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_IMAGE_ARRAY_SIZE + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetArraySize, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetObjectId)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_OBJECT_ID + 50, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetObjectId, argNumber});
}
tokenMask |= ((uint64_t)1 << 50);
if (kernelInfo.patchInfo.bindingTableState) {
auto &hwHelper = HwHelper::get(hwInfo.platform.eRenderCoreFamily);
const void *ssh = static_cast<const char *>(kernelInfo.heapInfo.pSsh) + kernelInfo.patchInfo.bindingTableState->Offset;
for (uint32_t i = 0; i < kernelInfo.patchInfo.bindingTableState->Count; i++) {
uint32_t pointer = hwHelper.getBindingTableStateSurfaceStatePointer(ssh, i);
if (pointer == kernelInfo.kernelArgInfo[argNumber].offsetHeap) {
bindingTableIndex = i;
break;
}
}
DEBUG_BREAK_IF(!((bindingTableIndex != 253) || (kernelInfo.patchInfo.bindingTableState->Count == 0)));
}
} else if (kernelInfo.kernelArgInfo[argNumber].isSampler) {
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetSamplerSnapWa)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_SAMPLER_COORDINATE_SNAP_WA_REQUIRED + 100, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetSamplerSnapWa, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetSamplerAddressingMode)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_SAMPLER_ADDRESS_MODE + 100, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetSamplerAddressingMode, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetSamplerNormalizedCoords)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_SAMPLER_NORMALIZED_COORDS + 100, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetSamplerNormalizedCoords, argNumber});
}
if (isValidOffset(kernelInfo.kernelArgInfo[argNumber].offsetObjectId)) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_OBJECT_ID + 100, sizeof(uint32_t), kernelInfo.kernelArgInfo[argNumber].offsetObjectId, argNumber});
}
tokenMask |= ((uint64_t)1 << 51);
} else {
bindingTableIndex = 0;
sizeOfkernelArgForSSH = 0;
}
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{1024, sizeOfkernelArgForSSH, bindingTableIndex, argNumber});
if (kernelInfo.kernelArgInfo[argNumber].slmAlignment != 0) {
DEBUG_BREAK_IF(kernelInfo.kernelArgInfo[argNumber].kernelArgPatchInfoVector.size() != 1);
uint32_t offset = kernelInfo.kernelArgInfo[argNumber].kernelArgPatchInfoVector[0].crossthreadOffset;
uint32_t srcOffset = kernelInfo.kernelArgInfo[argNumber].slmAlignment;
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_SUM_OF_LOCAL_MEMORY_OBJECT_ARGUMENT_SIZES, 0, offset, srcOffset});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_SUM_OF_LOCAL_MEMORY_OBJECT_ARGUMENT_SIZES);
}
}
for (auto param : kernelInfo.patchInfo.dataParameterBuffersKernelArgs) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_KERNEL_ARGUMENT, param->DataSize, param->Offset, param->ArgumentNumber});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_KERNEL_ARGUMENT);
}
for (uint32_t i = 0; i < 3; i++) {
const uint32_t sizeOfParam = 4;
if (kernelInfo.workloadInfo.enqueuedLocalWorkSizeOffsets[i] != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_ENQUEUED_LOCAL_WORK_SIZE, sizeOfParam, kernelInfo.workloadInfo.enqueuedLocalWorkSizeOffsets[i], i * sizeOfParam});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_ENQUEUED_LOCAL_WORK_SIZE);
}
if (kernelInfo.workloadInfo.globalWorkOffsetOffsets[i] != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_GLOBAL_WORK_OFFSET, sizeOfParam, kernelInfo.workloadInfo.globalWorkOffsetOffsets[i], i * sizeOfParam});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_GLOBAL_WORK_OFFSET);
}
if (kernelInfo.workloadInfo.globalWorkSizeOffsets[i] != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_GLOBAL_WORK_SIZE, sizeOfParam, kernelInfo.workloadInfo.globalWorkSizeOffsets[i], i * sizeOfParam});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_GLOBAL_WORK_SIZE);
}
if (kernelInfo.workloadInfo.localWorkSizeOffsets[i] != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_LOCAL_WORK_SIZE, sizeOfParam, kernelInfo.workloadInfo.localWorkSizeOffsets[i], i * sizeOfParam});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_LOCAL_WORK_SIZE);
}
if (kernelInfo.workloadInfo.localWorkSizeOffsets2[i] != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_LOCAL_WORK_SIZE, sizeOfParam, kernelInfo.workloadInfo.localWorkSizeOffsets2[i], i * sizeOfParam});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_LOCAL_WORK_SIZE);
}
if (kernelInfo.workloadInfo.numWorkGroupsOffset[i] != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_NUM_WORK_GROUPS, sizeOfParam, kernelInfo.workloadInfo.numWorkGroupsOffset[i], i * sizeOfParam});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_NUM_WORK_GROUPS);
}
}
if (kernelInfo.workloadInfo.parentEventOffset != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_PARENT_EVENT, sizeof(uint32_t), kernelInfo.workloadInfo.parentEventOffset, 0});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_PARENT_EVENT);
}
if (kernelInfo.workloadInfo.workDimOffset != WorkloadInfo::undefinedOffset) {
curbeParamsOut.emplace_back(IGIL_KernelCurbeParams{DATA_PARAMETER_WORK_DIMENSIONS, sizeof(uint32_t), kernelInfo.workloadInfo.workDimOffset, 0});
tokenMask |= ((uint64_t)1 << DATA_PARAMETER_WORK_DIMENSIONS);
}
std::sort(curbeParamsOut.begin(), curbeParamsOut.end(), compareFunction);
tokenMaskOut = tokenMask;
firstSSHTokenIndex = static_cast<uint32_t>(curbeParamsOut.size() - numArgs);
}
uint32_t Kernel::ReflectionSurfaceHelper::setKernelData(void *reflectionSurface, uint32_t offset,
std::vector<IGIL_KernelCurbeParams> &curbeParamsIn, uint64_t tokenMaskIn,
size_t maxConstantBufferSize, size_t samplerCount, const KernelInfo &kernelInfo, const HardwareInfo &hwInfo) {
uint32_t offsetToEnd = 0;
IGIL_KernelData *kernelData = reinterpret_cast<IGIL_KernelData *>(ptrOffset(reflectionSurface, offset));
size_t samplerHeapSize = alignUp(kernelInfo.getSamplerStateArraySize(hwInfo), Sampler::samplerStateArrayAlignment) + kernelInfo.getBorderColorStateSize();
kernelData->m_numberOfCurbeParams = static_cast<uint32_t>(curbeParamsIn.size()); // number of paramters to patch
kernelData->m_numberOfCurbeTokens = static_cast<uint32_t>(curbeParamsIn.size() - kernelInfo.kernelArgInfo.size());
kernelData->m_numberOfSamplerStates = static_cast<uint32_t>(kernelInfo.getSamplerStateArrayCount());
kernelData->m_SizeOfSamplerHeap = static_cast<uint32_t>(samplerHeapSize);
kernelData->m_SamplerBorderColorStateOffsetOnDSH = kernelInfo.patchInfo.samplerStateArray ? kernelInfo.patchInfo.samplerStateArray->BorderColorOffset : 0;
kernelData->m_SamplerStateArrayOffsetOnDSH = kernelInfo.patchInfo.samplerStateArray ? kernelInfo.patchInfo.samplerStateArray->Offset : (uint32_t)-1;
kernelData->m_sizeOfConstantBuffer = kernelInfo.getConstantBufferSize();
kernelData->m_PatchTokensMask = tokenMaskIn;
kernelData->m_ScratchSpacePatchValue = 0;
kernelData->m_SIMDSize = kernelInfo.patchInfo.executionEnvironment ? kernelInfo.patchInfo.executionEnvironment->LargestCompiledSIMDSize : 0;
kernelData->m_HasBarriers = kernelInfo.patchInfo.executionEnvironment ? kernelInfo.patchInfo.executionEnvironment->HasBarriers : 0;
kernelData->m_RequiredWkgSizes[0] = kernelInfo.reqdWorkGroupSize[0] != WorkloadInfo::undefinedOffset ? static_cast<uint32_t>(kernelInfo.reqdWorkGroupSize[0]) : 0;
kernelData->m_RequiredWkgSizes[1] = kernelInfo.reqdWorkGroupSize[1] != WorkloadInfo::undefinedOffset ? static_cast<uint32_t>(kernelInfo.reqdWorkGroupSize[1]) : 0;
kernelData->m_RequiredWkgSizes[2] = kernelInfo.reqdWorkGroupSize[2] != WorkloadInfo::undefinedOffset ? static_cast<uint32_t>(kernelInfo.reqdWorkGroupSize[2]) : 0;
kernelData->m_InilineSLMSize = kernelInfo.workloadInfo.slmStaticSize;
bool localIdRequired = false;
if (kernelInfo.patchInfo.threadPayload) {
if (kernelInfo.patchInfo.threadPayload->LocalIDFlattenedPresent ||
kernelInfo.patchInfo.threadPayload->LocalIDXPresent ||
kernelInfo.patchInfo.threadPayload->LocalIDYPresent ||
kernelInfo.patchInfo.threadPayload->LocalIDZPresent) {
localIdRequired = true;
}
kernelData->m_PayloadSize = PerThreadDataHelper::getThreadPayloadSize(*kernelInfo.patchInfo.threadPayload, kernelData->m_SIMDSize);
}
kernelData->m_NeedLocalIDS = localIdRequired ? 1 : 0;
kernelData->m_DisablePreemption = 0u;
bool concurrentExecAllowed = true;
if (kernelInfo.patchInfo.pAllocateStatelessPrivateSurface) {
if (kernelInfo.patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize > 0) {
concurrentExecAllowed = false;
}
}
kernelData->m_CanRunConcurently = concurrentExecAllowed ? 1 : 0;
if (DebugManager.flags.DisableConcurrentBlockExecution.get()) {
kernelData->m_CanRunConcurently = false;
}
IGIL_KernelCurbeParams *kernelCurbeParams = kernelData->m_data;
for (uint32_t i = 0; i < curbeParamsIn.size(); i++) {
kernelCurbeParams[i] = curbeParamsIn[i];
}
offsetToEnd = static_cast<uint32_t>(offset +
alignUp(sizeof(IGIL_KernelData) + sizeof(IGIL_KernelCurbeParams) * curbeParamsIn.size(), sizeof(void *)) +
alignUp(samplerHeapSize, sizeof(void *)) +
alignUp(maxConstantBufferSize, sizeof(void *)) +
sizeof(IGIL_SamplerParams) * samplerCount);
return offsetToEnd;
}
void Kernel::ReflectionSurfaceHelper::setKernelAddressDataBtOffset(void *reflectionSurface, uint32_t blockID, uint32_t btOffset) {
uint32_t offset = static_cast<uint32_t>(offsetof(IGIL_KernelDataHeader, m_data) + sizeof(IGIL_KernelAddressData) * blockID);
IGIL_KernelAddressData *kernelAddressData = reinterpret_cast<IGIL_KernelAddressData *>(ptrOffset(reflectionSurface, offset));
kernelAddressData->m_BTSoffset = btOffset;
}
void Kernel::ReflectionSurfaceHelper::setKernelAddressData(void *reflectionSurface, uint32_t offset, uint32_t kernelDataOffset, uint32_t samplerHeapOffset,
uint32_t constantBufferOffset, uint32_t samplerParamsOffset,
uint32_t sshTokensOffset, uint32_t btOffset, const KernelInfo &kernelInfo, const HardwareInfo &hwInfo) {
IGIL_KernelAddressData *kernelAddressData = reinterpret_cast<IGIL_KernelAddressData *>(ptrOffset(reflectionSurface, offset));
auto &hwHelper = HwHelper::get(hwInfo.platform.eRenderCoreFamily);
kernelAddressData->m_KernelDataOffset = kernelDataOffset;
kernelAddressData->m_SamplerHeapOffset = samplerHeapOffset;
kernelAddressData->m_SamplerParamsOffset = samplerParamsOffset;
kernelAddressData->m_ConstantBufferOffset = constantBufferOffset;
kernelAddressData->m_SSHTokensOffset = sshTokensOffset;
kernelAddressData->m_BTSoffset = btOffset;
kernelAddressData->m_BTSize = static_cast<uint32_t>(kernelInfo.patchInfo.bindingTableState ? kernelInfo.patchInfo.bindingTableState->Count * hwHelper.getBindingTableStateSize() : 0);
}
template <>
void Kernel::ReflectionSurfaceHelper::patchBlocksCurbe<false>(void *reflectionSurface, uint32_t blockID,
uint64_t defaultDeviceQueueCurbeOffset, uint32_t patchSizeDefaultQueue, uint64_t defaultDeviceQueueGpuAddress,
uint64_t eventPoolCurbeOffset, uint32_t patchSizeEventPool, uint64_t eventPoolGpuAddress,
uint64_t deviceQueueCurbeOffset, uint32_t patchSizeDeviceQueue, uint64_t deviceQueueGpuAddress,
uint64_t printfBufferOffset, uint32_t patchSizePrintfBuffer, uint64_t printfBufferGpuAddress,
uint64_t privateSurfaceOffset, uint32_t privateSurfaceSize, uint64_t privateSurfaceGpuAddress) {
IGIL_KernelDataHeader *pKernelHeader = reinterpret_cast<IGIL_KernelDataHeader *>(reflectionSurface);
// Reflection surface must be initialized prior to patching blocks curbe on KRS
DEBUG_BREAK_IF(blockID >= pKernelHeader->m_numberOfKernels);
IGIL_KernelAddressData *addressData = pKernelHeader->m_data;
// const buffer offsets must be set
DEBUG_BREAK_IF(addressData[blockID].m_ConstantBufferOffset == 0);
void *pCurbe = ptrOffset(reflectionSurface, addressData[blockID].m_ConstantBufferOffset);
if (defaultDeviceQueueCurbeOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)defaultDeviceQueueCurbeOffset);
patchWithRequiredSize(patchedPointer, patchSizeDefaultQueue, (uintptr_t)defaultDeviceQueueGpuAddress);
}
if (eventPoolCurbeOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)eventPoolCurbeOffset);
patchWithRequiredSize(patchedPointer, patchSizeEventPool, (uintptr_t)eventPoolGpuAddress);
}
if (deviceQueueCurbeOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)deviceQueueCurbeOffset);
patchWithRequiredSize(patchedPointer, patchSizeDeviceQueue, (uintptr_t)deviceQueueGpuAddress);
}
if (printfBufferOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)printfBufferOffset);
patchWithRequiredSize(patchedPointer, patchSizePrintfBuffer, (uintptr_t)printfBufferGpuAddress);
}
if (privateSurfaceOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)privateSurfaceOffset);
patchWithRequiredSize(patchedPointer, privateSurfaceSize, (uintptr_t)privateSurfaceGpuAddress);
}
}
void Kernel::ReflectionSurfaceHelper::patchBlocksCurbeWithConstantValues(void *reflectionSurface, uint32_t blockID,
uint64_t globalMemoryCurbeOffset, uint32_t globalMemoryPatchSize, uint64_t globalMemoryGpuAddress,
uint64_t constantMemoryCurbeOffset, uint32_t constantMemoryPatchSize, uint64_t constantMemoryGpuAddress,
uint64_t privateMemoryCurbeOffset, uint32_t privateMemoryPatchSize, uint64_t privateMemoryGpuAddress) {
IGIL_KernelDataHeader *pKernelHeader = reinterpret_cast<IGIL_KernelDataHeader *>(reflectionSurface);
// Reflection surface must be initialized prior to patching blocks curbe on KRS
DEBUG_BREAK_IF(blockID >= pKernelHeader->m_numberOfKernels);
IGIL_KernelAddressData *addressData = pKernelHeader->m_data;
// const buffer offsets must be set
DEBUG_BREAK_IF(addressData[blockID].m_ConstantBufferOffset == 0);
void *pCurbe = ptrOffset(reflectionSurface, addressData[blockID].m_ConstantBufferOffset);
if (globalMemoryCurbeOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)globalMemoryCurbeOffset);
patchWithRequiredSize(patchedPointer, globalMemoryPatchSize, (uintptr_t)globalMemoryGpuAddress);
}
if (constantMemoryCurbeOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)constantMemoryCurbeOffset);
patchWithRequiredSize(patchedPointer, constantMemoryPatchSize, (uintptr_t)constantMemoryGpuAddress);
}
if (privateMemoryCurbeOffset != undefinedOffset) {
auto *patchedPointer = ptrOffset(pCurbe, (size_t)privateMemoryCurbeOffset);
patchWithRequiredSize(patchedPointer, privateMemoryPatchSize, (uintptr_t)privateMemoryGpuAddress);
}
}
void Kernel::ReflectionSurfaceHelper::setParentImageParams(void *reflectionSurface, std::vector<Kernel::SimpleKernelArgInfo> &parentArguments, const KernelInfo &parentKernelInfo) {
IGIL_KernelDataHeader *pKernelHeader = reinterpret_cast<IGIL_KernelDataHeader *>(reflectionSurface);
IGIL_ImageParamters *pImageParameters = reinterpret_cast<IGIL_ImageParamters *>(ptrOffset(pKernelHeader, (size_t)pKernelHeader->m_ParentImageDataOffset));
uint32_t numArgs = (uint32_t)parentArguments.size();
for (uint32_t i = 0; i < numArgs; i++) {
if (parentArguments[i].type == Kernel::kernelArgType::IMAGE_OBJ) {
const Image *image = castToObject<Image>((cl_mem)parentArguments[i].object);
if (image) {
pImageParameters->m_ArraySize = (uint32_t)image->getImageDesc().image_array_size;
pImageParameters->m_Depth = (uint32_t)image->getImageDesc().image_depth;
pImageParameters->m_Height = (uint32_t)image->getImageDesc().image_height;
pImageParameters->m_Width = (uint32_t)image->getImageDesc().image_width;
pImageParameters->m_NumMipLevels = (uint32_t)image->getImageDesc().num_mip_levels;
pImageParameters->m_NumSamples = (uint32_t)image->getImageDesc().num_samples;
pImageParameters->m_ChannelDataType = (uint32_t)image->getImageFormat().image_channel_data_type;
pImageParameters->m_ChannelOrder = (uint32_t)image->getImageFormat().image_channel_data_type;
pImageParameters->m_ObjectID = (uint32_t)parentKernelInfo.kernelArgInfo[i].offsetHeap;
pImageParameters++;
}
}
}
}
void Kernel::ReflectionSurfaceHelper::setParentSamplerParams(void *reflectionSurface, std::vector<Kernel::SimpleKernelArgInfo> &parentArguments, const KernelInfo &parentKernelInfo) {
IGIL_KernelDataHeader *pKernelHeader = reinterpret_cast<IGIL_KernelDataHeader *>(reflectionSurface);
IGIL_ParentSamplerParams *pParentSamplerParams = reinterpret_cast<IGIL_ParentSamplerParams *>(ptrOffset(pKernelHeader, (size_t)pKernelHeader->m_ParentSamplerParamsOffset));
uint32_t numArgs = (uint32_t)parentArguments.size();
for (uint32_t i = 0; i < numArgs; i++) {
if (parentArguments[i].type == Kernel::kernelArgType::SAMPLER_OBJ) {
const Sampler *sampler = castToObject<Sampler>((cl_sampler)parentArguments[i].object);
if (sampler) {
pParentSamplerParams->CoordinateSnapRequired = (uint32_t)sampler->getSnapWaValue();
pParentSamplerParams->m_AddressingMode = (uint32_t)sampler->addressingMode;
pParentSamplerParams->NormalizedCoords = (uint32_t)sampler->normalizedCoordinates;
pParentSamplerParams->m_ObjectID = OCLRT_ARG_OFFSET_TO_SAMPLER_OBJECT_ID((uint32_t)parentKernelInfo.kernelArgInfo[i].offsetHeap);
pParentSamplerParams++;
}
}
}
}
void Kernel::resetSharedObjectsPatchAddresses() {
for (size_t i = 0; i < getKernelArgsNumber(); i++) {
auto clMem = (cl_mem)kernelArguments[i].object;
auto memObj = castToObject<MemObj>(clMem);
if (memObj && memObj->peekSharingHandler()) {
setArg((uint32_t)i, sizeof(cl_mem), &clMem);
}
}
}
void Kernel::provideInitializationHints() {
const auto &patchInfo = kernelInfo.patchInfo;
Context *context = program->getContextPtr();
if (context == nullptr || !context->isProvidingPerformanceHints())
return;
if (privateSurfaceSize) {
context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_BAD_INTEL, PRIVATE_MEMORY_USAGE_TOO_HIGH,
kernelInfo.name.c_str(), privateSurfaceSize);
}
if (patchInfo.mediavfestate) {
auto scratchSize = patchInfo.mediavfestate->PerThreadScratchSpace;
scratchSize *= device.getDeviceInfo().computeUnitsUsedForScratch * getKernelInfo().getMaxSimdSize();
if (scratchSize > 0) {
context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_BAD_INTEL, REGISTER_PRESSURE_TOO_HIGH,
kernelInfo.name.c_str(), scratchSize);
}
}
}
void Kernel::patchDefaultDeviceQueue(DeviceQueue *devQueue) {
const auto &patchInfo = kernelInfo.patchInfo;
if (patchInfo.pAllocateStatelessDefaultDeviceQueueSurface) {
if (crossThreadData) {
auto patchLocation = ptrOffset(reinterpret_cast<uint32_t *>(getCrossThreadData()),
patchInfo.pAllocateStatelessDefaultDeviceQueueSurface->DataParamOffset);
patchWithRequiredSize(patchLocation, patchInfo.pAllocateStatelessDefaultDeviceQueueSurface->DataParamSize,
static_cast<uintptr_t>(devQueue->getQueueBuffer()->getGpuAddressToPatch()));
}
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(reinterpret_cast<uintptr_t *>(getSurfaceStateHeap()),
patchInfo.pAllocateStatelessDefaultDeviceQueueSurface->SurfaceStateHeapOffset);
Buffer::setSurfaceState(&getDevice(), surfaceState, devQueue->getQueueBuffer()->getUnderlyingBufferSize(), (void *)devQueue->getQueueBuffer()->getGpuAddress(), devQueue->getQueueBuffer());
}
}
}
void Kernel::patchEventPool(DeviceQueue *devQueue) {
const auto &patchInfo = kernelInfo.patchInfo;
if (patchInfo.pAllocateStatelessEventPoolSurface) {
if (crossThreadData) {
auto patchLocation = ptrOffset(reinterpret_cast<uint32_t *>(getCrossThreadData()),
patchInfo.pAllocateStatelessEventPoolSurface->DataParamOffset);
patchWithRequiredSize(patchLocation, patchInfo.pAllocateStatelessEventPoolSurface->DataParamSize,
static_cast<uintptr_t>(devQueue->getEventPoolBuffer()->getGpuAddressToPatch()));
}
if (requiresSshForBuffers()) {
auto surfaceState = ptrOffset(reinterpret_cast<uintptr_t *>(getSurfaceStateHeap()),
patchInfo.pAllocateStatelessEventPoolSurface->SurfaceStateHeapOffset);
Buffer::setSurfaceState(&getDevice(), surfaceState, devQueue->getEventPoolBuffer()->getUnderlyingBufferSize(), (void *)devQueue->getEventPoolBuffer()->getGpuAddress(), devQueue->getEventPoolBuffer());
}
}
}
void Kernel::patchBlocksSimdSize() {
BlockKernelManager *blockManager = program->getBlockKernelManager();
for (auto &idOffset : kernelInfo.childrenKernelsIdOffset) {
DEBUG_BREAK_IF(!(idOffset.first < static_cast<uint32_t>(blockManager->getCount())));
const KernelInfo *blockInfo = blockManager->getBlockKernelInfo(idOffset.first);
uint32_t *simdSize = reinterpret_cast<uint32_t *>(&crossThreadData[idOffset.second]);
*simdSize = blockInfo->getMaxSimdSize();
}
}
template void Kernel::patchReflectionSurface<false>(DeviceQueue *, PrintfHandler *);
bool Kernel::isPatched() const {
return patchedArgumentsNum == kernelInfo.argumentsToPatchNum;
}
cl_int Kernel::checkCorrectImageAccessQualifier(cl_uint argIndex,
size_t argSize,
const void *argValue) const {
if (getKernelInfo().kernelArgInfo[argIndex].isImage) {
cl_mem mem = *(static_cast<const cl_mem *>(argValue));
MemObj *pMemObj = nullptr;
WithCastToInternal(mem, &pMemObj);
if (pMemObj) {
cl_kernel_arg_access_qualifier accessQualifier = getKernelInfo().kernelArgInfo[argIndex].accessQualifier;
cl_mem_flags flags = pMemObj->getMemoryPropertiesFlags();
if ((accessQualifier == CL_KERNEL_ARG_ACCESS_READ_ONLY && ((flags | CL_MEM_WRITE_ONLY) == flags)) ||
(accessQualifier == CL_KERNEL_ARG_ACCESS_WRITE_ONLY && ((flags | CL_MEM_READ_ONLY) == flags))) {
return CL_INVALID_ARG_VALUE;
}
} else {
return CL_INVALID_ARG_VALUE;
}
}
return CL_SUCCESS;
}
void Kernel::resolveArgs() {
if (!Kernel::isPatched() || !imageTransformer->hasRegisteredImages3d() || !canTransformImages())
return;
bool canTransformImageTo2dArray = true;
for (uint32_t i = 0; i < patchedArgumentsNum; i++) {
if (kernelInfo.kernelArgInfo.at(i).isSampler) {
auto sampler = castToObject<Sampler>(kernelArguments.at(i).object);
if (sampler->isTransformable()) {
canTransformImageTo2dArray = true;
} else {
canTransformImageTo2dArray = false;
break;
}
}
}
if (canTransformImageTo2dArray) {
imageTransformer->transformImagesTo2dArray(kernelInfo, kernelArguments, getSurfaceStateHeap());
} else if (imageTransformer->didTransform()) {
imageTransformer->transformImagesTo3d(kernelInfo, kernelArguments, getSurfaceStateHeap());
}
}
bool Kernel::canTransformImages() const {
return device.getHardwareInfo().platform.eRenderCoreFamily >= IGFX_GEN9_CORE &&
device.getHardwareInfo().platform.eRenderCoreFamily <= IGFX_GEN11LP_CORE;
}
void Kernel::fillWithBuffersForAuxTranslation(MemObjsForAuxTranslation &memObjsForAuxTranslation) {
memObjsForAuxTranslation.reserve(getKernelArgsNumber());
for (uint32_t i = 0; i < getKernelArgsNumber(); i++) {
if (BUFFER_OBJ == kernelArguments.at(i).type && !kernelInfo.kernelArgInfo.at(i).pureStatefulBufferAccess) {
auto buffer = castToObject<Buffer>(getKernelArg(i));
if (buffer && buffer->getGraphicsAllocation()->getAllocationType() == GraphicsAllocation::AllocationType::BUFFER_COMPRESSED) {
memObjsForAuxTranslation.insert(buffer);
auto &context = this->program->getContext();
if (context.isProvidingPerformanceHints()) {
context.providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_BAD_INTEL, KERNEL_ARGUMENT_AUX_TRANSLATION,
kernelInfo.name.c_str(), i, kernelInfo.kernelArgInfo.at(i).name.c_str());
}
}
}
}
}
void Kernel::getAllocationsForCacheFlush(CacheFlushAllocationsVec &out) const {
if (false == HwHelper::cacheFlushAfterWalkerSupported(device.getHardwareInfo())) {
return;
}
for (GraphicsAllocation *alloc : this->kernelArgRequiresCacheFlush) {
if (nullptr == alloc) {
continue;
}
out.push_back(alloc);
}
auto global = getProgram()->getGlobalSurface();
if (global != nullptr) {
out.push_back(global);
}
if (svmAllocationsRequireCacheFlush) {
for (GraphicsAllocation *alloc : kernelSvmGfxAllocations) {
if (allocationForCacheFlush(alloc)) {
out.push_back(alloc);
}
}
}
}
bool Kernel::allocationForCacheFlush(GraphicsAllocation *argAllocation) const {
return argAllocation->isFlushL3Required();
}
void Kernel::addAllocationToCacheFlushVector(uint32_t argIndex, GraphicsAllocation *argAllocation) {
if (argAllocation == nullptr) {
kernelArgRequiresCacheFlush[argIndex] = nullptr;
} else {
if (allocationForCacheFlush(argAllocation)) {
kernelArgRequiresCacheFlush[argIndex] = argAllocation;
} else {
kernelArgRequiresCacheFlush[argIndex] = nullptr;
}
}
}
void Kernel::setReflectionSurfaceBlockBtOffset(uint32_t blockID, uint32_t offset) {
DEBUG_BREAK_IF(blockID >= program->getBlockKernelManager()->getCount());
ReflectionSurfaceHelper::setKernelAddressDataBtOffset(getKernelReflectionSurface()->getUnderlyingBuffer(), blockID, offset);
}
bool Kernel::checkIfIsParentKernelAndBlocksUsesPrintf() {
return isParentKernel && getProgram()->getBlockKernelManager()->getIfBlockUsesPrintf();
}
} // namespace NEO