compute-runtime/runtime/memory_manager/host_ptr_manager.cpp

264 lines
12 KiB
C++

/*
* Copyright (c) 2017, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "host_ptr_manager.h"
#include "runtime/helpers/ptr_math.h"
#include "runtime/helpers/abort.h"
using namespace OCLRT;
std::map<void *, FragmentStorage>::iterator OCLRT::HostPtrManager::findElement(void *ptr) {
auto nextElement = partialAllocations.lower_bound(ptr);
auto element = nextElement;
if (element != partialAllocations.end()) {
auto &storedFragment = element->second;
if (storedFragment.fragmentCpuPointer <= ptr) {
return element;
} else if (element != partialAllocations.begin()) {
element--;
auto &storedFragment = element->second;
auto storedEndAddress = (uintptr_t)storedFragment.fragmentCpuPointer + storedFragment.fragmentSize;
if (storedFragment.fragmentSize == 0) {
storedEndAddress++;
}
if ((uintptr_t)ptr < (uintptr_t)storedEndAddress) {
return element;
}
}
} else if (element != partialAllocations.begin()) {
element--;
auto &storedFragment = element->second;
auto storedEndAddress = (uintptr_t)storedFragment.fragmentCpuPointer + storedFragment.fragmentSize;
if (storedFragment.fragmentSize == 0) {
storedEndAddress++;
}
if ((uintptr_t)ptr < (uintptr_t)storedEndAddress) {
return element;
}
}
return partialAllocations.end();
}
AllocationRequirements OCLRT::HostPtrManager::getAllocationRequirements(const void *inputPtr, size_t size) {
AllocationRequirements requiredAllocations;
auto allocationCount = 0;
auto wholeAllocationSize = alignSizeWholePage(inputPtr, size);
auto alignedStartAddress = alignDown(inputPtr, MemoryConstants::pageSize);
bool leadingNeeded = false;
if (alignedStartAddress != inputPtr) {
leadingNeeded = true;
requiredAllocations.AllocationFragments[allocationCount].allocationPtr = alignedStartAddress;
requiredAllocations.AllocationFragments[allocationCount].allocationType = LEADING;
requiredAllocations.AllocationFragments[allocationCount].allocationSize = MemoryConstants::pageSize;
allocationCount++;
}
auto endAddress = ptrOffset(inputPtr, size);
auto alignedEndAddress = alignDown(endAddress, MemoryConstants::pageSize);
bool trailingNeeded = false;
if (alignedEndAddress != endAddress && alignedEndAddress != alignedStartAddress) {
trailingNeeded = true;
}
auto middleSize = wholeAllocationSize - (trailingNeeded + leadingNeeded) * MemoryConstants::pageSize;
if (middleSize) {
requiredAllocations.AllocationFragments[allocationCount].allocationPtr = alignUp(inputPtr, MemoryConstants::pageSize);
requiredAllocations.AllocationFragments[allocationCount].allocationType = MIDDLE;
requiredAllocations.AllocationFragments[allocationCount].allocationSize = middleSize;
allocationCount++;
}
if (trailingNeeded) {
requiredAllocations.AllocationFragments[allocationCount].allocationPtr = alignedEndAddress;
requiredAllocations.AllocationFragments[allocationCount].allocationType = TRAILING;
requiredAllocations.AllocationFragments[allocationCount].allocationSize = MemoryConstants::pageSize;
allocationCount++;
}
requiredAllocations.totalRequiredSize = wholeAllocationSize;
requiredAllocations.requiredFragmentsCount = allocationCount;
return requiredAllocations;
}
OsHandleStorage OCLRT::HostPtrManager::populateAlreadyAllocatedFragments(AllocationRequirements &requirements, CheckedFragments *checkedFragments) {
OsHandleStorage handleStorage;
for (unsigned int i = 0; i < requirements.requiredFragmentsCount; i++) {
OverlapStatus overlapStatus = OverlapStatus::FRAGMENT_NOT_CHECKED;
FragmentStorage *fragmentStorage = nullptr;
if (checkedFragments != nullptr) {
DEBUG_BREAK_IF(checkedFragments->count <= i);
overlapStatus = checkedFragments->status[i];
DEBUG_BREAK_IF(!(checkedFragments->fragments[i] != nullptr || overlapStatus == OverlapStatus::FRAGMENT_NOT_OVERLAPING_WITH_ANY_OTHER));
fragmentStorage = checkedFragments->fragments[i];
}
if (overlapStatus == OverlapStatus::FRAGMENT_NOT_CHECKED)
fragmentStorage = getFragmentAndCheckForOverlaps(const_cast<void *>(requirements.AllocationFragments[i].allocationPtr), requirements.AllocationFragments[i].allocationSize, overlapStatus);
if (overlapStatus == OverlapStatus::FRAGMENT_WITHIN_STORED_FRAGMENT) {
DEBUG_BREAK_IF(fragmentStorage == nullptr);
fragmentStorage->refCount++;
handleStorage.fragmentStorageData[i].osHandleStorage = fragmentStorage->osInternalStorage;
handleStorage.fragmentStorageData[i].cpuPtr = requirements.AllocationFragments[i].allocationPtr;
handleStorage.fragmentStorageData[i].fragmentSize = requirements.AllocationFragments[i].allocationSize;
handleStorage.fragmentStorageData[i].residency = fragmentStorage->residency;
} else if (overlapStatus != OverlapStatus::FRAGMENT_OVERLAPING_AND_BIGGER_THEN_STORED_FRAGMENT) {
if (fragmentStorage != nullptr) {
DEBUG_BREAK_IF(overlapStatus != OverlapStatus::FRAGMENT_WITH_EXACT_SIZE_AS_STORED_FRAGMENT);
fragmentStorage->refCount++;
handleStorage.fragmentStorageData[i].osHandleStorage = fragmentStorage->osInternalStorage;
handleStorage.fragmentStorageData[i].residency = fragmentStorage->residency;
} else {
DEBUG_BREAK_IF(overlapStatus != OverlapStatus::FRAGMENT_NOT_OVERLAPING_WITH_ANY_OTHER);
}
handleStorage.fragmentStorageData[i].cpuPtr = requirements.AllocationFragments[i].allocationPtr;
handleStorage.fragmentStorageData[i].fragmentSize = requirements.AllocationFragments[i].allocationSize;
} else {
//abort whole application instead of silently passing.
abortExecution();
return handleStorage;
}
}
handleStorage.fragmentCount = requirements.requiredFragmentsCount;
return handleStorage;
}
void OCLRT::HostPtrManager::storeFragment(FragmentStorage &fragment) {
std::lock_guard<std::mutex> lock(allocationsMutex);
auto element = findElement(fragment.fragmentCpuPointer);
if (element != partialAllocations.end()) {
element->second.refCount++;
} else {
fragment.refCount++;
partialAllocations.insert(std::pair<void *, FragmentStorage>(fragment.fragmentCpuPointer, fragment));
}
}
void OCLRT::HostPtrManager::storeFragment(AllocationStorageData &storageData) {
FragmentStorage fragment;
fragment.fragmentCpuPointer = const_cast<void *>(storageData.cpuPtr);
fragment.fragmentSize = storageData.fragmentSize;
fragment.osInternalStorage = storageData.osHandleStorage;
fragment.residency = storageData.residency;
storeFragment(fragment);
}
void OCLRT::HostPtrManager::releaseHandleStorage(OsHandleStorage &fragments) {
for (int i = 0; i < max_fragments_count; i++) {
if (fragments.fragmentStorageData[i].fragmentSize || fragments.fragmentStorageData[i].cpuPtr) {
fragments.fragmentStorageData[i].freeTheFragment = releaseHostPtr(const_cast<void *>(fragments.fragmentStorageData[i].cpuPtr));
}
}
}
bool OCLRT::HostPtrManager::releaseHostPtr(void *ptr) {
std::lock_guard<std::mutex> lock(allocationsMutex);
bool fragmentReadyToBeReleased = false;
auto element = findElement(ptr);
DEBUG_BREAK_IF(element == partialAllocations.end());
element->second.refCount--;
if (element->second.refCount <= 0) {
fragmentReadyToBeReleased = true;
partialAllocations.erase(element);
}
return fragmentReadyToBeReleased;
}
FragmentStorage *OCLRT::HostPtrManager::getFragment(void *inputPtr) {
std::lock_guard<std::mutex> lock(allocationsMutex);
auto element = findElement(inputPtr);
if (element != partialAllocations.end()) {
return &element->second;
}
return nullptr;
}
//for given inputs see if any allocation overlaps
FragmentStorage *OCLRT::HostPtrManager::getFragmentAndCheckForOverlaps(const void *inPtr, size_t size, OverlapStatus &overlappingStatus) {
std::lock_guard<std::mutex> lock(allocationsMutex);
void *inputPtr = const_cast<void *>(inPtr);
auto nextElement = partialAllocations.lower_bound(inputPtr);
auto element = nextElement;
overlappingStatus = OverlapStatus::FRAGMENT_NOT_OVERLAPING_WITH_ANY_OTHER;
if (element != partialAllocations.begin()) {
element--;
}
if (element != partialAllocations.end()) {
auto &storedFragment = element->second;
if (storedFragment.fragmentCpuPointer == inputPtr && storedFragment.fragmentSize == size) {
overlappingStatus = OverlapStatus::FRAGMENT_WITH_EXACT_SIZE_AS_STORED_FRAGMENT;
return &element->second;
}
auto storedEndAddress = (uintptr_t)storedFragment.fragmentCpuPointer + storedFragment.fragmentSize;
auto inputEndAddress = (uintptr_t)inputPtr + size;
if (inputPtr >= storedFragment.fragmentCpuPointer && (uintptr_t)inputPtr < (uintptr_t)storedEndAddress) {
if (inputEndAddress <= storedEndAddress) {
overlappingStatus = OverlapStatus::FRAGMENT_WITHIN_STORED_FRAGMENT;
return &element->second;
} else {
overlappingStatus = OverlapStatus::FRAGMENT_OVERLAPING_AND_BIGGER_THEN_STORED_FRAGMENT;
return nullptr;
}
}
//next fragment doesn't have to be after the inputPtr
if (nextElement != partialAllocations.end()) {
auto &storedNextElement = nextElement->second;
auto storedNextEndAddress = (uintptr_t)storedNextElement.fragmentCpuPointer + storedNextElement.fragmentSize;
auto storedNextStartAddress = (uintptr_t)storedNextElement.fragmentCpuPointer;
//check if this allocation is after the inputPtr
if ((uintptr_t)inputPtr < storedNextStartAddress) {
if (inputEndAddress > storedNextStartAddress) {
overlappingStatus = OverlapStatus::FRAGMENT_OVERLAPING_AND_BIGGER_THEN_STORED_FRAGMENT;
return nullptr;
}
} else if (inputEndAddress > storedNextEndAddress) {
overlappingStatus = OverlapStatus::FRAGMENT_OVERLAPING_AND_BIGGER_THEN_STORED_FRAGMENT;
return nullptr;
} else {
DEBUG_BREAK_IF((uintptr_t)inputPtr != storedNextStartAddress);
if (inputEndAddress < storedNextEndAddress) {
overlappingStatus = OverlapStatus::FRAGMENT_WITHIN_STORED_FRAGMENT;
} else {
DEBUG_BREAK_IF(inputEndAddress != storedNextEndAddress);
overlappingStatus = OverlapStatus::FRAGMENT_WITH_EXACT_SIZE_AS_STORED_FRAGMENT;
}
return &nextElement->second;
}
}
}
return nullptr;
}