compute-runtime/shared/source/command_container/command_encoder.inl

1283 lines
66 KiB
C++

/*
* Copyright (C) 2020-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/command_container/command_encoder.h"
#include "shared/source/command_container/implicit_scaling.h"
#include "shared/source/command_stream/linear_stream.h"
#include "shared/source/debugger/debugger_l0.h"
#include "shared/source/device/device.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/helpers/api_specific_config.h"
#include "shared/source/helpers/bindless_heaps_helper.h"
#include "shared/source/helpers/blit_commands_helper.h"
#include "shared/source/helpers/definitions/command_encoder_args.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/local_id_gen.h"
#include "shared/source/helpers/preamble.h"
#include "shared/source/helpers/register_offsets.h"
#include "shared/source/helpers/simd_helper.h"
#include "shared/source/helpers/string.h"
#include "shared/source/image/image_surface_state.h"
#include "shared/source/indirect_heap/indirect_heap.h"
#include "shared/source/kernel/dispatch_kernel_encoder_interface.h"
#include "shared/source/kernel/implicit_args_helper.h"
#include "shared/source/kernel/kernel_descriptor.h"
#include "shared/source/os_interface/product_helper.h"
#include "shared/source/program/kernel_info.h"
#include "encode_surface_state.inl"
#include "encode_surface_state_args.h"
#include <algorithm>
namespace NEO {
template <typename Family>
uint32_t EncodeStates<Family>::copySamplerState(IndirectHeap *dsh,
uint32_t samplerStateOffset,
uint32_t samplerCount,
uint32_t borderColorOffset,
const void *fnDynamicStateHeap,
BindlessHeapsHelper *bindlessHeapHelper,
const RootDeviceEnvironment &rootDeviceEnvironment) {
auto sizeSamplerState = sizeof(SAMPLER_STATE) * samplerCount;
auto borderColorSize = samplerStateOffset - borderColorOffset;
SAMPLER_STATE *dstSamplerState = nullptr;
uint32_t samplerStateOffsetInDsh = 0;
dsh->align(NEO::EncodeDispatchKernel<Family>::getDefaultDshAlignment());
uint32_t borderColorOffsetInDsh = 0;
if (!bindlessHeapHelper || (!bindlessHeapHelper->isGlobalDshSupported())) {
borderColorOffsetInDsh = static_cast<uint32_t>(dsh->getUsed());
// add offset of graphics allocation base address relative to heap base address
if (bindlessHeapHelper) {
borderColorOffsetInDsh += static_cast<uint32_t>(ptrDiff(dsh->getGpuBase(), bindlessHeapHelper->getGlobalHeapsBase()));
}
auto borderColor = dsh->getSpace(borderColorSize);
memcpy_s(borderColor, borderColorSize, ptrOffset(fnDynamicStateHeap, borderColorOffset),
borderColorSize);
dsh->align(INTERFACE_DESCRIPTOR_DATA::SAMPLERSTATEPOINTER_ALIGN_SIZE);
samplerStateOffsetInDsh = static_cast<uint32_t>(dsh->getUsed());
dstSamplerState = reinterpret_cast<SAMPLER_STATE *>(dsh->getSpace(sizeSamplerState));
} else {
auto borderColor = reinterpret_cast<const SAMPLER_BORDER_COLOR_STATE *>(ptrOffset(fnDynamicStateHeap, borderColorOffset));
if (borderColor->getBorderColorRed() != 0.0f ||
borderColor->getBorderColorGreen() != 0.0f ||
borderColor->getBorderColorBlue() != 0.0f ||
(borderColor->getBorderColorAlpha() != 0.0f && borderColor->getBorderColorAlpha() != 1.0f)) {
UNRECOVERABLE_IF(true);
} else if (borderColor->getBorderColorAlpha() == 0.0f) {
borderColorOffsetInDsh = bindlessHeapHelper->getDefaultBorderColorOffset();
} else {
borderColorOffsetInDsh = bindlessHeapHelper->getAlphaBorderColorOffset();
}
dsh->align(INTERFACE_DESCRIPTOR_DATA::SAMPLERSTATEPOINTER_ALIGN_SIZE);
auto samplerStateInDsh = bindlessHeapHelper->allocateSSInHeap(sizeSamplerState, nullptr, BindlessHeapsHelper::BindlesHeapType::globalDsh);
dstSamplerState = reinterpret_cast<SAMPLER_STATE *>(samplerStateInDsh.ssPtr);
samplerStateOffsetInDsh = static_cast<uint32_t>(samplerStateInDsh.surfaceStateOffset);
}
auto &helper = rootDeviceEnvironment.getHelper<ProductHelper>();
auto &hwInfo = *rootDeviceEnvironment.getHardwareInfo();
auto srcSamplerState = reinterpret_cast<const SAMPLER_STATE *>(ptrOffset(fnDynamicStateHeap, samplerStateOffset));
SAMPLER_STATE state = {};
for (uint32_t i = 0; i < samplerCount; i++) {
state = srcSamplerState[i];
state.setIndirectStatePointer(static_cast<uint32_t>(borderColorOffsetInDsh));
helper.adjustSamplerState(&state, hwInfo);
dstSamplerState[i] = state;
}
return samplerStateOffsetInDsh;
} // namespace NEO
template <typename Family>
void EncodeMathMMIO<Family>::encodeMulRegVal(CommandContainer &container, uint32_t offset, uint32_t val, uint64_t dstAddress, bool isBcs) {
int logLws = 0;
int i = val;
while (val >> logLws) {
logLws++;
}
EncodeSetMMIO<Family>::encodeREG(container, RegisterOffsets::csGprR0, offset, isBcs);
EncodeSetMMIO<Family>::encodeIMM(container, RegisterOffsets::csGprR1, 0, true, isBcs);
i = 0;
while (i < logLws) {
if (val & (1 << i)) {
EncodeMath<Family>::addition(container, AluRegisters::gpr1,
AluRegisters::gpr0, AluRegisters::gpr2);
EncodeSetMMIO<Family>::encodeREG(container, RegisterOffsets::csGprR1, RegisterOffsets::csGprR2, isBcs);
}
EncodeMath<Family>::addition(container, AluRegisters::gpr0,
AluRegisters::gpr0, AluRegisters::gpr2);
EncodeSetMMIO<Family>::encodeREG(container, RegisterOffsets::csGprR0, RegisterOffsets::csGprR2, isBcs);
i++;
}
EncodeStoreMMIO<Family>::encode(*container.getCommandStream(), RegisterOffsets::csGprR1, dstAddress, false, nullptr, isBcs);
}
/*
* Compute *firstOperand > secondOperand and store the result in
* MI_PREDICATE_RESULT where firstOperand is an device memory address.
*
* To calculate the "greater than" operation in the device,
* (secondOperand - *firstOperand) is used, and if the carry flag register is
* set, then (*firstOperand) is greater than secondOperand.
*/
template <typename Family>
void EncodeMathMMIO<Family>::encodeGreaterThanPredicate(CommandContainer &container, uint64_t firstOperand, uint32_t secondOperand, bool isBcs) {
EncodeSetMMIO<Family>::encodeMEM(container, RegisterOffsets::csGprR0, firstOperand, isBcs);
EncodeSetMMIO<Family>::encodeIMM(container, RegisterOffsets::csGprR1, secondOperand, true, isBcs);
/* RegisterOffsets::csGprR* registers map to AluRegisters::gpr* registers */
EncodeMath<Family>::greaterThan(container, AluRegisters::gpr0,
AluRegisters::gpr1, AluRegisters::gpr2);
EncodeSetMMIO<Family>::encodeREG(container, RegisterOffsets::csPredicateResult, RegisterOffsets::csGprR2, isBcs);
}
/*
* Compute bitwise AND between a register value from regOffset and immVal
* and store it into dstAddress.
*/
template <typename Family>
void EncodeMathMMIO<Family>::encodeBitwiseAndVal(CommandContainer &container, uint32_t regOffset, uint32_t immVal, uint64_t dstAddress,
bool workloadPartition, void **outCmdBuffer, bool isBcs) {
EncodeSetMMIO<Family>::encodeREG(container, RegisterOffsets::csGprR13, regOffset, isBcs);
EncodeSetMMIO<Family>::encodeIMM(container, RegisterOffsets::csGprR14, immVal, true, isBcs);
EncodeMath<Family>::bitwiseAnd(container, AluRegisters::gpr13,
AluRegisters::gpr14,
AluRegisters::gpr12);
EncodeStoreMMIO<Family>::encode(*container.getCommandStream(),
RegisterOffsets::csGprR12, dstAddress, workloadPartition, outCmdBuffer, isBcs);
}
/*
* encodeAlu() performs operations that leave a state including the result of
* an operation such as the carry flag, and the accu flag with subtraction and
* addition result.
*
* Parameter "postOperationStateRegister" is the ALU register with the result
* from the operation that the function caller is interested in obtaining.
*
* Parameter "finalResultRegister" is the final destination register where
* data from "postOperationStateRegister" will be copied.
*/
template <typename Family>
void EncodeMathMMIO<Family>::encodeAlu(MI_MATH_ALU_INST_INLINE *pAluParam, AluRegisters srcA, AluRegisters srcB, AluRegisters op, AluRegisters finalResultRegister, AluRegisters postOperationStateRegister) {
MI_MATH_ALU_INST_INLINE aluParam;
aluParam.DW0.Value = 0x0;
aluParam.DW0.BitField.ALUOpcode = static_cast<uint32_t>(AluRegisters::opcodeLoad);
aluParam.DW0.BitField.Operand1 = static_cast<uint32_t>(AluRegisters::srca);
aluParam.DW0.BitField.Operand2 = static_cast<uint32_t>(srcA);
*pAluParam = aluParam;
pAluParam++;
aluParam.DW0.Value = 0x0;
aluParam.DW0.BitField.ALUOpcode = static_cast<uint32_t>(AluRegisters::opcodeLoad);
aluParam.DW0.BitField.Operand1 = static_cast<uint32_t>(AluRegisters::srcb);
aluParam.DW0.BitField.Operand2 = static_cast<uint32_t>(srcB);
*pAluParam = aluParam;
pAluParam++;
/* Order of operation: Operand1 <ALUOpcode> Operand2 */
aluParam.DW0.Value = 0x0;
aluParam.DW0.BitField.ALUOpcode = static_cast<uint32_t>(op);
aluParam.DW0.BitField.Operand1 = 0;
aluParam.DW0.BitField.Operand2 = 0;
*pAluParam = aluParam;
pAluParam++;
aluParam.DW0.Value = 0x0;
aluParam.DW0.BitField.ALUOpcode = static_cast<uint32_t>(AluRegisters::opcodeStore);
aluParam.DW0.BitField.Operand1 = static_cast<uint32_t>(finalResultRegister);
aluParam.DW0.BitField.Operand2 = static_cast<uint32_t>(postOperationStateRegister);
*pAluParam = aluParam;
pAluParam++;
}
template <typename Family>
uint32_t *EncodeMath<Family>::commandReserve(CommandContainer &container) {
return commandReserve(*container.getCommandStream());
}
template <typename Family>
uint32_t *EncodeMath<Family>::commandReserve(LinearStream &cmdStream) {
size_t size = sizeof(MI_MATH) + sizeof(MI_MATH_ALU_INST_INLINE) * RegisterConstants::numAluInstForReadModifyWrite;
auto cmd = reinterpret_cast<uint32_t *>(cmdStream.getSpace(size));
MI_MATH mathBuffer;
mathBuffer.DW0.Value = 0x0;
mathBuffer.DW0.BitField.InstructionType = MI_MATH::COMMAND_TYPE_MI_COMMAND;
mathBuffer.DW0.BitField.InstructionOpcode = MI_MATH::MI_COMMAND_OPCODE_MI_MATH;
mathBuffer.DW0.BitField.DwordLength = RegisterConstants::numAluInstForReadModifyWrite - 1;
*reinterpret_cast<MI_MATH *>(cmd) = mathBuffer;
cmd++;
return cmd;
}
template <typename Family>
void EncodeMathMMIO<Family>::encodeAluAdd(MI_MATH_ALU_INST_INLINE *pAluParam,
AluRegisters firstOperandRegister,
AluRegisters secondOperandRegister,
AluRegisters finalResultRegister) {
encodeAlu(pAluParam, firstOperandRegister, secondOperandRegister, AluRegisters::opcodeAdd, finalResultRegister, AluRegisters::accu);
}
template <typename Family>
void EncodeMathMMIO<Family>::encodeAluSubStoreCarry(MI_MATH_ALU_INST_INLINE *pAluParam, AluRegisters regA, AluRegisters regB, AluRegisters finalResultRegister) {
/* regB is subtracted from regA */
encodeAlu(pAluParam, regA, regB, AluRegisters::opcodeSub, finalResultRegister, AluRegisters::cf);
}
template <typename Family>
void EncodeMathMMIO<Family>::encodeAluAnd(MI_MATH_ALU_INST_INLINE *pAluParam,
AluRegisters firstOperandRegister,
AluRegisters secondOperandRegister,
AluRegisters finalResultRegister) {
encodeAlu(pAluParam, firstOperandRegister, secondOperandRegister, AluRegisters::opcodeAnd, finalResultRegister, AluRegisters::accu);
}
template <typename Family>
void EncodeMathMMIO<Family>::encodeIncrementOrDecrement(LinearStream &cmdStream, AluRegisters operandRegister, IncrementOrDecrementOperation operationType, bool isBcs) {
LriHelper<Family>::program(&cmdStream, RegisterOffsets::csGprR7, 1, true, isBcs);
LriHelper<Family>::program(&cmdStream, RegisterOffsets::csGprR7 + 4, 0, true, isBcs);
EncodeAluHelper<Family, 4> aluHelper;
aluHelper.setNextAlu(AluRegisters::opcodeLoad, AluRegisters::srca, operandRegister);
aluHelper.setNextAlu(AluRegisters::opcodeLoad, AluRegisters::srcb, AluRegisters::gpr7);
aluHelper.setNextAlu((operationType == IncrementOrDecrementOperation::increment) ? AluRegisters::opcodeAdd
: AluRegisters::opcodeSub);
aluHelper.setNextAlu(AluRegisters::opcodeStore, operandRegister, AluRegisters::accu);
aluHelper.copyToCmdStream(cmdStream);
}
template <typename Family>
void EncodeMathMMIO<Family>::encodeIncrement(LinearStream &cmdStream, AluRegisters operandRegister, bool isBcs) {
encodeIncrementOrDecrement(cmdStream, operandRegister, IncrementOrDecrementOperation::increment, isBcs);
}
template <typename Family>
void EncodeMathMMIO<Family>::encodeDecrement(LinearStream &cmdStream, AluRegisters operandRegister, bool isBcs) {
encodeIncrementOrDecrement(cmdStream, operandRegister, IncrementOrDecrementOperation::decrement, isBcs);
}
/*
* greaterThan() tests if firstOperandRegister is greater than
* secondOperandRegister.
*/
template <typename Family>
void EncodeMath<Family>::greaterThan(CommandContainer &container,
AluRegisters firstOperandRegister,
AluRegisters secondOperandRegister,
AluRegisters finalResultRegister) {
uint32_t *cmd = EncodeMath<Family>::commandReserve(container);
/* firstOperandRegister will be subtracted from secondOperandRegister */
EncodeMathMMIO<Family>::encodeAluSubStoreCarry(reinterpret_cast<MI_MATH_ALU_INST_INLINE *>(cmd),
secondOperandRegister,
firstOperandRegister,
finalResultRegister);
}
template <typename Family>
void EncodeMath<Family>::addition(CommandContainer &container,
AluRegisters firstOperandRegister,
AluRegisters secondOperandRegister,
AluRegisters finalResultRegister) {
uint32_t *cmd = EncodeMath<Family>::commandReserve(container);
EncodeMathMMIO<Family>::encodeAluAdd(reinterpret_cast<MI_MATH_ALU_INST_INLINE *>(cmd),
firstOperandRegister,
secondOperandRegister,
finalResultRegister);
}
template <typename Family>
void EncodeMath<Family>::addition(LinearStream &cmdStream,
AluRegisters firstOperandRegister,
AluRegisters secondOperandRegister,
AluRegisters finalResultRegister) {
uint32_t *cmd = EncodeMath<Family>::commandReserve(cmdStream);
EncodeMathMMIO<Family>::encodeAluAdd(reinterpret_cast<MI_MATH_ALU_INST_INLINE *>(cmd),
firstOperandRegister,
secondOperandRegister,
finalResultRegister);
}
template <typename Family>
void EncodeMath<Family>::bitwiseAnd(CommandContainer &container,
AluRegisters firstOperandRegister,
AluRegisters secondOperandRegister,
AluRegisters finalResultRegister) {
uint32_t *cmd = EncodeMath<Family>::commandReserve(container);
EncodeMathMMIO<Family>::encodeAluAnd(reinterpret_cast<MI_MATH_ALU_INST_INLINE *>(cmd),
firstOperandRegister,
secondOperandRegister,
finalResultRegister);
}
template <typename Family>
inline void EncodeSetMMIO<Family>::encodeIMM(CommandContainer &container, uint32_t offset, uint32_t data, bool remap, bool isBcs) {
EncodeSetMMIO<Family>::encodeIMM(*container.getCommandStream(), offset, data, remap, isBcs);
}
template <typename Family>
inline void EncodeSetMMIO<Family>::encodeMEM(CommandContainer &container, uint32_t offset, uint64_t address, bool isBcs) {
EncodeSetMMIO<Family>::encodeMEM(*container.getCommandStream(), offset, address, isBcs);
}
template <typename Family>
inline void EncodeSetMMIO<Family>::encodeREG(CommandContainer &container, uint32_t dstOffset, uint32_t srcOffset, bool isBcs) {
EncodeSetMMIO<Family>::encodeREG(*container.getCommandStream(), dstOffset, srcOffset, isBcs);
}
template <typename Family>
inline void EncodeSetMMIO<Family>::encodeIMM(LinearStream &cmdStream, uint32_t offset, uint32_t data, bool remap, bool isBcs) {
LriHelper<Family>::program(&cmdStream,
offset,
data,
remap,
isBcs);
}
template <typename Family>
inline void EncodeStateBaseAddress<Family>::setSbaTrackingForL0DebuggerIfEnabled(bool trackingEnabled,
Device &device,
LinearStream &commandStream,
STATE_BASE_ADDRESS &sbaCmd, bool useFirstLevelBB) {
if (!trackingEnabled) {
return;
}
NEO::Debugger::SbaAddresses sbaAddresses = {};
NEO::EncodeStateBaseAddress<Family>::setSbaAddressesForDebugger(sbaAddresses, sbaCmd);
device.getL0Debugger()->captureStateBaseAddress(commandStream, sbaAddresses, useFirstLevelBB);
}
template <typename Family>
void EncodeSetMMIO<Family>::encodeMEM(LinearStream &cmdStream, uint32_t offset, uint64_t address, bool isBcs) {
MI_LOAD_REGISTER_MEM cmd = Family::cmdInitLoadRegisterMem;
cmd.setRegisterAddress(offset);
cmd.setMemoryAddress(address);
remapOffset(&cmd);
if (isBcs) {
cmd.setRegisterAddress(offset + RegisterOffsets::bcs0Base);
}
auto buffer = cmdStream.getSpaceForCmd<MI_LOAD_REGISTER_MEM>();
*buffer = cmd;
}
template <typename Family>
void EncodeSetMMIO<Family>::encodeREG(LinearStream &cmdStream, uint32_t dstOffset, uint32_t srcOffset, bool isBcs) {
MI_LOAD_REGISTER_REG cmd = Family::cmdInitLoadRegisterReg;
cmd.setSourceRegisterAddress(srcOffset);
cmd.setDestinationRegisterAddress(dstOffset);
remapOffset(&cmd);
if (isBcs) {
cmd.setSourceRegisterAddress(srcOffset + RegisterOffsets::bcs0Base);
cmd.setDestinationRegisterAddress(dstOffset + RegisterOffsets::bcs0Base);
}
auto buffer = cmdStream.getSpaceForCmd<MI_LOAD_REGISTER_REG>();
*buffer = cmd;
}
template <typename Family>
void EncodeStoreMMIO<Family>::encode(LinearStream &csr, uint32_t offset, uint64_t address, bool workloadPartition, void **outCmdBuffer, bool isBcs) {
auto buffer = csr.getSpaceForCmd<MI_STORE_REGISTER_MEM>();
if (outCmdBuffer != nullptr) {
*outCmdBuffer = buffer;
}
EncodeStoreMMIO<Family>::encode(buffer, offset, address, workloadPartition, isBcs);
}
template <typename Family>
inline void EncodeStoreMMIO<Family>::encode(MI_STORE_REGISTER_MEM *cmdBuffer, uint32_t offset, uint64_t address, bool workloadPartition, bool isBcs) {
MI_STORE_REGISTER_MEM cmd = Family::cmdInitStoreRegisterMem;
cmd.setRegisterAddress(offset);
cmd.setMemoryAddress(address);
appendFlags(&cmd, workloadPartition);
if (isBcs) {
cmd.setRegisterAddress(offset + RegisterOffsets::bcs0Base);
}
*cmdBuffer = cmd;
}
template <typename Family>
void EncodeSurfaceState<Family>::encodeBuffer(EncodeSurfaceStateArgs &args) {
auto surfaceState = reinterpret_cast<R_SURFACE_STATE *>(args.outMemory);
uint64_t bufferSize = alignUp(args.size, getSurfaceBaseAddressAlignment());
bufferSize = std::min(bufferSize, static_cast<uint64_t>(MemoryConstants::fullStatefulRegion - 1));
SurfaceStateBufferLength length = {0};
length.length = static_cast<uint32_t>(bufferSize - 1);
surfaceState->setWidth(length.surfaceState.width + 1);
surfaceState->setHeight(length.surfaceState.height + 1);
surfaceState->setDepth(length.surfaceState.depth + 1);
surfaceState->setSurfaceType((args.graphicsAddress != 0) ? R_SURFACE_STATE::SURFACE_TYPE_SURFTYPE_BUFFER
: R_SURFACE_STATE::SURFACE_TYPE_SURFTYPE_NULL);
surfaceState->setSurfaceFormat(SURFACE_FORMAT::SURFACE_FORMAT_RAW);
surfaceState->setSurfaceVerticalAlignment(R_SURFACE_STATE::SURFACE_VERTICAL_ALIGNMENT_VALIGN_4);
surfaceState->setSurfaceHorizontalAlignment(R_SURFACE_STATE::SURFACE_HORIZONTAL_ALIGNMENT_HALIGN_DEFAULT);
surfaceState->setTileMode(R_SURFACE_STATE::TILE_MODE_LINEAR);
surfaceState->setVerticalLineStride(0);
surfaceState->setVerticalLineStrideOffset(0);
surfaceState->setMemoryObjectControlState(args.mocs);
surfaceState->setSurfaceBaseAddress(args.graphicsAddress);
surfaceState->setAuxiliarySurfaceMode(AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_NONE);
setCoherencyType(surfaceState, args.cpuCoherent ? R_SURFACE_STATE::COHERENCY_TYPE_IA_COHERENT : R_SURFACE_STATE::COHERENCY_TYPE_GPU_COHERENT);
auto compressionEnabled = args.allocation ? args.allocation->isCompressionEnabled() : false;
if (compressionEnabled && !args.forceNonAuxMode) {
// Its expected to not program pitch/qpitch/baseAddress for Aux surface in CCS scenarios
setCoherencyType(surfaceState, R_SURFACE_STATE::COHERENCY_TYPE_GPU_COHERENT);
setBufferAuxParamsForCCS(surfaceState);
}
if (debugManager.flags.DisableCachingForStatefulBufferAccess.get()) {
surfaceState->setMemoryObjectControlState(args.gmmHelper->getMOCS(GMM_RESOURCE_USAGE_OCL_BUFFER_CACHELINE_MISALIGNED));
}
EncodeSurfaceState<Family>::encodeExtraBufferParams(args);
EncodeSurfaceState<Family>::appendBufferSurfaceState(args);
}
template <typename Family>
void EncodeSurfaceState<Family>::getSshAlignedPointer(uintptr_t &ptr, size_t &offset) {
auto sshAlignmentMask =
getSurfaceBaseAddressAlignmentMask();
uintptr_t alignedPtr = ptr & sshAlignmentMask;
offset = 0;
if (ptr != alignedPtr) {
offset = ptrDiff(ptr, alignedPtr);
ptr = alignedPtr;
}
}
// Returned binding table pointer is relative to given heap (which is assumed to be the Surface state base addess)
// as required by the INTERFACE_DESCRIPTOR_DATA.
template <typename Family>
size_t EncodeSurfaceState<Family>::pushBindingTableAndSurfaceStates(IndirectHeap &dstHeap,
const void *srcKernelSsh, size_t srcKernelSshSize,
size_t numberOfBindingTableStates, size_t offsetOfBindingTable) {
using BINDING_TABLE_STATE = typename Family::BINDING_TABLE_STATE;
using INTERFACE_DESCRIPTOR_DATA = typename Family::INTERFACE_DESCRIPTOR_DATA;
using RENDER_SURFACE_STATE = typename Family::RENDER_SURFACE_STATE;
size_t sshSize = srcKernelSshSize;
DEBUG_BREAK_IF(srcKernelSsh == nullptr);
auto srcSurfaceState = srcKernelSsh;
// Allocate space for new ssh data
auto dstSurfaceState = dstHeap.getSpace(sshSize);
// Compiler sends BTI table that is already populated with surface state pointers relative to local SSH.
// We may need to patch these pointers so that they are relative to surface state base address
if (dstSurfaceState == dstHeap.getCpuBase()) {
// nothing to patch, we're at the start of heap (which is assumed to be the surface state base address)
// we need to simply copy the ssh (including BTIs from compiler)
memcpy_s(dstSurfaceState, sshSize, srcSurfaceState, sshSize);
return offsetOfBindingTable;
}
// We can copy-over the surface states, but BTIs will need to be patched
memcpy_s(dstSurfaceState, sshSize, srcSurfaceState, offsetOfBindingTable);
uint32_t surfaceStatesOffset = static_cast<uint32_t>(ptrDiff(dstSurfaceState, dstHeap.getCpuBase()));
// march over BTIs and offset the pointers based on surface state base address
auto *dstBtiTableBase = reinterpret_cast<BINDING_TABLE_STATE *>(ptrOffset(dstSurfaceState, offsetOfBindingTable));
DEBUG_BREAK_IF(reinterpret_cast<uintptr_t>(dstBtiTableBase) % INTERFACE_DESCRIPTOR_DATA::BINDINGTABLEPOINTER_ALIGN_SIZE != 0);
auto *srcBtiTableBase = reinterpret_cast<const BINDING_TABLE_STATE *>(ptrOffset(srcSurfaceState, offsetOfBindingTable));
BINDING_TABLE_STATE bti = Family::cmdInitBindingTableState;
for (uint32_t i = 0, e = static_cast<uint32_t>(numberOfBindingTableStates); i != e; ++i) {
uint32_t localSurfaceStateOffset = srcBtiTableBase[i].getSurfaceStatePointer();
uint32_t offsetedSurfaceStateOffset = localSurfaceStateOffset + surfaceStatesOffset;
bti.setSurfaceStatePointer(offsetedSurfaceStateOffset); // patch just the SurfaceStatePointer bits
dstBtiTableBase[i] = bti;
DEBUG_BREAK_IF(bti.getRawData(0) % sizeof(BINDING_TABLE_STATE::SURFACESTATEPOINTER_ALIGN_SIZE) != 0);
}
return ptrDiff(dstBtiTableBase, dstHeap.getCpuBase());
}
template <typename Family>
inline void EncodeSurfaceState<Family>::encodeExtraCacheSettings(R_SURFACE_STATE *surfaceState, const EncodeSurfaceStateArgs &args) {}
template <typename Family>
void EncodeSurfaceState<Family>::setImageAuxParamsForCCS(R_SURFACE_STATE *surfaceState, Gmm *gmm) {
using AUXILIARY_SURFACE_MODE = typename Family::RENDER_SURFACE_STATE::AUXILIARY_SURFACE_MODE;
// Its expected to not program pitch/qpitch/baseAddress for Aux surface in CCS scenarios
surfaceState->setAuxiliarySurfaceMode(AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_CCS_E);
setFlagsForMediaCompression(surfaceState, gmm);
setClearColorParams(surfaceState, gmm);
setUnifiedAuxBaseAddress<Family>(surfaceState, gmm);
}
template <typename Family>
void EncodeSurfaceState<Family>::setBufferAuxParamsForCCS(R_SURFACE_STATE *surfaceState) {
using AUXILIARY_SURFACE_MODE = typename R_SURFACE_STATE::AUXILIARY_SURFACE_MODE;
surfaceState->setAuxiliarySurfaceMode(AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_CCS_E);
}
template <typename Family>
bool EncodeSurfaceState<Family>::isAuxModeEnabled(R_SURFACE_STATE *surfaceState, Gmm *gmm) {
using AUXILIARY_SURFACE_MODE = typename R_SURFACE_STATE::AUXILIARY_SURFACE_MODE;
return (surfaceState->getAuxiliarySurfaceMode() == AUXILIARY_SURFACE_MODE::AUXILIARY_SURFACE_MODE_AUX_CCS_E);
}
template <typename Family>
void EncodeSurfaceState<Family>::appendParamsForImageFromBuffer(R_SURFACE_STATE *surfaceState) {
}
template <typename Family>
inline void EncodeDispatchKernel<Family>::encodeCommon(CommandContainer &container, EncodeDispatchKernelArgs &args) {
using DefaultWalkerType = typename Family::DefaultWalkerType;
EncodeDispatchKernel<Family>::template encode<DefaultWalkerType>(container, args);
}
template <typename Family>
void *EncodeDispatchKernel<Family>::getInterfaceDescriptor(CommandContainer &container, IndirectHeap *childDsh, uint32_t &iddOffset) {
if (container.nextIddInBlockRef() == container.getNumIddPerBlock()) {
void *heapPointer = nullptr;
size_t heapSize = sizeof(INTERFACE_DESCRIPTOR_DATA) * container.getNumIddPerBlock();
if (childDsh != nullptr) {
childDsh->align(NEO::EncodeDispatchKernel<Family>::getDefaultDshAlignment());
heapPointer = childDsh->getSpace(heapSize);
} else {
container.getIndirectHeap(HeapType::dynamicState)->align(NEO::EncodeDispatchKernel<Family>::getDefaultDshAlignment());
heapPointer = container.getHeapSpaceAllowGrow(HeapType::dynamicState, heapSize);
}
container.setIddBlock(heapPointer);
container.nextIddInBlockRef() = 0;
}
iddOffset = container.nextIddInBlockRef();
auto interfaceDescriptorData = static_cast<INTERFACE_DESCRIPTOR_DATA *>(container.getIddBlock());
container.nextIddInBlockRef()++;
return &interfaceDescriptorData[iddOffset];
}
template <typename Family>
bool EncodeDispatchKernel<Family>::inlineDataProgrammingRequired(const KernelDescriptor &kernelDesc) {
auto checkKernelForInlineData = true;
if (debugManager.flags.EnablePassInlineData.get() != -1) {
checkKernelForInlineData = !!debugManager.flags.EnablePassInlineData.get();
}
if (checkKernelForInlineData) {
return kernelDesc.kernelAttributes.flags.passInlineData;
}
return false;
}
template <typename Family>
template <typename InterfaceDescriptorType>
void EncodeDispatchKernel<Family>::encodeEuSchedulingPolicy(InterfaceDescriptorType *pInterfaceDescriptor, const KernelDescriptor &kernelDesc, int32_t defaultPipelinedThreadArbitrationPolicy) {
}
template <typename Family>
template <typename WalkerType>
void EncodeDispatchKernel<Family>::adjustTimestampPacket(WalkerType &walkerCmd, const EncodeDispatchKernelArgs &args) {}
template <typename Family>
template <typename WalkerType>
void EncodeDispatchKernel<Family>::setWalkerRegionSettings(WalkerType &walkerCmd, const HardwareInfo &hwInfo, uint32_t partitionCount, uint32_t workgroupSize, uint32_t maxWgCountPerTile, bool requiredWalkOrder) {}
template <typename Family>
void EncodeIndirectParams<Family>::encode(CommandContainer &container, uint64_t crossThreadDataGpuVa, DispatchKernelEncoderI *dispatchInterface, uint64_t implicitArgsGpuPtr) {
const auto &kernelDescriptor = dispatchInterface->getKernelDescriptor();
setGroupCountIndirect(container, kernelDescriptor.payloadMappings.dispatchTraits.numWorkGroups, crossThreadDataGpuVa);
setGlobalWorkSizeIndirect(container, kernelDescriptor.payloadMappings.dispatchTraits.globalWorkSize, crossThreadDataGpuVa, dispatchInterface->getGroupSize());
UNRECOVERABLE_IF(NEO::isValidOffset(kernelDescriptor.payloadMappings.dispatchTraits.workDim) && (kernelDescriptor.payloadMappings.dispatchTraits.workDim & 0b11) != 0u);
setWorkDimIndirect(container, kernelDescriptor.payloadMappings.dispatchTraits.workDim, crossThreadDataGpuVa, dispatchInterface->getGroupSize());
if (implicitArgsGpuPtr) {
CrossThreadDataOffset groupCountOffset[] = {offsetof(ImplicitArgs, groupCountX), offsetof(ImplicitArgs, groupCountY), offsetof(ImplicitArgs, groupCountZ)};
CrossThreadDataOffset globalSizeOffset[] = {offsetof(ImplicitArgs, globalSizeX), offsetof(ImplicitArgs, globalSizeY), offsetof(ImplicitArgs, globalSizeZ)};
setGroupCountIndirect(container, groupCountOffset, implicitArgsGpuPtr);
setGlobalWorkSizeIndirect(container, globalSizeOffset, implicitArgsGpuPtr, dispatchInterface->getGroupSize());
setWorkDimIndirect(container, offsetof(ImplicitArgs, numWorkDim), implicitArgsGpuPtr, dispatchInterface->getGroupSize());
}
}
template <typename Family>
void EncodeIndirectParams<Family>::setGroupCountIndirect(CommandContainer &container, const NEO::CrossThreadDataOffset offsets[3], uint64_t crossThreadAddress) {
for (int i = 0; i < 3; ++i) {
if (NEO::isUndefinedOffset(offsets[i])) {
continue;
}
EncodeStoreMMIO<Family>::encode(*container.getCommandStream(), RegisterOffsets::gpgpuDispatchDim[i], ptrOffset(crossThreadAddress, offsets[i]), false, nullptr, false);
}
}
template <typename Family>
void EncodeIndirectParams<Family>::setWorkDimIndirect(CommandContainer &container, const NEO::CrossThreadDataOffset workDimOffset, uint64_t crossThreadAddress, const uint32_t *groupSize) {
if (NEO::isValidOffset(workDimOffset)) {
auto dstPtr = ptrOffset(crossThreadAddress, workDimOffset);
constexpr uint32_t resultRegister = RegisterOffsets::csGprR0;
constexpr AluRegisters resultAluRegister = AluRegisters::gpr0;
const uint32_t offset = static_cast<uint32_t>((1ull << 8 * (dstPtr & 0b11)) - 1);
const uint32_t memoryMask = std::numeric_limits<uint32_t>::max() - static_cast<uint32_t>((1ull << 8 * ((dstPtr & 0b11) + 1)) - 1) + offset;
/*
* if ( groupSize[2] > 1 || groupCount[2] > 1 ) { workdim = 3 }
* else if ( groupSize[1] + groupCount[1] > 2 ) { workdim = 2 }
* else { workdim = 1 }
*/
if (groupSize[2] > 1) {
EncodeSetMMIO<Family>::encodeIMM(container, resultRegister, 3 << (8 * (dstPtr & 0b11)), true, false);
} else {
constexpr uint32_t groupCount2Register = RegisterOffsets::csGprR1;
constexpr AluRegisters groupCount2AluRegister = AluRegisters::gpr1;
constexpr uint32_t groupSize1Register = RegisterOffsets::csGprR0;
constexpr AluRegisters groupSize1AluRegister = AluRegisters::gpr0;
constexpr uint32_t groupCount1Register = RegisterOffsets::csGprR1;
constexpr AluRegisters groupCount1AluRegister = AluRegisters::gpr1;
constexpr AluRegisters sumAluRegister = AluRegisters::gpr0;
constexpr AluRegisters workDimEq3AluRegister = AluRegisters::gpr3;
constexpr AluRegisters workDimGe2AluRegister = AluRegisters::gpr4;
constexpr uint32_t constantOneRegister = RegisterOffsets::csGprR5;
constexpr AluRegisters constantOneAluRegister = AluRegisters::gpr5;
constexpr uint32_t constantTwoRegister = RegisterOffsets::csGprR6;
constexpr AluRegisters constantTwoAluRegister = AluRegisters::gpr6;
constexpr uint32_t backupRegister = RegisterOffsets::csGprR7;
constexpr AluRegisters backupAluRegister = AluRegisters::gpr7;
constexpr uint32_t memoryMaskRegister = RegisterOffsets::csGprR8;
constexpr AluRegisters memoryMaskAluRegister = AluRegisters::gpr8;
constexpr uint32_t offsetRegister = RegisterOffsets::csGprR8;
constexpr AluRegisters offsetAluRegister = AluRegisters::gpr8;
if (offset) {
EncodeSetMMIO<Family>::encodeMEM(container, backupRegister, dstPtr, false);
EncodeSetMMIO<Family>::encodeIMM(container, memoryMaskRegister, memoryMask, true, false);
EncodeMath<Family>::bitwiseAnd(container, memoryMaskAluRegister, backupAluRegister, backupAluRegister);
EncodeSetMMIO<Family>::encodeIMM(container, offsetRegister, offset, true, false);
}
EncodeSetMMIO<Family>::encodeIMM(container, constantOneRegister, 1, true, false);
EncodeSetMMIO<Family>::encodeIMM(container, constantTwoRegister, 2, true, false);
EncodeSetMMIO<Family>::encodeREG(container, groupCount2Register, RegisterOffsets::gpgpuDispatchDim[2], false);
EncodeMath<Family>::greaterThan(container, groupCount2AluRegister, constantOneAluRegister, workDimEq3AluRegister);
EncodeMath<Family>::bitwiseAnd(container, workDimEq3AluRegister, constantOneAluRegister, workDimEq3AluRegister);
EncodeSetMMIO<Family>::encodeIMM(container, groupSize1Register, groupSize[1], true, false);
EncodeSetMMIO<Family>::encodeREG(container, groupCount1Register, RegisterOffsets::gpgpuDispatchDim[1], false);
EncodeMath<Family>::addition(container, groupSize1AluRegister, groupCount1AluRegister, sumAluRegister);
EncodeMath<Family>::addition(container, sumAluRegister, workDimEq3AluRegister, sumAluRegister);
EncodeMath<Family>::greaterThan(container, sumAluRegister, constantTwoAluRegister, workDimGe2AluRegister);
EncodeMath<Family>::bitwiseAnd(container, workDimGe2AluRegister, constantOneAluRegister, workDimGe2AluRegister);
if (offset) {
EncodeMath<Family>::addition(container, constantOneAluRegister, offsetAluRegister, constantOneAluRegister);
EncodeMath<Family>::addition(container, workDimEq3AluRegister, offsetAluRegister, workDimEq3AluRegister);
EncodeMath<Family>::bitwiseAnd(container, workDimEq3AluRegister, constantOneAluRegister, workDimEq3AluRegister);
EncodeMath<Family>::addition(container, workDimGe2AluRegister, offsetAluRegister, workDimGe2AluRegister);
EncodeMath<Family>::bitwiseAnd(container, workDimGe2AluRegister, constantOneAluRegister, workDimGe2AluRegister);
}
EncodeSetMMIO<Family>::encodeREG(container, resultRegister, constantOneRegister, false);
EncodeMath<Family>::addition(container, resultAluRegister, workDimGe2AluRegister, resultAluRegister);
EncodeMath<Family>::addition(container, resultAluRegister, workDimEq3AluRegister, resultAluRegister);
if (offset) {
EncodeMath<Family>::addition(container, resultAluRegister, backupAluRegister, resultAluRegister);
}
}
EncodeStoreMMIO<Family>::encode(*container.getCommandStream(), resultRegister, dstPtr, false, nullptr, false);
}
}
template <typename Family>
bool EncodeSurfaceState<Family>::doBindingTablePrefetch() {
auto enableBindingTablePrefetech = isBindingTablePrefetchPreferred();
if (debugManager.flags.ForceBtpPrefetchMode.get() != -1) {
enableBindingTablePrefetech = static_cast<bool>(debugManager.flags.ForceBtpPrefetchMode.get());
}
return enableBindingTablePrefetech;
}
template <typename Family>
void EncodeSurfaceState<Family>::setPitchForScratch(R_SURFACE_STATE *surfaceState, uint32_t pitch, const ProductHelper &productHelper) {
surfaceState->setSurfacePitch(pitch);
}
template <typename Family>
uint32_t EncodeSurfaceState<Family>::getPitchForScratchInBytes(R_SURFACE_STATE *surfaceState, const ProductHelper &productHelper) {
return surfaceState->getSurfacePitch();
}
template <typename Family>
void EncodeDispatchKernel<Family>::adjustBindingTablePrefetch(INTERFACE_DESCRIPTOR_DATA &interfaceDescriptor, uint32_t samplerCount, uint32_t bindingTableEntryCount) {
auto enablePrefetch = EncodeSurfaceState<Family>::doBindingTablePrefetch();
if (enablePrefetch) {
interfaceDescriptor.setSamplerCount(static_cast<typename INTERFACE_DESCRIPTOR_DATA::SAMPLER_COUNT>((samplerCount + 3) / 4));
interfaceDescriptor.setBindingTableEntryCount(std::min(bindingTableEntryCount, 31u));
} else {
interfaceDescriptor.setSamplerCount(INTERFACE_DESCRIPTOR_DATA::SAMPLER_COUNT::SAMPLER_COUNT_NO_SAMPLERS_USED);
interfaceDescriptor.setBindingTableEntryCount(0u);
}
}
template <typename Family>
template <typename WalkerType, typename InterfaceDescriptorType>
void EncodeDispatchKernel<Family>::adjustInterfaceDescriptorData(InterfaceDescriptorType &interfaceDescriptor, const Device &device, const HardwareInfo &hwInfo, const uint32_t threadGroupCount, const uint32_t grfCount, WalkerType &walkerCmd) {}
template <typename Family>
size_t EncodeDispatchKernel<Family>::getSizeRequiredDsh(const KernelDescriptor &kernelDescriptor, uint32_t iddCount) {
using INTERFACE_DESCRIPTOR_DATA = typename Family::INTERFACE_DESCRIPTOR_DATA;
constexpr auto samplerStateSize = sizeof(typename Family::SAMPLER_STATE);
const auto numSamplers = kernelDescriptor.payloadMappings.samplerTable.numSamplers;
const auto additionalDshSize = additionalSizeRequiredDsh(iddCount);
if (numSamplers == 0U) {
return alignUp(additionalDshSize, EncodeDispatchKernel<Family>::getDefaultDshAlignment());
}
size_t size = kernelDescriptor.payloadMappings.samplerTable.tableOffset -
kernelDescriptor.payloadMappings.samplerTable.borderColor;
size = alignUp(size, EncodeDispatchKernel<Family>::getDefaultDshAlignment());
size += numSamplers * samplerStateSize;
size = alignUp(size, INTERFACE_DESCRIPTOR_DATA::SAMPLERSTATEPOINTER_ALIGN_SIZE);
if (additionalDshSize > 0) {
size = alignUp(size, EncodeStates<Family>::alignInterfaceDescriptorData);
size += additionalDshSize;
size = alignUp(size, EncodeDispatchKernel<Family>::getDefaultDshAlignment());
}
return size;
}
template <typename GfxFamily>
template <typename WalkerType, typename InterfaceDescriptorType>
void EncodeDispatchKernel<GfxFamily>::adjustInterfaceDescriptorDataForOverdispatch(InterfaceDescriptorType &interfaceDescriptor, const Device &device, const HardwareInfo &hwInfo, const uint32_t threadGroupCount, const uint32_t grfCount, WalkerType &walkerCmd) {
const auto &productHelper = device.getProductHelper();
if (productHelper.isDisableOverdispatchAvailable(hwInfo)) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_1);
bool adjustTGDispatchSize = true;
if (debugManager.flags.AdjustThreadGroupDispatchSize.get() != -1) {
adjustTGDispatchSize = !!debugManager.flags.AdjustThreadGroupDispatchSize.get();
}
// apply v2 algorithm only for parts where MaxSubSlicesSupported is equal to SubSliceCount
auto algorithmVersion = hwInfo.gtSystemInfo.MaxSubSlicesSupported == hwInfo.gtSystemInfo.SubSliceCount ? 2 : 1;
if (debugManager.flags.ForceThreadGroupDispatchSizeAlgorithm.get() != -1) {
algorithmVersion = debugManager.flags.ForceThreadGroupDispatchSizeAlgorithm.get();
}
if (algorithmVersion == 2) {
auto threadsPerXeCore = hwInfo.gtSystemInfo.ThreadCount / hwInfo.gtSystemInfo.MaxSubSlicesSupported;
if (grfCount == 256) {
threadsPerXeCore /= 2;
}
auto tgDispatchSizeSelected = 8;
uint32_t numberOfThreadsInThreadGroup = interfaceDescriptor.getNumberOfThreadsInGpgpuThreadGroup();
if (walkerCmd.getThreadGroupIdXDimension() > 1 && (walkerCmd.getThreadGroupIdYDimension() > 1 || walkerCmd.getThreadGroupIdZDimension() > 1)) {
while (walkerCmd.getThreadGroupIdXDimension() % tgDispatchSizeSelected != 0) {
tgDispatchSizeSelected /= 2;
}
} else if (walkerCmd.getThreadGroupIdYDimension() > 1 && walkerCmd.getThreadGroupIdZDimension() > 1) {
while (walkerCmd.getThreadGroupIdYDimension() % tgDispatchSizeSelected != 0) {
tgDispatchSizeSelected /= 2;
}
}
auto workgroupCount = walkerCmd.getThreadGroupIdXDimension() * walkerCmd.getThreadGroupIdYDimension() * walkerCmd.getThreadGroupIdZDimension();
auto tileCount = ImplicitScalingHelper::isImplicitScalingEnabled(device.getDeviceBitfield(), true) ? device.getNumSubDevices() : 1u;
// make sure we fit all xe core
while (workgroupCount / tgDispatchSizeSelected < hwInfo.gtSystemInfo.MaxSubSlicesSupported * tileCount && tgDispatchSizeSelected > 1) {
tgDispatchSizeSelected /= 2;
}
auto threadCountPerGrouping = tgDispatchSizeSelected * numberOfThreadsInThreadGroup;
// make sure we do not use more threads then present on each xe core
while (threadCountPerGrouping > threadsPerXeCore && tgDispatchSizeSelected > 1) {
tgDispatchSizeSelected /= 2;
threadCountPerGrouping /= 2;
}
if (tgDispatchSizeSelected == 8) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_8);
} else if (tgDispatchSizeSelected == 1) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_1);
} else if (tgDispatchSizeSelected == 2) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_2);
} else {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_4);
}
} else {
if (adjustTGDispatchSize) {
UNRECOVERABLE_IF(grfCount == 0u);
constexpr uint32_t maxThreadsInTGForTGDispatchSize8 = 16u;
constexpr uint32_t maxThreadsInTGForTGDispatchSize4 = 32u;
auto &gfxCoreHelper = device.getGfxCoreHelper();
uint32_t availableThreadCount = gfxCoreHelper.calculateAvailableThreadCount(hwInfo, grfCount);
if (ImplicitScalingHelper::isImplicitScalingEnabled(device.getDeviceBitfield(), true)) {
const uint32_t tilesCount = device.getNumSubDevices();
availableThreadCount *= tilesCount;
}
uint32_t numberOfThreadsInThreadGroup = interfaceDescriptor.getNumberOfThreadsInGpgpuThreadGroup();
uint32_t dispatchedTotalThreadCount = numberOfThreadsInThreadGroup * threadGroupCount;
UNRECOVERABLE_IF(numberOfThreadsInThreadGroup == 0u);
auto tgDispatchSizeSelected = 1u;
if (dispatchedTotalThreadCount <= availableThreadCount) {
tgDispatchSizeSelected = 1;
} else if (numberOfThreadsInThreadGroup <= maxThreadsInTGForTGDispatchSize8) {
tgDispatchSizeSelected = 8;
} else if (numberOfThreadsInThreadGroup <= maxThreadsInTGForTGDispatchSize4) {
tgDispatchSizeSelected = 4;
} else {
tgDispatchSizeSelected = 2;
}
if (walkerCmd.getThreadGroupIdXDimension() > 1 && (walkerCmd.getThreadGroupIdYDimension() > 1 || walkerCmd.getThreadGroupIdZDimension() > 1)) {
while (walkerCmd.getThreadGroupIdXDimension() % tgDispatchSizeSelected != 0) {
tgDispatchSizeSelected /= 2;
}
} else if (walkerCmd.getThreadGroupIdYDimension() > 1 && walkerCmd.getThreadGroupIdZDimension() > 1) {
while (walkerCmd.getThreadGroupIdYDimension() % tgDispatchSizeSelected != 0) {
tgDispatchSizeSelected /= 2;
}
}
if (tgDispatchSizeSelected == 8) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_8);
} else if (tgDispatchSizeSelected == 1) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_1);
} else if (tgDispatchSizeSelected == 2) {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_2);
} else {
interfaceDescriptor.setThreadGroupDispatchSize(InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE_TG_SIZE_4);
}
}
}
}
if (debugManager.flags.ForceThreadGroupDispatchSize.get() != -1) {
interfaceDescriptor.setThreadGroupDispatchSize(static_cast<typename InterfaceDescriptorType::THREAD_GROUP_DISPATCH_SIZE>(
debugManager.flags.ForceThreadGroupDispatchSize.get()));
}
}
template <typename Family>
size_t EncodeDispatchKernel<Family>::getSizeRequiredSsh(const KernelInfo &kernelInfo) {
size_t requiredSshSize = kernelInfo.heapInfo.surfaceStateHeapSize;
bool isBindlessKernel = NEO::KernelDescriptor ::isBindlessAddressingKernel(kernelInfo.kernelDescriptor);
if (isBindlessKernel) {
requiredSshSize = std::max(requiredSshSize, kernelInfo.kernelDescriptor.kernelAttributes.numArgsStateful * sizeof(typename Family::RENDER_SURFACE_STATE));
}
requiredSshSize = alignUp(requiredSshSize, EncodeDispatchKernel<Family>::getDefaultSshAlignment());
return requiredSshSize;
}
template <typename Family>
size_t EncodeDispatchKernel<Family>::getDefaultDshAlignment() {
return Family::cacheLineSize;
}
template <typename GfxFamily>
size_t EncodeDispatchKernel<GfxFamily>::getScratchPtrOffsetOfImplicitArgs() {
return 0;
}
template <typename Family>
template <bool isHeapless>
void EncodeDispatchKernel<Family>::setScratchAddress(uint64_t &scratchAddress, uint32_t requiredScratchSlot0Size, uint32_t requiredScratchSlot1Size, IndirectHeap *ssh, CommandStreamReceiver &submissionCsr) {
}
template <typename Family>
void EncodeIndirectParams<Family>::setGlobalWorkSizeIndirect(CommandContainer &container, const NEO::CrossThreadDataOffset offsets[3], uint64_t crossThreadAddress, const uint32_t *lws) {
for (int i = 0; i < 3; ++i) {
if (NEO::isUndefinedOffset(offsets[i])) {
continue;
}
EncodeMathMMIO<Family>::encodeMulRegVal(container, RegisterOffsets::gpgpuDispatchDim[i], lws[i], ptrOffset(crossThreadAddress, offsets[i]), false);
}
}
template <typename Family>
inline size_t EncodeIndirectParams<Family>::getCmdsSizeForSetWorkDimIndirect(const uint32_t *groupSize, bool misaligedPtr) {
constexpr uint32_t aluCmdSize = sizeof(MI_MATH) + sizeof(MI_MATH_ALU_INST_INLINE) * RegisterConstants::numAluInstForReadModifyWrite;
auto requiredSize = sizeof(MI_STORE_REGISTER_MEM) + sizeof(MI_LOAD_REGISTER_IMM);
UNRECOVERABLE_IF(!groupSize);
if (groupSize[2] < 2) {
requiredSize += 2 * sizeof(MI_LOAD_REGISTER_IMM) + 3 * sizeof(MI_LOAD_REGISTER_REG) + 8 * aluCmdSize;
if (misaligedPtr) {
requiredSize += 2 * sizeof(MI_LOAD_REGISTER_IMM) + sizeof(MI_LOAD_REGISTER_MEM) + 7 * aluCmdSize;
}
}
return requiredSize;
}
template <typename Family>
void EncodeSemaphore<Family>::appendSemaphoreCommand(MI_SEMAPHORE_WAIT &cmd, uint64_t compareData, bool indirect, bool useQwordData, bool switchOnUnsuccessful) {
constexpr uint64_t upper32b = static_cast<uint64_t>(std::numeric_limits<uint32_t>::max()) << 32;
UNRECOVERABLE_IF(useQwordData || (compareData & upper32b));
}
template <typename Family>
void EncodeSemaphore<Family>::addMiSemaphoreWaitCommand(LinearStream &commandStream,
uint64_t compareAddress,
uint64_t compareData,
COMPARE_OPERATION compareMode,
bool registerPollMode,
bool useQwordData,
bool indirect,
bool switchOnUnsuccessful,
void **outSemWaitCmd) {
auto semaphoreCommand = commandStream.getSpaceForCmd<MI_SEMAPHORE_WAIT>();
if (outSemWaitCmd != nullptr) {
*outSemWaitCmd = semaphoreCommand;
}
programMiSemaphoreWait(semaphoreCommand, compareAddress, compareData, compareMode, registerPollMode, true, useQwordData, indirect, switchOnUnsuccessful);
}
template <typename Family>
void EncodeSemaphore<Family>::applyMiSemaphoreWaitCommand(LinearStream &commandStream, std::list<void *> &commandsList) {
MI_SEMAPHORE_WAIT *semaphoreCommand = commandStream.getSpaceForCmd<MI_SEMAPHORE_WAIT>();
commandsList.push_back(semaphoreCommand);
}
template <typename Family>
inline void EncodeAtomic<Family>::setMiAtomicAddress(MI_ATOMIC &atomic, uint64_t writeAddress) {
atomic.setMemoryAddress(static_cast<uint32_t>(writeAddress & 0x0000FFFFFFFFULL));
atomic.setMemoryAddressHigh(static_cast<uint32_t>(writeAddress >> 32));
}
template <typename Family>
void EncodeAtomic<Family>::programMiAtomic(MI_ATOMIC *atomic,
uint64_t writeAddress,
ATOMIC_OPCODES opcode,
DATA_SIZE dataSize,
uint32_t returnDataControl,
uint32_t csStall,
uint64_t operand1Data,
uint64_t operand2Data) {
MI_ATOMIC cmd = Family::cmdInitAtomic;
cmd.setAtomicOpcode(opcode);
cmd.setDataSize(dataSize);
EncodeAtomic<Family>::setMiAtomicAddress(cmd, writeAddress);
cmd.setReturnDataControl(returnDataControl);
cmd.setCsStall(csStall);
if (opcode == ATOMIC_OPCODES::ATOMIC_4B_MOVE || opcode == ATOMIC_OPCODES::ATOMIC_8B_MOVE || opcode == ATOMIC_OPCODES::ATOMIC_8B_CMP_WR || opcode == ATOMIC_OPCODES::ATOMIC_8B_ADD) {
cmd.setDwordLength(MI_ATOMIC::DWORD_LENGTH::DWORD_LENGTH_INLINE_DATA_1);
cmd.setInlineData(0x1);
cmd.setOperand1DataDword0(getLowPart(operand1Data));
cmd.setOperand1DataDword1(getHighPart(operand1Data));
cmd.setOperand2DataDword0(getLowPart(operand2Data));
cmd.setOperand2DataDword1(getHighPart(operand2Data));
}
*atomic = cmd;
}
template <typename Family>
void EncodeAtomic<Family>::programMiAtomic(LinearStream &commandStream,
uint64_t writeAddress,
ATOMIC_OPCODES opcode,
DATA_SIZE dataSize,
uint32_t returnDataControl,
uint32_t csStall,
uint64_t operand1Data,
uint64_t operand2Data) {
auto miAtomic = commandStream.getSpaceForCmd<MI_ATOMIC>();
EncodeAtomic<Family>::programMiAtomic(miAtomic, writeAddress, opcode, dataSize, returnDataControl, csStall, operand1Data, operand2Data);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programConditionalDataMemBatchBufferStart(LinearStream &commandStream, uint64_t startAddress, uint64_t compareAddress,
uint64_t compareData, CompareOperation compareOperation, bool indirect, bool useQwordData, bool isBcs) {
EncodeSetMMIO<Family>::encodeMEM(commandStream, RegisterOffsets::csGprR7, compareAddress, isBcs);
if (useQwordData) {
EncodeSetMMIO<Family>::encodeMEM(commandStream, RegisterOffsets::csGprR7 + 4, compareAddress + 4, isBcs);
} else {
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR7 + 4, 0, true, isBcs);
}
uint32_t compareDataLow = static_cast<uint32_t>(compareData & std::numeric_limits<uint32_t>::max());
uint32_t compareDataHigh = useQwordData ? static_cast<uint32_t>(compareData >> 32) : 0;
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR8, compareDataLow, true, isBcs);
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR8 + 4, compareDataHigh, true, isBcs);
programConditionalBatchBufferStartBase(commandStream, startAddress, AluRegisters::gpr7, AluRegisters::gpr8, compareOperation, indirect, isBcs);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programConditionalDataRegBatchBufferStart(LinearStream &commandStream, uint64_t startAddress, uint32_t compareReg,
uint64_t compareData, CompareOperation compareOperation, bool indirect, bool useQwordData, bool isBcs) {
EncodeSetMMIO<Family>::encodeREG(commandStream, RegisterOffsets::csGprR7, compareReg, isBcs);
if (useQwordData) {
EncodeSetMMIO<Family>::encodeREG(commandStream, RegisterOffsets::csGprR7 + 4, compareReg + 4, isBcs);
} else {
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR7 + 4, 0, true, isBcs);
}
uint32_t compareDataLow = static_cast<uint32_t>(compareData & std::numeric_limits<uint32_t>::max());
uint32_t compareDataHigh = useQwordData ? static_cast<uint32_t>(compareData >> 32) : 0;
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR8, compareDataLow, true, isBcs);
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR8 + 4, compareDataHigh, true, isBcs);
programConditionalBatchBufferStartBase(commandStream, startAddress, AluRegisters::gpr7, AluRegisters::gpr8, compareOperation, indirect, isBcs);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programConditionalRegRegBatchBufferStart(LinearStream &commandStream, uint64_t startAddress, AluRegisters compareReg0,
AluRegisters compareReg1, CompareOperation compareOperation, bool indirect, bool isBcs) {
programConditionalBatchBufferStartBase(commandStream, startAddress, compareReg0, compareReg1, compareOperation, indirect, isBcs);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programConditionalRegMemBatchBufferStart(LinearStream &commandStream, uint64_t startAddress, uint64_t compareAddress, uint32_t compareReg,
CompareOperation compareOperation, bool indirect, bool isBcs) {
EncodeSetMMIO<Family>::encodeMEM(commandStream, RegisterOffsets::csGprR7, compareAddress, isBcs);
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR7 + 4, 0, true, isBcs);
EncodeSetMMIO<Family>::encodeREG(commandStream, RegisterOffsets::csGprR8, compareReg, isBcs);
LriHelper<Family>::program(&commandStream, RegisterOffsets::csGprR8 + 4, 0, true, isBcs);
programConditionalBatchBufferStartBase(commandStream, startAddress, AluRegisters::gpr7, AluRegisters::gpr8, compareOperation, indirect, isBcs);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programConditionalBatchBufferStartBase(LinearStream &commandStream, uint64_t startAddress, AluRegisters regA, AluRegisters regB,
CompareOperation compareOperation, bool indirect, bool isBcs) {
EncodeAluHelper<Family, 4> aluHelper;
aluHelper.setNextAlu(AluRegisters::opcodeLoad, AluRegisters::srca, regA);
aluHelper.setNextAlu(AluRegisters::opcodeLoad, AluRegisters::srcb, regB);
aluHelper.setNextAlu(AluRegisters::opcodeSub);
if ((compareOperation == CompareOperation::equal) || (compareOperation == CompareOperation::notEqual)) {
aluHelper.setNextAlu(AluRegisters::opcodeStore, AluRegisters::gpr7, AluRegisters::zf);
} else if ((compareOperation == CompareOperation::greaterOrEqual) || (compareOperation == CompareOperation::less)) {
aluHelper.setNextAlu(AluRegisters::opcodeStore, AluRegisters::gpr7, AluRegisters::cf);
} else {
UNRECOVERABLE_IF(true);
}
aluHelper.copyToCmdStream(commandStream);
EncodeSetMMIO<Family>::encodeREG(commandStream, RegisterOffsets::csPredicateResult2, RegisterOffsets::csGprR7, isBcs);
MiPredicateType predicateType = MiPredicateType::noopOnResult2Clear; // Equal or Less
if ((compareOperation == CompareOperation::notEqual) || (compareOperation == CompareOperation::greaterOrEqual)) {
predicateType = MiPredicateType::noopOnResult2Set;
}
EncodeMiPredicate<Family>::encode(commandStream, predicateType);
programBatchBufferStart(&commandStream, startAddress, false, indirect, true);
EncodeMiPredicate<Family>::encode(commandStream, MiPredicateType::disable);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programBatchBufferStart(MI_BATCH_BUFFER_START *cmdBuffer, uint64_t address, bool secondLevel, bool indirect, bool predicate) {
MI_BATCH_BUFFER_START cmd = Family::cmdInitBatchBufferStart;
if (secondLevel) {
cmd.setSecondLevelBatchBuffer(MI_BATCH_BUFFER_START::SECOND_LEVEL_BATCH_BUFFER_SECOND_LEVEL_BATCH);
}
cmd.setAddressSpaceIndicator(MI_BATCH_BUFFER_START::ADDRESS_SPACE_INDICATOR_PPGTT);
cmd.setBatchBufferStartAddress(address);
appendBatchBufferStart(cmd, indirect, predicate);
*cmdBuffer = cmd;
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programBatchBufferStart(LinearStream *commandStream, uint64_t address, bool secondLevel, bool indirect, bool predicate) {
programBatchBufferStart(commandStream->getSpaceForCmd<MI_BATCH_BUFFER_START>(), address, secondLevel, indirect, predicate);
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programBatchBufferEnd(LinearStream &commandStream) {
MI_BATCH_BUFFER_END cmd = Family::cmdInitBatchBufferEnd;
auto buffer = commandStream.getSpaceForCmd<MI_BATCH_BUFFER_END>();
*buffer = cmd;
}
template <typename Family>
void EncodeBatchBufferStartOrEnd<Family>::programBatchBufferEnd(CommandContainer &container) {
programBatchBufferEnd(*container.getCommandStream());
}
template <typename GfxFamily>
void EncodeMiFlushDW<GfxFamily>::appendWa(LinearStream &commandStream, MiFlushArgs &args) {
BlitCommandsHelper<GfxFamily>::dispatchDummyBlit(commandStream, args.waArgs);
}
template <typename Family>
void EncodeMiFlushDW<Family>::programWithWa(LinearStream &commandStream, uint64_t immediateDataGpuAddress, uint64_t immediateData,
MiFlushArgs &args) {
UNRECOVERABLE_IF(args.waArgs.isWaRequired && !args.commandWithPostSync);
appendWa(commandStream, args);
args.waArgs.isWaRequired = false;
auto miFlushDwCmd = commandStream.getSpaceForCmd<MI_FLUSH_DW>();
MI_FLUSH_DW miFlush = Family::cmdInitMiFlushDw;
if (args.commandWithPostSync) {
auto postSyncType = args.timeStampOperation ? MI_FLUSH_DW::POST_SYNC_OPERATION_WRITE_TIMESTAMP_REGISTER : MI_FLUSH_DW::POST_SYNC_OPERATION_WRITE_IMMEDIATE_DATA_QWORD;
miFlush.setPostSyncOperation(postSyncType);
miFlush.setDestinationAddress(immediateDataGpuAddress);
miFlush.setImmediateData(immediateData);
}
miFlush.setNotifyEnable(args.notifyEnable);
miFlush.setTlbInvalidate(args.tlbFlush);
adjust(&miFlush, args.waArgs.rootDeviceEnvironment->getProductHelper());
*miFlushDwCmd = miFlush;
}
template <typename Family>
size_t EncodeMiFlushDW<Family>::getWaSize(const EncodeDummyBlitWaArgs &waArgs) {
return BlitCommandsHelper<Family>::getDummyBlitSize(waArgs);
}
template <typename Family>
size_t EncodeMiFlushDW<Family>::getCommandSizeWithWa(const EncodeDummyBlitWaArgs &waArgs) {
return sizeof(typename Family::MI_FLUSH_DW) + EncodeMiFlushDW<Family>::getWaSize(waArgs);
}
template <typename Family>
inline void EncodeMemoryPrefetch<Family>::programMemoryPrefetch(LinearStream &commandStream, const GraphicsAllocation &graphicsAllocation, uint32_t size, size_t offset, const RootDeviceEnvironment &rootDeviceEnvironment) {}
template <typename Family>
inline size_t EncodeMemoryPrefetch<Family>::getSizeForMemoryPrefetch(size_t size, const RootDeviceEnvironment &rootDeviceEnvironment) { return 0u; }
template <typename Family>
void EncodeMiArbCheck<Family>::program(LinearStream &commandStream, std::optional<bool> preParserDisable) {
MI_ARB_CHECK cmd = Family::cmdInitArbCheck;
EncodeMiArbCheck<Family>::adjust(cmd, preParserDisable);
auto miArbCheckStream = commandStream.getSpaceForCmd<MI_ARB_CHECK>();
*miArbCheckStream = cmd;
}
template <typename Family>
size_t EncodeMiArbCheck<Family>::getCommandSize() { return sizeof(MI_ARB_CHECK); }
template <typename Family>
inline void EncodeNoop<Family>::alignToCacheLine(LinearStream &commandStream) {
auto used = commandStream.getUsed();
auto alignment = MemoryConstants::cacheLineSize;
auto partialCacheline = used & (alignment - 1);
if (partialCacheline) {
auto amountToPad = alignment - partialCacheline;
auto pCmd = commandStream.getSpace(amountToPad);
memset(pCmd, 0, amountToPad);
}
}
template <typename Family>
inline void EncodeNoop<Family>::emitNoop(LinearStream &commandStream, size_t bytesToUpdate) {
if (bytesToUpdate) {
auto ptr = commandStream.getSpace(bytesToUpdate);
memset(ptr, 0, bytesToUpdate);
}
}
template <typename Family>
inline void EncodeStoreMemory<Family>::programStoreDataImm(LinearStream &commandStream,
uint64_t gpuAddress,
uint32_t dataDword0,
uint32_t dataDword1,
bool storeQword,
bool workloadPartitionOffset,
void **outCmdPtr) {
auto miStoreDataImmBuffer = commandStream.getSpaceForCmd<MI_STORE_DATA_IMM>();
if (outCmdPtr != nullptr) {
*outCmdPtr = miStoreDataImmBuffer;
}
EncodeStoreMemory<Family>::programStoreDataImm(miStoreDataImmBuffer,
gpuAddress,
dataDword0,
dataDword1,
storeQword,
workloadPartitionOffset);
}
template <typename GfxFamily>
void EncodeEnableRayTracing<GfxFamily>::append3dStateBtd(void *ptr3dStateBtd) {}
template <typename GfxFamily>
inline void EncodeWA<GfxFamily>::setAdditionalPipeControlFlagsForNonPipelineStateCommand(PipeControlArgs &args) {}
template <typename Family>
size_t EncodeMemoryFence<Family>::getSystemMemoryFenceSize() {
return 0;
}
template <typename Family>
void EncodeMemoryFence<Family>::encodeSystemMemoryFence(LinearStream &commandStream, const GraphicsAllocation *globalFenceAllocation) {
}
template <typename Family>
void EncodeMiPredicate<Family>::encode(LinearStream &cmdStream, [[maybe_unused]] MiPredicateType predicateType) {
if constexpr (Family::isUsingMiSetPredicate) {
using MI_SET_PREDICATE = typename Family::MI_SET_PREDICATE;
using PREDICATE_ENABLE = typename MI_SET_PREDICATE::PREDICATE_ENABLE;
auto miSetPredicate = Family::cmdInitSetPredicate;
miSetPredicate.setPredicateEnable(static_cast<PREDICATE_ENABLE>(predicateType));
*cmdStream.getSpaceForCmd<MI_SET_PREDICATE>() = miSetPredicate;
}
}
template <typename Family>
void EnodeUserInterrupt<Family>::encode(LinearStream &commandStream) {
*commandStream.getSpaceForCmd<typename Family::MI_USER_INTERRUPT>() = Family::cmdInitUserInterrupt;
}
} // namespace NEO