compute-runtime/opencl/test/unit_test/program/program_tests.cpp

3047 lines
126 KiB
C++

/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/test/unit_test/program/program_tests.h"
#include "shared/source/command_stream/command_stream_receiver_hw.h"
#include "shared/source/compiler_interface/intermediate_representations.h"
#include "shared/source/device_binary_format/elf/elf_decoder.h"
#include "shared/source/device_binary_format/elf/ocl_elf.h"
#include "shared/source/device_binary_format/patchtokens_decoder.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/hash.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/allocations_list.h"
#include "shared/source/memory_manager/graphics_allocation.h"
#include "shared/source/memory_manager/surface.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/test/unit_test/device_binary_format/patchtokens_tests.h"
#include "shared/test/unit_test/helpers/debug_manager_state_restore.h"
#include "shared/test/unit_test/mocks/mock_compiler_interface.h"
#include "shared/test/unit_test/utilities/base_object_utils.h"
#include "opencl/source/gtpin/gtpin_notify.h"
#include "opencl/source/helpers/hardware_commands_helper.h"
#include "opencl/source/kernel/kernel.h"
#include "opencl/source/program/create.inl"
#include "opencl/test/unit_test/fixtures/cl_device_fixture.h"
#include "opencl/test/unit_test/fixtures/multi_root_device_fixture.h"
#include "opencl/test/unit_test/global_environment.h"
#include "opencl/test/unit_test/helpers/kernel_binary_helper.h"
#include "opencl/test/unit_test/libult/ult_command_stream_receiver.h"
#include "opencl/test/unit_test/mocks/mock_allocation_properties.h"
#include "opencl/test/unit_test/mocks/mock_graphics_allocation.h"
#include "opencl/test/unit_test/mocks/mock_kernel.h"
#include "opencl/test/unit_test/mocks/mock_platform.h"
#include "opencl/test/unit_test/mocks/mock_program.h"
#include "opencl/test/unit_test/program/program_from_binary.h"
#include "opencl/test/unit_test/program/program_with_source.h"
#include "opencl/test/unit_test/test_macros/test_checks_ocl.h"
#include "test.h"
#include "compiler_options.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <map>
#include <memory>
#include <string>
#include <vector>
using namespace NEO;
void ProgramTests::SetUp() {
ClDeviceFixture::SetUp();
cl_device_id device = pClDevice;
ContextFixture::SetUp(1, &device);
}
void ProgramTests::TearDown() {
ContextFixture::TearDown();
ClDeviceFixture::TearDown();
}
void CL_CALLBACK notifyFunc(
cl_program program,
void *userData) {
*((char *)userData) = 'a';
}
std::vector<const char *> BinaryFileNames{
"CopyBuffer_simd32",
};
std::vector<const char *> SourceFileNames{
"CopyBuffer_simd16.cl",
};
std::vector<const char *> BinaryForSourceFileNames{
"CopyBuffer_simd16",
};
std::vector<const char *> KernelNames{
"CopyBuffer",
};
class NoCompilerInterfaceRootDeviceEnvironment : public RootDeviceEnvironment {
public:
NoCompilerInterfaceRootDeviceEnvironment(ExecutionEnvironment &executionEnvironment) : RootDeviceEnvironment(executionEnvironment) {
}
CompilerInterface *getCompilerInterface() override {
return nullptr;
}
};
class FailingGenBinaryProgram : public MockProgram {
public:
FailingGenBinaryProgram(ExecutionEnvironment &executionEnvironment) : MockProgram(executionEnvironment) {}
cl_int processGenBinary() override { return CL_INVALID_BINARY; }
};
class SucceedingGenBinaryProgram : public MockProgram {
public:
SucceedingGenBinaryProgram(ExecutionEnvironment &executionEnvironment) : MockProgram(executionEnvironment) {}
cl_int processGenBinary() override { return CL_SUCCESS; }
};
TEST_P(ProgramFromBinaryTest, WhenBuildingProgramThenSuccessIsReturned) {
cl_device_id device = pClDevice;
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_P(ProgramFromBinaryTest, WhenGettingProgramContextInfoThenCorrectContextIsReturned) {
cl_context contextRet = reinterpret_cast<cl_context>(static_cast<uintptr_t>(0xdeaddead));
size_t paramValueSizeRet = 0;
retVal = pProgram->getInfo(
CL_PROGRAM_CONTEXT,
sizeof(cl_context),
&contextRet,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(pContext, contextRet);
EXPECT_EQ(sizeof(cl_context), paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenNonNullParamValueWhenGettingProgramBinaryInfoThenCorrectBinaryIsReturned) {
size_t paramValueSize = sizeof(unsigned char **);
size_t paramValueSizeRet = 0;
auto testBinary = std::make_unique<char[]>(knownSourceSize);
retVal = pProgram->getInfo(
CL_PROGRAM_BINARIES,
paramValueSize,
&testBinary,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(paramValueSize, paramValueSizeRet);
EXPECT_STREQ((const char *)knownSource.get(), (const char *)testBinary.get());
}
TEST_P(ProgramFromBinaryTest, GivenNullParamValueWhenGettingProgramBinaryInfoThenSuccessIsReturned) {
size_t paramValueSize = sizeof(unsigned char **);
size_t paramValueSizeRet = 0;
retVal = pProgram->getInfo(
CL_PROGRAM_BINARIES,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(paramValueSize, paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenNonNullParamValueAndParamValueSizeZeroWhenGettingProgramBinaryInfoThenInvalidValueErrorIsReturned) {
size_t paramValueSizeRet = 0;
auto testBinary = std::make_unique<char[]>(knownSourceSize);
retVal = pProgram->getInfo(
CL_PROGRAM_BINARIES,
0,
&testBinary,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
}
TEST_P(ProgramFromBinaryTest, GivenInvalidParametersWhenGettingProgramInfoThenValueSizeRetIsNotUpdated) {
size_t paramValueSizeRet = 0x1234;
auto testBinary = std::make_unique<char[]>(knownSourceSize);
retVal = pProgram->getInfo(
CL_PROGRAM_BINARIES,
0,
&testBinary,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
EXPECT_EQ(0x1234u, paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenInvalidParamWhenGettingProgramBinaryInfoThenInvalidValueErrorIsReturned) {
size_t paramValueSizeRet = 0;
auto testBinary = std::make_unique<char[]>(knownSourceSize);
retVal = pProgram->getInfo(
CL_PROGRAM_BUILD_STATUS,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
}
TEST_P(ProgramFromBinaryTest, WhenGettingBinarySizesThenCorrectSizesAreReturned) {
size_t paramValueSize = sizeof(size_t *);
size_t paramValue[1];
size_t paramValueSizeRet = 0;
retVal = pProgram->getInfo(
CL_PROGRAM_BINARY_SIZES,
paramValueSize,
paramValue,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(knownSourceSize, paramValue[0]);
EXPECT_EQ(paramValueSize, paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenProgramWithOneKernelWhenGettingNumKernelsThenOneIsReturned) {
size_t paramValue = 0;
size_t paramValueSize = sizeof(paramValue);
size_t paramValueSizeRet = 0;
cl_device_id device = pClDevice;
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->getInfo(
CL_PROGRAM_NUM_KERNELS,
paramValueSize,
&paramValue,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(1u, paramValue);
EXPECT_EQ(paramValueSize, paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenProgramWithNoExecutableCodeWhenGettingNumKernelsThenInvalidProgramExecutableErrorIsReturned) {
size_t paramValue = 0;
size_t paramValueSize = sizeof(paramValue);
size_t paramValueSizeRet = 0;
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, BinaryFileName);
MockProgram *p = pProgram;
p->SetBuildStatus(CL_BUILD_NONE);
retVal = pProgram->getInfo(
CL_PROGRAM_NUM_KERNELS,
paramValueSize,
&paramValue,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_PROGRAM_EXECUTABLE, retVal);
}
TEST_P(ProgramFromBinaryTest, WhenGettingKernelNamesThenCorrectNameIsReturned) {
size_t paramValueSize = sizeof(size_t *);
size_t paramValueSizeRet = 0;
cl_device_id device = pClDevice;
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
// get info successfully about required sizes for kernel names
retVal = pProgram->getInfo(
CL_PROGRAM_KERNEL_NAMES,
0,
nullptr,
&paramValueSizeRet);
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(0u, paramValueSizeRet);
// get info successfully about kernel names
auto paramValue = std::make_unique<char[]>(paramValueSizeRet);
paramValueSize = paramValueSizeRet;
ASSERT_NE(paramValue, nullptr);
size_t expectedKernelsStringSize = strlen(KernelName) + 1;
retVal = pProgram->getInfo(
CL_PROGRAM_KERNEL_NAMES,
paramValueSize,
paramValue.get(),
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_STREQ(KernelName, (char *)paramValue.get());
EXPECT_EQ(expectedKernelsStringSize, paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenProgramWithNoExecutableCodeWhenGettingKernelNamesThenInvalidProgramExecutableErrorIsReturned) {
size_t paramValueSize = sizeof(size_t *);
size_t paramValueSizeRet = 0;
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, BinaryFileName);
MockProgram *p = pProgram;
p->SetBuildStatus(CL_BUILD_NONE);
retVal = pProgram->getInfo(
CL_PROGRAM_KERNEL_NAMES,
paramValueSize,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_PROGRAM_EXECUTABLE, retVal);
}
TEST_P(ProgramFromBinaryTest, WhenGettingProgramScopeGlobalCtorsAndDtorsPresentInfoThenCorrectValueIsReturned) {
cl_uint paramRet = 0;
cl_uint expectedParam = CL_FALSE;
size_t paramSizeRet = 0;
retVal = pProgram->getInfo(
CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT,
sizeof(cl_uint),
&paramRet,
&paramSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(sizeof(cl_uint), paramSizeRet);
EXPECT_EQ(expectedParam, paramRet);
retVal = pProgram->getInfo(
CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT,
sizeof(cl_uint),
&paramRet,
&paramSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(sizeof(cl_uint), paramSizeRet);
EXPECT_EQ(expectedParam, paramRet);
}
TEST_P(ProgramFromBinaryTest, GivenInvalidDeviceWhenGettingBuildStatusThenInvalidDeviceErrorIsReturned) {
cl_build_status buildStatus = 0;
size_t paramValueSize = sizeof(buildStatus);
size_t paramValueSizeRet = 0;
size_t invalidDevice = 0xdeadbee0;
retVal = pProgram->getBuildInfo(
reinterpret_cast<ClDevice *>(invalidDevice),
CL_PROGRAM_BUILD_STATUS,
paramValueSize,
&buildStatus,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_DEVICE, retVal);
}
TEST_P(ProgramFromBinaryTest, GivenCorruptedDeviceWhenGettingBuildStatusThenInvalidDiveErrorIsReturned) {
cl_build_status buildStatus = 0;
size_t paramValueSize = sizeof(buildStatus);
size_t paramValueSizeRet = 0;
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, BinaryFileName);
MockProgram *p = pProgram;
p->SetDevice(&pClDevice->getDevice());
retVal = pProgram->getBuildInfo(
reinterpret_cast<ClDevice *>(pContext),
CL_PROGRAM_BUILD_STATUS,
paramValueSize,
&buildStatus,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_DEVICE, retVal);
}
TEST_P(ProgramFromBinaryTest, GivenNullDeviceWhenGettingBuildStatusThenBuildNoneIsReturned) {
cl_device_id device = pClDevice;
cl_build_status buildStatus = 0;
size_t paramValueSize = sizeof(buildStatus);
size_t paramValueSizeRet = 0;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_STATUS,
paramValueSize,
&buildStatus,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(paramValueSize, paramValueSizeRet);
EXPECT_EQ(CL_BUILD_NONE, buildStatus);
}
TEST_P(ProgramFromBinaryTest, GivenInvalidParametersWhenGettingBuildInfoThenValueSizeRetIsNotUpdated) {
cl_device_id device = pClDevice;
cl_build_status buildStatus = 0;
size_t paramValueSize = sizeof(buildStatus);
size_t paramValueSizeRet = 0x1234;
retVal = pProgram->getBuildInfo(
device,
0,
paramValueSize,
&buildStatus,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
EXPECT_EQ(0x1234u, paramValueSizeRet);
}
TEST_P(ProgramFromBinaryTest, GivenDefaultDeviceWhenGettingBuildOptionsThenBuildOptionsAreEmpty) {
cl_device_id device = pClDevice;
size_t paramValueSizeRet = 0u;
size_t paramValueSize = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_OPTIONS,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(paramValueSizeRet, 0u);
auto paramValue = std::make_unique<char[]>(paramValueSizeRet);
paramValueSize = paramValueSizeRet;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_OPTIONS,
paramValueSize,
paramValue.get(),
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_STREQ("", (char *)paramValue.get());
}
TEST_P(ProgramFromBinaryTest, GivenDefaultDeviceWhenGettingLogThenLogEmpty) {
cl_device_id device = pClDevice;
size_t paramValueSizeRet = 0u;
size_t paramValueSize = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(paramValueSizeRet, 0u);
auto paramValue = std::make_unique<char[]>(paramValueSizeRet);
paramValueSize = paramValueSizeRet;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
paramValueSize,
paramValue.get(),
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_STREQ("", (char *)paramValue.get());
}
TEST_P(ProgramFromBinaryTest, GivenLogEntriesWhenGetBuildLogThenLogIsApended) {
cl_device_id device = pClDevice;
size_t paramValueSizeRet = 0u;
size_t paramValueSize = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(paramValueSizeRet, 0u);
auto paramValue = std::make_unique<char[]>(paramValueSizeRet);
paramValueSize = paramValueSizeRet;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
paramValueSize,
paramValue.get(),
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_STREQ("", (char *)paramValue.get());
// Add more text to the log
pProgram->updateBuildLog(&pClDevice->getDevice(), "testing", 8);
pProgram->updateBuildLog(&pClDevice->getDevice(), "several", 8);
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_GE(paramValueSizeRet, 16u);
paramValue = std::make_unique<char[]>(paramValueSizeRet);
paramValueSize = paramValueSizeRet;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
paramValueSize,
paramValue.get(),
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, strstr(paramValue.get(), "testing"));
const char *paramValueContinued = strstr(paramValue.get(), "testing") + 7;
ASSERT_NE(nullptr, strstr(paramValueContinued, "several"));
}
TEST_P(ProgramFromBinaryTest, GivenNullParamValueWhenGettingProgramBinaryTypeThenParamValueSizeIsReturned) {
cl_device_id device = pClDevice;
size_t paramValueSizeRet = 0u;
size_t paramValueSize = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BINARY_TYPE,
paramValueSize,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(paramValueSizeRet, 0u);
}
TEST_P(ProgramFromBinaryTest, WhenGettingProgramBinaryTypeThenCorrectProgramTypeIsReturned) {
cl_device_id device = pClDevice;
cl_program_binary_type programType = 0;
char *paramValue = (char *)&programType;
size_t paramValueSizeRet = 0u;
size_t paramValueSize = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BINARY_TYPE,
paramValueSize,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(paramValueSizeRet, 0u);
paramValueSize = paramValueSizeRet;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BINARY_TYPE,
paramValueSize,
paramValue,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ((cl_program_binary_type)CL_PROGRAM_BINARY_TYPE_EXECUTABLE, programType);
}
TEST_P(ProgramFromBinaryTest, GivenInvalidParamWhenGettingBuildInfoThenInvalidValueErrorIsReturned) {
cl_device_id device = pClDevice;
size_t paramValueSizeRet = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_KERNEL_NAMES,
0,
nullptr,
&paramValueSizeRet);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
}
TEST_P(ProgramFromBinaryTest, GivenGlobalVariableTotalSizeSetWhenGettingBuildGlobalVariableTotalSizeThenCorrectSizeIsReturned) {
cl_device_id device = pClDevice;
size_t globalVarSize = 22;
size_t paramValueSize = sizeof(globalVarSize);
size_t paramValueSizeRet = 0;
char *paramValue = (char *)&globalVarSize;
// get build info as is
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE,
paramValueSize,
paramValue,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(paramValueSizeRet, sizeof(globalVarSize));
EXPECT_EQ(globalVarSize, 0u);
// Set GlobalVariableTotalSize as 1024
CreateProgramFromBinary(pContext, &device, BinaryFileName);
MockProgram *p = pProgram;
ProgramInfo programInfo;
char constantData[1024] = {};
programInfo.globalVariables.initData = constantData;
programInfo.globalVariables.size = sizeof(constantData);
p->processProgramInfo(programInfo);
// get build info once again
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE,
paramValueSize,
paramValue,
&paramValueSizeRet);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(paramValueSizeRet, sizeof(globalVarSize));
if (castToObject<ClDevice>(pClDevice)->areOcl21FeaturesEnabled()) {
EXPECT_EQ(globalVarSize, 1024u);
} else {
EXPECT_EQ(globalVarSize, 0u);
}
}
TEST_P(ProgramFromBinaryTest, givenProgramWhenItIsBeingBuildThenItContainsGraphicsAllocationInKernelInfo) {
cl_device_id device = pClDevice;
pProgram->build(1, &device, nullptr, nullptr, nullptr, true);
auto kernelInfo = pProgram->getKernelInfo(size_t(0));
auto graphicsAllocation = kernelInfo->getGraphicsAllocation();
ASSERT_NE(nullptr, graphicsAllocation);
EXPECT_TRUE(graphicsAllocation->is32BitAllocation());
EXPECT_EQ(graphicsAllocation->getUnderlyingBufferSize(), kernelInfo->heapInfo.KernelHeapSize);
auto kernelIsa = graphicsAllocation->getUnderlyingBuffer();
EXPECT_NE(kernelInfo->heapInfo.pKernelHeap, kernelIsa);
EXPECT_EQ(0, memcmp(kernelIsa, kernelInfo->heapInfo.pKernelHeap, kernelInfo->heapInfo.KernelHeapSize));
auto rootDeviceIndex = graphicsAllocation->getRootDeviceIndex();
EXPECT_EQ(GmmHelper::decanonize(graphicsAllocation->getGpuBaseAddress()), pProgram->getDevice().getMemoryManager()->getInternalHeapBaseAddress(rootDeviceIndex));
}
TEST_P(ProgramFromBinaryTest, whenProgramIsBeingRebuildThenOutdatedGlobalBuffersAreFreed) {
cl_device_id device = pClDevice;
pProgram->build(1, &device, nullptr, nullptr, nullptr, true);
EXPECT_EQ(nullptr, pProgram->constantSurface);
EXPECT_EQ(nullptr, pProgram->globalSurface);
pProgram->constantSurface = new MockGraphicsAllocation();
pProgram->processGenBinary();
EXPECT_EQ(nullptr, pProgram->constantSurface);
EXPECT_EQ(nullptr, pProgram->globalSurface);
pProgram->globalSurface = new MockGraphicsAllocation();
pProgram->processGenBinary();
EXPECT_EQ(nullptr, pProgram->constantSurface);
EXPECT_EQ(nullptr, pProgram->globalSurface);
}
TEST_P(ProgramFromBinaryTest, givenProgramWhenCleanKernelInfoIsCalledThenKernelAllocationIsFreed) {
cl_device_id device = pClDevice;
pProgram->build(1, &device, nullptr, nullptr, nullptr, true);
EXPECT_EQ(1u, pProgram->getNumKernels());
pProgram->cleanCurrentKernelInfo();
EXPECT_EQ(0u, pProgram->getNumKernels());
}
HWTEST_P(ProgramFromBinaryTest, givenProgramWhenCleanCurrentKernelInfoIsCalledButGpuIsNotYetDoneThenKernelAllocationIsPutOnDefferedFreeListAndCsrRegistersCacheFlush) {
cl_device_id device = pClDevice;
auto &csr = pDevice->getGpgpuCommandStreamReceiver();
EXPECT_TRUE(csr.getTemporaryAllocations().peekIsEmpty());
pProgram->build(1, &device, nullptr, nullptr, nullptr, true);
auto kernelAllocation = pProgram->getKernelInfo(size_t(0))->getGraphicsAllocation();
kernelAllocation->updateTaskCount(100, csr.getOsContext().getContextId());
*csr.getTagAddress() = 0;
pProgram->cleanCurrentKernelInfo();
EXPECT_FALSE(csr.getTemporaryAllocations().peekIsEmpty());
EXPECT_EQ(csr.getTemporaryAllocations().peekHead(), kernelAllocation);
EXPECT_TRUE(this->pDevice->getUltCommandStreamReceiver<FamilyType>().requiresInstructionCacheFlush);
}
HWTEST_P(ProgramFromBinaryTest, givenIsaAllocationUsedByMultipleCsrsWhenItIsDeletedItRegistersCacheFlushInEveryCsrThatUsedIt) {
auto &csr0 = this->pDevice->getUltCommandStreamReceiverFromIndex<FamilyType>(0u);
auto &csr1 = this->pDevice->getUltCommandStreamReceiverFromIndex<FamilyType>(1u);
cl_device_id device = pClDevice;
pProgram->build(1, &device, nullptr, nullptr, nullptr, true);
auto kernelAllocation = pProgram->getKernelInfo(size_t(0))->getGraphicsAllocation();
csr0.makeResident(*kernelAllocation);
csr1.makeResident(*kernelAllocation);
csr0.processResidency(csr0.getResidencyAllocations(), 0u);
csr1.processResidency(csr1.getResidencyAllocations(), 0u);
csr0.makeNonResident(*kernelAllocation);
csr1.makeNonResident(*kernelAllocation);
EXPECT_FALSE(csr0.requiresInstructionCacheFlush);
EXPECT_FALSE(csr1.requiresInstructionCacheFlush);
pProgram->cleanCurrentKernelInfo();
EXPECT_TRUE(csr0.requiresInstructionCacheFlush);
EXPECT_TRUE(csr1.requiresInstructionCacheFlush);
}
TEST_P(ProgramFromSourceTest, GivenSpecificParamatersWhenBuildingProgramThenSuccessOrCorrectErrorCodeIsReturned) {
KernelBinaryHelper kbHelper(BinaryFileName, true);
auto device = pPlatform->getClDevice(0);
cl_device_id deviceList = {0};
char data[4] = {0};
cl_device_id usedDevice = pPlatform->getClDevice(0);
CreateProgramWithSource(
pContext,
&usedDevice,
SourceFileName);
// Order of following microtests is important - do not change.
// Add new microtests at end.
auto pMockProgram = pProgram;
// invalid build parameters: combinations of numDevices & deviceList
retVal = pProgram->build(1, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->build(0, &deviceList, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid build parameters: combinations of funcNotify & userData
retVal = pProgram->build(0, nullptr, nullptr, nullptr, &data[0], false);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid build parameters: invalid content of deviceList
retVal = pProgram->build(1, &deviceList, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_INVALID_DEVICE, retVal);
// fail build - another build is already in progress
pMockProgram->SetBuildStatus(CL_BUILD_IN_PROGRESS);
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_INVALID_OPERATION, retVal);
pMockProgram->SetBuildStatus(CL_BUILD_NONE);
// fail build - CompilerInterface cannot be obtained
auto executionEnvironment = device->getExecutionEnvironment();
std::unique_ptr<RootDeviceEnvironment> rootDeviceEnvironment = std::make_unique<NoCompilerInterfaceRootDeviceEnvironment>(*executionEnvironment);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[device->getRootDeviceIndex()]);
auto p2 = std::make_unique<MockProgram>(*executionEnvironment);
p2->setDevice(&device->getDevice());
retVal = p2->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_OUT_OF_HOST_MEMORY, retVal);
p2.reset(nullptr);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[device->getRootDeviceIndex()]);
// fail build - any build error (here caused by specifying unrecognized option)
retVal = pProgram->build(0, nullptr, "-invalid-option", nullptr, nullptr, false);
EXPECT_EQ(CL_BUILD_PROGRAM_FAILURE, retVal);
// fail build - linked code is corrupted and cannot be postprocessed
auto p3 = std::make_unique<FailingGenBinaryProgram>(*executionEnvironment);
p3->setDevice(&device->getDevice());
std::string testFile;
size_t sourceSize;
testFile.append(clFiles);
testFile.append("CopyBuffer_simd16.cl"); // source file
auto pSourceBuffer = loadDataFromFile(testFile.c_str(), sourceSize);
EXPECT_NE(0u, sourceSize);
EXPECT_NE(nullptr, pSourceBuffer);
p3->sourceCode = pSourceBuffer.get();
p3->createdFrom = Program::CreatedFrom::SOURCE;
retVal = p3->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_INVALID_BINARY, retVal);
p3.reset(nullptr);
// build successfully without notifyFunc - build kernel and write it to Kernel Cache
pMockProgram->ClearOptions();
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(CompilerOptions::contains(pProgram->getInternalOptions(), pPlatform->getClDevice(0)->peekCompilerExtensions())) << pProgram->getInternalOptions();
// get build log
size_t param_value_size_ret = 0u;
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
0,
nullptr,
&param_value_size_ret);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(param_value_size_ret, 0u);
// get build log when the log does not exist
pMockProgram->ClearLog();
retVal = pProgram->getBuildInfo(
device,
CL_PROGRAM_BUILD_LOG,
0,
nullptr,
&param_value_size_ret);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(param_value_size_ret, 0u);
// build successfully without notifyFunc - build kernel but do not write it to Kernel Cache (kernel is already in the Cache)
pMockProgram->SetBuildStatus(CL_BUILD_NONE);
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
// build successfully with notifyFunc - duplicate build (kernel already built), do not build and just take it
retVal = pProgram->build(0, nullptr, nullptr, notifyFunc, &data[0], false);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ('a', data[0]);
// build successfully without notifyFunc - kernel is already in Kernel Cache, do not build and take it from Cache
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, true);
EXPECT_EQ(CL_SUCCESS, retVal);
// fail build - code to be build does not exist
pMockProgram->sourceCode = ""; // set source code as non-existent (invalid)
pMockProgram->createdFrom = Program::CreatedFrom::SOURCE;
pMockProgram->SetBuildStatus(CL_BUILD_NONE);
pMockProgram->SetCreatedFromBinary(false);
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
}
TEST_P(ProgramFromSourceTest, CreateWithSource_Build_Options_Duplicate) {
KernelBinaryHelper kbHelper(BinaryFileName, false);
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->build(0, nullptr, CompilerOptions::fastRelaxedMath, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->build(0, nullptr, CompilerOptions::fastRelaxedMath, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->build(0, nullptr, CompilerOptions::finiteMathOnly, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
}
TEST_P(ProgramFromSourceTest, WhenBuildingProgramThenFeaturesOptionIsAdded) {
auto featuresOption = static_cast<ClDevice *>(devices[0])->peekCompilerFeatures();
EXPECT_THAT(pProgram->getInternalOptions(), testing::Not(testing::HasSubstr(featuresOption)));
retVal = pProgram->build(1, devices, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_THAT(pProgram->getInternalOptions(), testing::HasSubstr(featuresOption));
}
TEST_P(ProgramFromSourceTest, WhenBuildingProgramThenFeaturesOptionIsAddedOnlyOnce) {
retVal = pProgram->build(1, devices, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->build(1, devices, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
auto expectedFeaturesOption = static_cast<ClDevice *>(devices[0])->peekCompilerFeatures();
auto &internalOptions = pProgram->getInternalOptions();
auto pos = internalOptions.find(expectedFeaturesOption);
EXPECT_NE(std::string::npos, pos);
pos = internalOptions.find(expectedFeaturesOption, pos + 1);
EXPECT_EQ(std::string::npos, pos);
}
TEST_P(ProgramFromSourceTest, WhenCompilingProgramThenFeaturesOptionIsAdded) {
auto pCompilerInterface = new MockCompilerInterfaceCaptureBuildOptions();
auto pClDevice = static_cast<ClDevice *>(devices[0]);
pClDevice->getExecutionEnvironment()->rootDeviceEnvironments[pClDevice->getRootDeviceIndex()]->compilerInterface.reset(pCompilerInterface);
auto featuresOption = pClDevice->peekCompilerFeatures();
EXPECT_THAT(pCompilerInterface->buildInternalOptions, testing::Not(testing::HasSubstr(featuresOption)));
retVal = pProgram->compile(1, devices, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_THAT(pCompilerInterface->buildInternalOptions, testing::HasSubstr(featuresOption));
}
class Callback {
public:
Callback() {
this->oldCallback = MemoryManagement::deleteCallback;
MemoryManagement::deleteCallback = thisCallback;
}
~Callback() {
MemoryManagement::deleteCallback = this->oldCallback;
}
static void watch(const void *p) {
watchList[p] = 0u;
}
static void unwatch(const void *p) {
EXPECT_GT(watchList[p], 0u);
watchList.erase(p);
}
private:
void (*oldCallback)(void *);
static void thisCallback(void *p) {
if (watchList.find(p) != watchList.end())
watchList[p]++;
}
static std::map<const void *, uint32_t> watchList;
};
std::map<const void *, uint32_t> Callback::watchList;
TEST_P(ProgramFromSourceTest, GivenDifferentCommpilerOptionsWhenBuildingProgramThenKernelHashesAreDifferent) {
KernelBinaryHelper kbHelper(BinaryFileName, true);
cl_device_id usedDevice = pPlatform->getClDevice(0);
CreateProgramWithSource(
pContext,
&usedDevice,
SourceFileName);
Callback callback;
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, true);
EXPECT_EQ(CL_SUCCESS, retVal);
auto hash1 = pProgram->getCachedFileName();
auto kernel1 = pProgram->getKernelInfo("CopyBuffer");
Callback::watch(kernel1);
EXPECT_NE(nullptr, kernel1);
retVal = pProgram->build(0, nullptr, CompilerOptions::fastRelaxedMath, nullptr, nullptr, true);
EXPECT_EQ(CL_SUCCESS, retVal);
auto hash2 = pProgram->getCachedFileName();
auto kernel2 = pProgram->getKernelInfo("CopyBuffer");
EXPECT_NE(nullptr, kernel2);
EXPECT_NE(hash1, hash2);
Callback::unwatch(kernel1);
Callback::watch(kernel2);
retVal = pProgram->build(0, nullptr, CompilerOptions::finiteMathOnly, nullptr, nullptr, true);
EXPECT_EQ(CL_SUCCESS, retVal);
auto hash3 = pProgram->getCachedFileName();
auto kernel3 = pProgram->getKernelInfo("CopyBuffer");
EXPECT_NE(nullptr, kernel3);
EXPECT_NE(hash1, hash3);
EXPECT_NE(hash2, hash3);
Callback::unwatch(kernel2);
Callback::watch(kernel3);
retVal = pProgram->build(0, nullptr, nullptr, nullptr, nullptr, true);
EXPECT_EQ(CL_SUCCESS, retVal);
auto hash4 = pProgram->getCachedFileName();
auto kernel4 = pProgram->getKernelInfo("CopyBuffer");
EXPECT_NE(nullptr, kernel4);
EXPECT_EQ(hash1, hash4);
Callback::unwatch(kernel3);
}
TEST_P(ProgramFromSourceTest, GivenEmptyProgramWhenCreatingProgramThenInvalidValueErrorIsReturned) {
auto p = Program::create(pContext, 0, nullptr, nullptr, retVal);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
EXPECT_EQ(nullptr, p);
delete p;
}
TEST_P(ProgramFromSourceTest, GivenSpecificParamatersWhenCompilingProgramThenSuccessOrCorrectErrorCodeIsReturned) {
cl_device_id usedDevice = pPlatform->getClDevice(0);
CreateProgramWithSource(
pContext,
&usedDevice,
SourceFileName);
auto *p = (MockProgram *)pProgram;
cl_device_id deviceList = {0};
cl_program inputHeaders;
const char *headerIncludeNames = "";
cl_program nullprogram = nullptr;
cl_program invprogram = (cl_program)pContext;
char data[4];
// Order of following microtests is important - do not change.
// Add new microtests at end.
// invalid compile parameters: combinations of numDevices & deviceList
retVal = pProgram->compile(1, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->compile(0, &deviceList, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid compile parameters: combinations of numInputHeaders==0 & inputHeaders & headerIncludeNames
retVal = pProgram->compile(0, nullptr, nullptr, 0, &inputHeaders, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, &headerIncludeNames, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid compile parameters: combinations of numInputHeaders!=0 & inputHeaders & headerIncludeNames
retVal = pProgram->compile(0, nullptr, nullptr, 1, &inputHeaders, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->compile(0, nullptr, nullptr, 1, nullptr, &headerIncludeNames, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid compile parameters: combinations of funcNotify & userData with valid numInputHeaders!=0 & inputHeaders & headerIncludeNames
retVal = pProgram->compile(0, nullptr, nullptr, 1, &inputHeaders, &headerIncludeNames, nullptr, &data[0]);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid compile parameters: invalid content of deviceList
retVal = pProgram->compile(1, &deviceList, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_DEVICE, retVal);
// fail compilation - another compilation is already in progress
p->SetBuildStatus(CL_BUILD_IN_PROGRESS);
retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_OPERATION, retVal);
p->SetBuildStatus(CL_BUILD_NONE);
// invalid compile parameters: invalid header Program object==nullptr
retVal = pProgram->compile(0, nullptr, nullptr, 1, &nullprogram, &headerIncludeNames, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
// invalid compile parameters: invalid header Program object==non Program object
retVal = pProgram->compile(0, nullptr, nullptr, 1, &invprogram, &headerIncludeNames, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
// compile successfully kernel with header
std::string testFile;
size_t sourceSize;
Program *p3; // header Program object
testFile.append(clFiles);
testFile.append("CopyBuffer_simd16.cl"); // header source file
auto pSourceBuffer = loadDataFromFile(testFile.c_str(), sourceSize);
EXPECT_NE(0u, sourceSize);
EXPECT_NE(nullptr, pSourceBuffer);
const char *sources[1] = {pSourceBuffer.get()};
p3 = Program::create<MockProgram>(pContext, 1, sources, &sourceSize, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, p3);
inputHeaders = p3;
retVal = pProgram->compile(0, nullptr, nullptr, 1, &inputHeaders, &headerIncludeNames, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// fail compilation of kernel with header - header is invalid
p = (MockProgram *)p3;
p->sourceCode = ""; // set header source code as non-existent (invalid)
retVal = pProgram->compile(0, nullptr, nullptr, 1, &inputHeaders, &headerIncludeNames, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
delete p3;
// fail compilation - CompilerInterface cannot be obtained
auto device = pContext->getDevice(0);
auto executionEnvironment = device->getExecutionEnvironment();
std::unique_ptr<RootDeviceEnvironment> rootDeviceEnvironment = std::make_unique<NoCompilerInterfaceRootDeviceEnvironment>(*executionEnvironment);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[device->getRootDeviceIndex()]);
auto p2 = std::make_unique<MockProgram>(*executionEnvironment);
p2->setDevice(&device->getDevice());
retVal = p2->compile(0, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_OUT_OF_HOST_MEMORY, retVal);
p2.reset(nullptr);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[device->getRootDeviceIndex()]);
// fail compilation - any compilation error (here caused by specifying unrecognized option)
retVal = pProgram->compile(0, nullptr, "-invalid-option", 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_COMPILE_PROGRAM_FAILURE, retVal);
// compile successfully without notifyFunc
retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// compile successfully with notifyFunc
data[0] = 0;
retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, nullptr, notifyFunc, &data[0]);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ('a', data[0]);
}
TEST_P(ProgramFromSourceTest, GivenFlagsWhenCompilingProgramThenBuildOptionsHaveBeenApplied) {
auto cip = new MockCompilerInterfaceCaptureBuildOptions();
auto pDevice = pContext->getDevice(0);
pDevice->getExecutionEnvironment()->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]->compilerInterface.reset(cip);
auto program = std::make_unique<SucceedingGenBinaryProgram>(*pDevice->getExecutionEnvironment());
program->setDevice(&pDevice->getDevice());
program->sourceCode = "__kernel mock() {}";
// Ask to build created program without NEO::CompilerOptions::gtpinRera and NEO::CompilerOptions::greaterThan4gbBuffersRequired flags.
cl_int retVal = program->compile(0, nullptr, CompilerOptions::fastRelaxedMath, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// Check build options that were applied
EXPECT_TRUE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::fastRelaxedMath)) << cip->buildOptions;
EXPECT_FALSE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::gtpinRera)) << cip->buildInternalOptions;
EXPECT_FALSE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::greaterThan4gbBuffersRequired)) << cip->buildInternalOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, pPlatform->getClDevice(0)->peekCompilerExtensions())) << cip->buildInternalOptions;
// Ask to build created program with NEO::CompilerOptions::gtpinRera and NEO::CompilerOptions::greaterThan4gbBuffersRequired flags.
cip->buildOptions.clear();
cip->buildInternalOptions.clear();
auto options = CompilerOptions::concatenate(CompilerOptions::greaterThan4gbBuffersRequired, CompilerOptions::gtpinRera, CompilerOptions::finiteMathOnly);
retVal = program->compile(0, nullptr, options.c_str(),
0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// Check build options that were applied
EXPECT_FALSE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::fastRelaxedMath)) << cip->buildOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::finiteMathOnly)) << cip->buildOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::gtpinRera)) << cip->buildInternalOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::greaterThan4gbBuffersRequired)) << cip->buildInternalOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, pPlatform->getClDevice(0)->peekCompilerExtensions())) << cip->buildInternalOptions;
}
TEST_F(ProgramTests, GivenFlagsWhenLinkingProgramThenBuildOptionsHaveBeenApplied) {
auto cip = new MockCompilerInterfaceCaptureBuildOptions();
auto pProgram = std::make_unique<SucceedingGenBinaryProgram>(*pDevice->getExecutionEnvironment());
pProgram->setDevice(pDevice);
pProgram->sourceCode = "__kernel mock() {}";
pProgram->createdFrom = Program::CreatedFrom::SOURCE;
cl_program program = pProgram.get();
// compile successfully a kernel to be linked later
cl_int retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// Ask to link created program with NEO::CompilerOptions::gtpinRera and NEO::CompilerOptions::greaterThan4gbBuffersRequired flags.
auto options = CompilerOptions::concatenate(CompilerOptions::greaterThan4gbBuffersRequired, CompilerOptions::gtpinRera, CompilerOptions::finiteMathOnly);
pDevice->getExecutionEnvironment()->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]->compilerInterface.reset(cip);
retVal = pProgram->link(0, nullptr, options.c_str(), 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// Check build options that were applied
EXPECT_FALSE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::fastRelaxedMath)) << cip->buildOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::finiteMathOnly)) << cip->buildOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::gtpinRera)) << cip->buildInternalOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::greaterThan4gbBuffersRequired)) << cip->buildInternalOptions;
}
TEST_P(ProgramFromSourceTest, GivenAdvancedOptionsWhenCreatingProgramThenSuccessIsReturned) {
std::string testFile;
size_t sourceSize = 0;
Program *p;
testFile.append(clFiles);
testFile.append("CopyBuffer_simd16.cl");
auto pSourceBuffer = loadDataFromFile(testFile.c_str(), sourceSize);
const char *sources[1] = {pSourceBuffer.get()};
EXPECT_NE(nullptr, pSourceBuffer);
//According to spec: If lengths is NULL, all strings in the strings argument are considered null-terminated.
p = Program::create(pContext, 1, sources, nullptr, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, p);
delete p;
//According to spec: If an element in lengths is zero, its accompanying string is null-terminated.
p = Program::create(pContext, 1, sources, &sourceSize, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, p);
delete p;
std::stringstream dataStream(pSourceBuffer.get());
std::string line;
std::vector<const char *> lines;
while (std::getline(dataStream, line, '\n')) {
char *ptr = new char[line.length() + 1]();
strcpy_s(ptr, line.length() + 1, line.c_str());
lines.push_back(ptr);
}
// Work on array of strings
p = Program::create(pContext, 1, &lines[0], nullptr, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, p);
delete p;
std::vector<size_t> sizes;
for (auto ptr : lines)
sizes.push_back(strlen(ptr));
sizes[sizes.size() / 2] = 0;
p = Program::create(pContext, (cl_uint)sizes.size(), &lines[0], &sizes[0], retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, p);
delete p;
for (auto ptr : lines)
delete[] ptr;
}
TEST_P(ProgramFromSourceTest, GivenSpecificParamatersWhenLinkingProgramThenSuccessOrCorrectErrorCodeIsReturned) {
cl_device_id usedDevice = pPlatform->getClDevice(0);
CreateProgramWithSource(
pContext,
&usedDevice,
SourceFileName);
cl_device_id deviceList = {0};
char data[4];
cl_program program = pProgram;
cl_program nullprogram = nullptr;
cl_program invprogram = (cl_program)pContext;
// Order of following microtests is important - do not change.
// Add new microtests at end.
// invalid link parameters: combinations of numDevices & deviceList
retVal = pProgram->link(1, nullptr, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->link(0, &deviceList, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid link parameters: combinations of numInputPrograms & inputPrograms
retVal = pProgram->link(0, nullptr, nullptr, 0, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->link(0, nullptr, nullptr, 1, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid link parameters: combinations of funcNotify & userData with valid numInputPrograms & inputPrograms
retVal = pProgram->link(0, nullptr, nullptr, 1, &program, nullptr, &data[0]);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
// invalid link parameters: invalid content of deviceList
retVal = pProgram->link(1, &deviceList, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_DEVICE, retVal);
// fail linking - another linking is already in progress
pProgram->SetBuildStatus(CL_BUILD_IN_PROGRESS);
retVal = pProgram->link(0, nullptr, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_OPERATION, retVal);
pProgram->SetBuildStatus(CL_BUILD_NONE);
// invalid link parameters: invalid Program object==nullptr
retVal = pProgram->link(0, nullptr, nullptr, 1, &nullprogram, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
// invalid link parameters: invalid Program object==non Program object
retVal = pProgram->link(0, nullptr, nullptr, 1, &invprogram, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
// compile successfully a kernel to be linked later
retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// fail linking - code to be linked does not exist
bool isSpirvTmp = pProgram->getIsSpirV();
char *pIrBin = pProgram->irBinary.get();
pProgram->irBinary.release();
size_t irBinSize = pProgram->irBinarySize;
pProgram->SetIrBinary(nullptr, false);
retVal = pProgram->link(0, nullptr, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
pProgram->SetIrBinary(pIrBin, isSpirvTmp);
// fail linking - size of code to be linked is == 0
pProgram->SetIrBinarySize(0, isSpirvTmp);
retVal = pProgram->link(0, nullptr, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_PROGRAM, retVal);
pProgram->SetIrBinarySize(irBinSize, isSpirvTmp);
// fail linking - any link error (here caused by specifying unrecognized option)
retVal = pProgram->link(0, nullptr, "-invalid-option", 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_LINK_PROGRAM_FAILURE, retVal);
// fail linking - linked code is corrupted and cannot be postprocessed
auto device = static_cast<ClDevice *>(usedDevice);
auto p2 = std::make_unique<FailingGenBinaryProgram>(*device->getExecutionEnvironment());
p2->setDevice(&device->getDevice());
retVal = p2->link(0, nullptr, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_INVALID_BINARY, retVal);
p2.reset(nullptr);
// link successfully without notifyFunc
retVal = pProgram->link(0, nullptr, nullptr, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// link successfully with notifyFunc
data[0] = 0;
retVal = pProgram->link(0, nullptr, "", 1, &program, notifyFunc, &data[0]);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ('a', data[0]);
}
TEST_P(ProgramFromSourceTest, GivenInvalidOptionsWhenCreatingLibraryThenCorrectErrorIsReturned) {
cl_program program = pProgram;
// Order of following microtests is important - do not change.
// Add new microtests at end.
// compile successfully a kernel to be later used to create library
retVal = pProgram->compile(0, nullptr, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// create library successfully
retVal = pProgram->link(0, nullptr, CompilerOptions::createLibrary, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
// fail library creation - any link error (here caused by specifying unrecognized option)
retVal = pProgram->link(0, nullptr, CompilerOptions::concatenate(CompilerOptions::createLibrary, "-invalid-option").c_str(), 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_LINK_PROGRAM_FAILURE, retVal);
auto device = pContext->getDevice(0);
auto executionEnvironment = device->getExecutionEnvironment();
std::unique_ptr<RootDeviceEnvironment> rootDeviceEnvironment = std::make_unique<NoCompilerInterfaceRootDeviceEnvironment>(*executionEnvironment);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[device->getRootDeviceIndex()]);
auto failingProgram = std::make_unique<MockProgram>(*executionEnvironment);
failingProgram->setDevice(&device->getDevice());
// fail library creation - CompilerInterface cannot be obtained
retVal = failingProgram->link(0, nullptr, CompilerOptions::createLibrary, 1, &program, nullptr, nullptr);
EXPECT_EQ(CL_OUT_OF_HOST_MEMORY, retVal);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[device->getRootDeviceIndex()]);
}
class PatchTokenFromBinaryTest : public ProgramSimpleFixture {
public:
void SetUp() override {
ProgramSimpleFixture::SetUp();
}
void TearDown() override {
ProgramSimpleFixture::TearDown();
}
};
using PatchTokenTests = Test<PatchTokenFromBinaryTest>;
template <typename FamilyType>
class CommandStreamReceiverMock : public UltCommandStreamReceiver<FamilyType> {
using BaseClass = UltCommandStreamReceiver<FamilyType>;
using BaseClass::BaseClass;
public:
void makeResident(GraphicsAllocation &graphicsAllocation) override {
residency[graphicsAllocation.getUnderlyingBuffer()] = graphicsAllocation.getUnderlyingBufferSize();
CommandStreamReceiver::makeResident(graphicsAllocation);
}
void makeNonResident(GraphicsAllocation &graphicsAllocation) override {
residency.erase(graphicsAllocation.getUnderlyingBuffer());
CommandStreamReceiver::makeNonResident(graphicsAllocation);
}
std::map<const void *, size_t> residency;
};
HWTEST_F(PatchTokenTests, givenKernelRequiringConstantAllocationWhenMakeResidentIsCalledThenConstantAllocationIsMadeResident) {
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, "test_constant_memory");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
auto pKernelInfo = pProgram->getKernelInfo("test");
EXPECT_NE(nullptr, pKernelInfo->patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization);
ASSERT_NE(nullptr, pProgram->getConstantSurface());
uint32_t expected_values[] = {0xabcd5432u, 0xaabb5533u};
uint32_t *constBuff = reinterpret_cast<uint32_t *>(pProgram->getConstantSurface()->getUnderlyingBuffer());
EXPECT_EQ(expected_values[0], constBuff[0]);
EXPECT_EQ(expected_values[1], constBuff[1]);
std::unique_ptr<Kernel> pKernel(Kernel::create(pProgram, *pKernelInfo, &retVal));
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(nullptr, pKernel);
auto pCommandStreamReceiver = new CommandStreamReceiverMock<FamilyType>(*pDevice->executionEnvironment, pDevice->getRootDeviceIndex());
ASSERT_NE(nullptr, pCommandStreamReceiver);
pDevice->resetCommandStreamReceiver(pCommandStreamReceiver);
pCommandStreamReceiver->residency.clear();
pKernel->makeResident(*pCommandStreamReceiver);
EXPECT_EQ(2u, pCommandStreamReceiver->residency.size());
auto &residencyVector = pCommandStreamReceiver->getResidencyAllocations();
//we expect kernel ISA here and constant allocation
auto kernelIsa = pKernel->getKernelInfo().getGraphicsAllocation();
auto constantAllocation = pProgram->getConstantSurface();
auto element = std::find(residencyVector.begin(), residencyVector.end(), kernelIsa);
EXPECT_NE(residencyVector.end(), element);
element = std::find(residencyVector.begin(), residencyVector.end(), constantAllocation);
EXPECT_NE(residencyVector.end(), element);
auto crossThreadData = pKernel->getCrossThreadData();
uint32_t *constBuffGpuAddr = reinterpret_cast<uint32_t *>(pProgram->getConstantSurface()->getGpuAddressToPatch());
uintptr_t *pDst = reinterpret_cast<uintptr_t *>(crossThreadData + pKernelInfo->patchInfo.pAllocateStatelessConstantMemorySurfaceWithInitialization->DataParamOffset);
EXPECT_EQ(*pDst, reinterpret_cast<uintptr_t>(constBuffGpuAddr));
pCommandStreamReceiver->makeSurfacePackNonResident(pCommandStreamReceiver->getResidencyAllocations());
EXPECT_EQ(0u, pCommandStreamReceiver->residency.size());
std::vector<Surface *> surfaces;
pKernel->getResidency(surfaces);
EXPECT_EQ(2u, surfaces.size());
for (Surface *surface : surfaces) {
delete surface;
}
}
TEST_F(PatchTokenTests, WhenBuildingProgramThenGwsIsSet) {
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, "kernel_data_param");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
auto pKernelInfo = pProgram->getKernelInfo("test");
ASSERT_NE(nullptr, pKernelInfo->patchInfo.dataParameterStream);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.globalWorkSizeOffsets[0]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.globalWorkSizeOffsets[1]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.globalWorkSizeOffsets[2]);
}
TEST_F(PatchTokenTests, WhenBuildingProgramThenLwsIsSet) {
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, "kernel_data_param");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
ASSERT_EQ(CL_SUCCESS, retVal);
auto pKernelInfo = pProgram->getKernelInfo("test");
ASSERT_NE(nullptr, pKernelInfo->patchInfo.dataParameterStream);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets[0]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets[1]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets[2]);
pKernelInfo = pProgram->getKernelInfo("test_get_local_size");
ASSERT_NE(nullptr, pKernelInfo->patchInfo.dataParameterStream);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets[0]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets[1]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets[2]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets2[0]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets2[1]);
ASSERT_NE(static_cast<uint32_t>(-1), pKernelInfo->workloadInfo.localWorkSizeOffsets2[2]);
}
TEST_F(PatchTokenTests, WhenBuildingProgramThenConstantKernelArgsAreAvailable) {
// PATCH_TOKEN_STATELESS_CONSTANT_MEMORY_OBJECT_KERNEL_ARGUMENT
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, "test_basic_constant");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
EXPECT_EQ(CL_SUCCESS, retVal);
auto pKernelInfo = pProgram->getKernelInfo("constant_kernel");
ASSERT_NE(nullptr, pKernelInfo);
auto pKernel = Kernel::create(
pProgram,
*pKernelInfo,
&retVal);
ASSERT_EQ(CL_SUCCESS, retVal);
ASSERT_NE(nullptr, pKernel);
uint32_t numArgs;
retVal = pKernel->getInfo(CL_KERNEL_NUM_ARGS, sizeof(numArgs), &numArgs, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(3u, numArgs);
uint32_t sizeOfPtr = sizeof(void *);
EXPECT_EQ(pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].size, sizeOfPtr);
EXPECT_EQ(pKernelInfo->kernelArgInfo[1].kernelArgPatchInfoVector[0].size, sizeOfPtr);
delete pKernel;
}
TEST_F(PatchTokenTests, GivenVmeKernelWhenBuildingKernelThenArgAvailable) {
if (!pDevice->getHardwareInfo().capabilityTable.supportsVme) {
GTEST_SKIP();
}
// PATCH_TOKEN_INLINE_VME_SAMPLER_INFO token indicates a VME kernel.
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, "vme_kernels");
ASSERT_NE(nullptr, pProgram);
retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
EXPECT_EQ(CL_SUCCESS, retVal);
auto pKernelInfo = pProgram->getKernelInfo("device_side_block_motion_estimate_intel");
ASSERT_NE(nullptr, pKernelInfo);
EXPECT_EQ(true, pKernelInfo->isVmeWorkload);
auto pKernel = Kernel::create(
pProgram,
*pKernelInfo,
&retVal);
ASSERT_NE(nullptr, pKernel);
delete pKernel;
}
class ProgramPatchTokenFromBinaryTest : public ProgramSimpleFixture {
public:
void SetUp() override {
ProgramSimpleFixture::SetUp();
}
void TearDown() override {
ProgramSimpleFixture::TearDown();
}
};
typedef Test<ProgramPatchTokenFromBinaryTest> ProgramPatchTokenTests;
TEST(ProgramFromBinaryTests, givenBinaryWithInvalidICBEThenErrorIsReturned) {
cl_int retVal = CL_INVALID_BINARY;
SProgramBinaryHeader binHeader;
memset(&binHeader, 0, sizeof(binHeader));
binHeader.Magic = iOpenCL::MAGIC_CL;
binHeader.Version = iOpenCL::CURRENT_ICBE_VERSION - 3;
binHeader.Device = defaultHwInfo->platform.eRenderCoreFamily;
binHeader.GPUPointerSizeInBytes = 8;
binHeader.NumberOfKernels = 0;
binHeader.SteppingId = 0;
binHeader.PatchListSize = 0;
size_t binSize = sizeof(SProgramBinaryHeader);
{
const unsigned char *binaries[1] = {reinterpret_cast<const unsigned char *>(&binHeader)};
const cl_device_id deviceId = 0;
MockContext context;
std::unique_ptr<Program> pProgram(Program::create<Program>(&context, 0, &deviceId, &binSize, binaries, nullptr, retVal));
EXPECT_EQ(nullptr, pProgram.get());
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
{
// whatever method we choose CL_INVALID_BINARY is always returned
ExecutionEnvironment executionEnvironment;
std::unique_ptr<Program> pProgram(Program::createFromGenBinary(executionEnvironment, nullptr, &binHeader, binSize, false, &retVal, nullptr));
ASSERT_NE(nullptr, pProgram.get());
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->processGenBinary();
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
}
TEST(ProgramFromBinaryTests, givenEmptyProgramThenErrorIsReturned) {
cl_int retVal = CL_INVALID_BINARY;
SProgramBinaryHeader binHeader;
memset(&binHeader, 0, sizeof(binHeader));
binHeader.Magic = iOpenCL::MAGIC_CL;
binHeader.Version = iOpenCL::CURRENT_ICBE_VERSION;
binHeader.Device = defaultHwInfo->platform.eRenderCoreFamily;
binHeader.GPUPointerSizeInBytes = 8;
binHeader.NumberOfKernels = 0;
binHeader.SteppingId = 0;
binHeader.PatchListSize = 0;
size_t binSize = sizeof(SProgramBinaryHeader);
ExecutionEnvironment executionEnvironment;
std::unique_ptr<MockProgram> pProgram(MockProgram::createFromGenBinary<MockProgram>(executionEnvironment, nullptr, &binHeader, binSize, false, &retVal, nullptr));
ASSERT_NE(nullptr, pProgram.get());
EXPECT_EQ(CL_SUCCESS, retVal);
pProgram->unpackedDeviceBinary.reset(nullptr);
retVal = pProgram->processGenBinary();
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
INSTANTIATE_TEST_CASE_P(ProgramFromBinaryTests,
ProgramFromBinaryTest,
::testing::Combine(
::testing::ValuesIn(BinaryFileNames),
::testing::ValuesIn(KernelNames)));
INSTANTIATE_TEST_CASE_P(ProgramFromSourceTests,
ProgramFromSourceTest,
::testing::Combine(
::testing::ValuesIn(SourceFileNames),
::testing::ValuesIn(BinaryForSourceFileNames),
::testing::ValuesIn(KernelNames)));
TEST_F(ProgramTests, WhenProgramIsCreatedThenCorrectOclVersionIsInOptions) {
DebugManagerStateRestore restorer;
DebugManager.flags.DisableStatelessToStatefulOptimization.set(false);
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
if (pClDevice->getEnabledClVersion() == 30) {
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions(), "-ocl-version=300")) << program.getInternalOptions();
} else if (pClDevice->getEnabledClVersion() == 21) {
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions(), "-ocl-version=210")) << program.getInternalOptions();
} else {
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions(), "-ocl-version=120")) << program.getInternalOptions();
}
}
TEST_F(ProgramTests, GivenForcedClVersionWhenProgramIsCreatedThenCorrectOclOptionIsPresent) {
std::pair<unsigned int, std::string> testedValues[] = {
{0, "-ocl-version=120"},
{12, "-ocl-version=120"},
{21, "-ocl-version=210"},
{30, "-ocl-version=300"}};
for (auto &testedValue : testedValues) {
pClDevice->enabledClVersion = testedValue.first;
MockProgram program{*pDevice->getExecutionEnvironment(), pContext, false, pDevice};
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions(), testedValue.second));
}
}
TEST_F(ProgramTests, GivenStatelessToStatefulIsDisabledWhenProgramIsCreatedThenGreaterThan4gbBuffersRequiredOptionIsSet) {
DebugManagerStateRestore restorer;
DebugManager.flags.DisableStatelessToStatefulOptimization.set(true);
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired));
}
TEST_F(ProgramTests, WhenCreatingProgramThenBindlessIsEnabledOnlyIfDebugFlagIsEnabled) {
using namespace testing;
DebugManagerStateRestore restorer;
{
EXPECT_FALSE(DebugManager.flags.UseBindlessBuffers.get());
EXPECT_FALSE(DebugManager.flags.UseBindlessImages.get());
MockProgram programNoBindless(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_FALSE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessBuffers)) << programNoBindless.getInternalOptions();
EXPECT_FALSE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessImages)) << programNoBindless.getInternalOptions();
}
{
DebugManager.flags.UseBindlessBuffers.set(true);
MockProgram programNoBindless(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_TRUE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessBuffers)) << programNoBindless.getInternalOptions();
EXPECT_FALSE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessImages)) << programNoBindless.getInternalOptions();
}
{
DebugManager.flags.UseBindlessBuffers.set(false);
DebugManager.flags.UseBindlessImages.set(true);
MockProgram programNoBindless(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_FALSE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessBuffers)) << programNoBindless.getInternalOptions();
EXPECT_TRUE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessImages)) << programNoBindless.getInternalOptions();
}
{
DebugManager.flags.UseBindlessBuffers.set(true);
DebugManager.flags.UseBindlessImages.set(true);
MockProgram programNoBindless(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_TRUE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessBuffers)) << programNoBindless.getInternalOptions();
EXPECT_TRUE(CompilerOptions::contains(programNoBindless.getInternalOptions(), CompilerOptions::bindlessImages)) << programNoBindless.getInternalOptions();
}
}
TEST_F(ProgramTests, givenDeviceThatSupportsSharedSystemMemoryAllocationWhenProgramIsCompiledThenItForcesStatelessCompilation) {
pClDevice->deviceInfo.sharedSystemMemCapabilities = CL_UNIFIED_SHARED_MEMORY_ACCESS_INTEL | CL_UNIFIED_SHARED_MEMORY_ATOMIC_ACCESS_INTEL | CL_UNIFIED_SHARED_MEMORY_CONCURRENT_ACCESS_INTEL | CL_UNIFIED_SHARED_MEMORY_CONCURRENT_ATOMIC_ACCESS_INTEL;
pClDevice->sharedDeviceInfo.sharedSystemAllocationsSupport = true;
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions().c_str(), CompilerOptions::greaterThan4gbBuffersRequired)) << program.getInternalOptions();
}
TEST_F(ProgramTests, GivenForce32BitAddressessWhenProgramIsCreatedThenGreaterThan4gbBuffersRequiredIsCorrectlySet) {
cl_int retVal = CL_DEVICE_NOT_FOUND;
auto defaultSetting = DebugManager.flags.DisableStatelessToStatefulOptimization.get();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(false);
if (pDevice) {
const_cast<DeviceInfo *>(&pDevice->getDeviceInfo())->force32BitAddressess = true;
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
if (pDevice->areSharedSystemAllocationsAllowed()) {
EXPECT_TRUE(CompilerOptions::contains(program.getInternalOptions(), CompilerOptions::greaterThan4gbBuffersRequired)) << program.getInternalOptions();
} else {
EXPECT_FALSE(CompilerOptions::contains(program.getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired)) << program.getInternalOptions();
}
} else {
EXPECT_NE(CL_DEVICE_NOT_FOUND, retVal);
}
DebugManager.flags.DisableStatelessToStatefulOptimization.set(defaultSetting);
}
TEST_F(ProgramTests, Given32bitSupportWhenProgramIsCreatedThenGreaterThan4gbBuffersRequiredIsCorrectlySet) {
auto defaultSetting = DebugManager.flags.DisableStatelessToStatefulOptimization.get();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(false);
std::unique_ptr<MockProgram> program{Program::create<MockProgram>("", pContext, *pClDevice, true, nullptr)};
if ((false == pDevice->areSharedSystemAllocationsAllowed()) && (false == is32bit)) {
EXPECT_FALSE(CompilerOptions::contains(program->getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired)) << program->getInternalOptions();
} else {
EXPECT_TRUE(CompilerOptions::contains(program->getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired)) << program->getInternalOptions();
}
DebugManager.flags.DisableStatelessToStatefulOptimization.set(defaultSetting);
}
TEST_F(ProgramTests, GivenStatelessToStatefulIsDisabledWhenProgramIsCreatedThenGreaterThan4gbBuffersRequiredIsCorrectlySet) {
auto defaultSetting = DebugManager.flags.DisableStatelessToStatefulOptimization.get();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(true);
std::unique_ptr<MockProgram> program{Program::create<MockProgram>("", pContext, *pClDevice, true, nullptr)};
EXPECT_TRUE(CompilerOptions::contains(program->getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired)) << program->getInternalOptions();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(defaultSetting);
}
TEST_F(ProgramTests, givenProgramWhenItIsCompiledThenItAlwaysHavePreserveVec3TypeInternalOptionSet) {
std::unique_ptr<MockProgram> program(Program::create<MockProgram>("", pContext, *pClDevice, true, nullptr));
EXPECT_TRUE(CompilerOptions::contains(program->getInternalOptions(), CompilerOptions::preserveVec3Type)) << program->getInternalOptions();
}
TEST_F(ProgramTests, Force32BitAddressessWhenProgramIsCreatedThenGreaterThan4gbBuffersRequiredIsCorrectlySet) {
auto defaultSetting = DebugManager.flags.DisableStatelessToStatefulOptimization.get();
DebugManager.flags.DisableStatelessToStatefulOptimization.set(false);
const_cast<DeviceInfo *>(&pDevice->getDeviceInfo())->force32BitAddressess = true;
std::unique_ptr<MockProgram> program{Program::create<MockProgram>("", pContext, *pClDevice, true, nullptr)};
if (is32bit) {
EXPECT_TRUE(CompilerOptions::contains(program->getInternalOptions(), CompilerOptions::greaterThan4gbBuffersRequired)) << program->getInternalOptions();
} else {
if (false == pDevice->areSharedSystemAllocationsAllowed()) {
EXPECT_FALSE(CompilerOptions::contains(program->getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired)) << program->getInternalOptions();
} else {
EXPECT_TRUE(CompilerOptions::contains(program->getInternalOptions(), NEO::CompilerOptions::greaterThan4gbBuffersRequired)) << program->getInternalOptions();
}
}
DebugManager.flags.DisableStatelessToStatefulOptimization.set(defaultSetting);
}
TEST_F(ProgramTests, GivenStatelessToStatefulBufferOffsetOptimizationWhenProgramIsCreatedThenBufferOffsetArgIsSet) {
DebugManagerStateRestore dbgRestorer;
DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.set(1);
cl_int errorCode = CL_SUCCESS;
const char programSource[] = "program";
const char *programPointer = programSource;
const char **programSources = reinterpret_cast<const char **>(&programPointer);
size_t length = sizeof(programSource);
std::unique_ptr<MockProgram> program(Program::create<MockProgram>(pContext, 1u, programSources, &length, errorCode));
EXPECT_TRUE(CompilerOptions::contains(program->getInternalOptions(), CompilerOptions::hasBufferOffsetArg)) << program->getInternalOptions();
}
TEST_F(ProgramTests, givenStatelessToStatefullOptimizationOffWHenProgramIsCreatedThenOptimizationStringIsNotPresent) {
DebugManagerStateRestore dbgRestorer;
DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.set(0);
cl_int errorCode = CL_SUCCESS;
const char programSource[] = "program";
const char *programPointer = programSource;
const char **programSources = reinterpret_cast<const char **>(&programPointer);
size_t length = sizeof(programSource);
std::unique_ptr<MockProgram> program(Program::create<MockProgram>(pContext, 1u, programSources, &length, errorCode));
EXPECT_FALSE(CompilerOptions::contains(program->getInternalOptions(), CompilerOptions::hasBufferOffsetArg)) << program->getInternalOptions();
}
TEST_F(ProgramTests, GivenContextWhenCreateProgramThenIncrementContextRefCount) {
auto initialApiRefCount = pContext->getReference();
auto initialInternalRefCount = pContext->getRefInternalCount();
MockProgram *program = new MockProgram(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount + 1);
program->release();
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount);
}
TEST_F(ProgramTests, GivenContextWhenCreateProgramFromSourceThenIncrementContextRefCount) {
auto initialApiRefCount = pContext->getReference();
auto initialInternalRefCount = pContext->getRefInternalCount();
auto tempProgram = Program::create("", nullptr, *pClDevice, false, nullptr);
EXPECT_FALSE(tempProgram->getIsBuiltIn());
auto program = Program::create("", pContext, *pClDevice, false, nullptr);
EXPECT_FALSE(program->getIsBuiltIn());
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount + 1);
program->release();
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount);
tempProgram->release();
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount);
}
TEST_F(ProgramTests, GivenContextWhenCreateBuiltInProgramFromSourceThenDontIncrementContextRefCount) {
auto initialApiRefCount = pContext->getReference();
auto initialInternalRefCount = pContext->getRefInternalCount();
auto tempProgram = Program::create("", nullptr, *pClDevice, true, nullptr);
EXPECT_TRUE(tempProgram->getIsBuiltIn());
auto program = Program::create("", pContext, *pClDevice, true, nullptr);
EXPECT_TRUE(program->getIsBuiltIn());
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount);
program->release();
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount);
tempProgram->release();
EXPECT_EQ(pContext->getReference(), initialApiRefCount);
EXPECT_EQ(pContext->getRefInternalCount(), initialInternalRefCount);
}
TEST_F(ProgramTests, WhenBuildingProgramThenPointerToProgramIsReturned) {
cl_int retVal = CL_DEVICE_NOT_FOUND;
Program *pProgram = Program::create("", pContext, *pClDevice, false, &retVal);
EXPECT_NE(nullptr, pProgram);
EXPECT_EQ(CL_SUCCESS, retVal);
delete pProgram;
pProgram = Program::create("", pContext, *pClDevice, false, nullptr);
EXPECT_NE(nullptr, pProgram);
delete pProgram;
}
TEST_F(ProgramTests, GivenNullBinaryWhenCreatingProgramFromGenBinaryThenInvalidValueErrorIsReturned) {
cl_int retVal = CL_SUCCESS;
Program *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, nullptr, 0, false, &retVal, pDevice);
EXPECT_EQ(nullptr, pProgram);
EXPECT_NE(CL_SUCCESS, retVal);
}
TEST_F(ProgramTests, WhenCreatingProgramFromGenBinaryThenSuccessIsReturned) {
cl_int retVal = CL_INVALID_BINARY;
char binary[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'};
size_t size = 10;
Program *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, binary, size, false, &retVal, pDevice);
EXPECT_NE(nullptr, pProgram);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ((uint32_t)CL_PROGRAM_BINARY_TYPE_EXECUTABLE, (uint32_t)pProgram->getProgramBinaryType());
EXPECT_FALSE(pProgram->getIsBuiltIn());
cl_device_id deviceId = pContext->getDevice(0);
cl_build_status status = 0;
pProgram->getBuildInfo(deviceId, CL_PROGRAM_BUILD_STATUS,
sizeof(cl_build_status), &status, nullptr);
EXPECT_EQ(CL_BUILD_SUCCESS, status);
delete pProgram;
}
TEST_F(ProgramTests, GivenBuiltInFlagSetWhenCreatingProgramFromGenBinaryThenBuiltInIsCreated) {
cl_int retVal = CL_INVALID_BINARY;
char binary[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'};
size_t size = 10;
Program *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, binary, size, true, &retVal, pDevice);
EXPECT_NE(nullptr, pProgram);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(pProgram->getIsBuiltIn());
delete pProgram;
}
TEST_F(ProgramTests, GivenRetValNullPointerWhenCreatingProgramFromGenBinaryThenSuccessIsReturned) {
char binary[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'};
size_t size = 10;
Program *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), pContext, binary, size, false, nullptr, pDevice);
EXPECT_NE(nullptr, pProgram);
EXPECT_EQ((uint32_t)CL_PROGRAM_BINARY_TYPE_EXECUTABLE, (uint32_t)pProgram->getProgramBinaryType());
cl_device_id deviceId = pContext->getDevice(0);
cl_build_status status = 0;
pProgram->getBuildInfo(deviceId, CL_PROGRAM_BUILD_STATUS,
sizeof(cl_build_status), &status, nullptr);
EXPECT_EQ(CL_BUILD_SUCCESS, status);
delete pProgram;
}
TEST_F(ProgramTests, GivenNullContextWhenCreatingProgramFromGenBinaryThenSuccessIsReturned) {
cl_int retVal = CL_INVALID_BINARY;
char binary[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, '\0'};
size_t size = 10;
Program *pProgram = Program::createFromGenBinary(*pDevice->getExecutionEnvironment(), nullptr, binary, size, false, &retVal, pDevice);
EXPECT_NE(nullptr, pProgram);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ((uint32_t)CL_PROGRAM_BINARY_TYPE_EXECUTABLE, (uint32_t)pProgram->getProgramBinaryType());
cl_device_id deviceId = nullptr;
cl_build_status status = 0;
pProgram->getBuildInfo(deviceId, CL_PROGRAM_BUILD_STATUS,
sizeof(cl_build_status), &status, nullptr);
EXPECT_EQ(CL_BUILD_SUCCESS, status);
delete pProgram;
}
TEST_F(ProgramTests, givenProgramFromGenBinaryWhenSLMSizeIsBiggerThenDeviceLimitThenReturnError) {
PatchTokensTestData::ValidProgramWithKernelUsingSlm patchtokensProgram;
patchtokensProgram.slmMutable->TotalInlineLocalMemorySize = static_cast<uint32_t>(pDevice->getDeviceInfo().localMemSize * 2);
patchtokensProgram.recalcTokPtr();
auto program = std::make_unique<MockProgram>(*pDevice->getExecutionEnvironment(), nullptr, false, pDevice);
program->unpackedDeviceBinary = makeCopy(patchtokensProgram.storage.data(), patchtokensProgram.storage.size());
program->unpackedDeviceBinarySize = patchtokensProgram.storage.size();
auto retVal = program->processGenBinary();
EXPECT_EQ(CL_OUT_OF_RESOURCES, retVal);
}
TEST_F(ProgramTests, GivenNoCompilerInterfaceRootDeviceEnvironmentWhenRebuildingBinaryThenOutOfHostMemoryErrorIsReturned) {
auto pDevice = pContext->getDevice(0);
auto executionEnvironment = pDevice->getExecutionEnvironment();
std::unique_ptr<RootDeviceEnvironment> rootDeviceEnvironment = std::make_unique<NoCompilerInterfaceRootDeviceEnvironment>(*executionEnvironment);
rootDeviceEnvironment->setHwInfo(&pDevice->getHardwareInfo());
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]);
auto program = std::make_unique<MockProgram>(*executionEnvironment);
EXPECT_NE(nullptr, program);
program->setDevice(&pDevice->getDevice());
// Load a binary program file
std::string filePath;
retrieveBinaryKernelFilename(filePath, "CopyBuffer_simd16_", ".bin");
size_t binarySize = 0;
auto pBinary = loadDataFromFile(filePath.c_str(), binarySize);
EXPECT_NE(0u, binarySize);
// Create program from loaded binary
cl_int retVal = program->createProgramFromBinary(pBinary.get(), binarySize);
EXPECT_EQ(CL_SUCCESS, retVal);
// Ask to rebuild program from its IR binary - it should fail (no Compiler Interface)
retVal = program->rebuildProgramFromIr();
EXPECT_EQ(CL_OUT_OF_HOST_MEMORY, retVal);
std::swap(rootDeviceEnvironment, executionEnvironment->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]);
}
TEST_F(ProgramTests, GivenGtpinReraFlagWhenBuildingProgramThenCorrectOptionsAreSet) {
auto cip = new MockCompilerInterfaceCaptureBuildOptions();
auto pDevice = pContext->getDevice(0);
pDevice->getExecutionEnvironment()->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]->compilerInterface.reset(cip);
auto program = std::make_unique<SucceedingGenBinaryProgram>(*pDevice->getExecutionEnvironment());
program->setDevice(&pDevice->getDevice());
program->sourceCode = "__kernel mock() {}";
program->createdFrom = Program::CreatedFrom::SOURCE;
// Ask to build created program without NEO::CompilerOptions::gtpinRera flag.
cl_int retVal = program->build(0, nullptr, CompilerOptions::fastRelaxedMath, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
// Check build options that were applied
EXPECT_TRUE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::fastRelaxedMath)) << cip->buildOptions;
EXPECT_FALSE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::gtpinRera)) << cip->buildInternalOptions;
// Ask to build created program with NEO::CompilerOptions::gtpinRera flag.
cip->buildOptions.clear();
cip->buildInternalOptions.clear();
retVal = program->build(0, nullptr, CompilerOptions::concatenate(CompilerOptions::gtpinRera, CompilerOptions::finiteMathOnly).c_str(), nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
// Check build options that were applied
EXPECT_FALSE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::fastRelaxedMath)) << cip->buildOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildOptions, CompilerOptions::finiteMathOnly)) << cip->buildOptions;
EXPECT_TRUE(CompilerOptions::contains(cip->buildInternalOptions, CompilerOptions::gtpinRera)) << cip->buildInternalOptions;
}
TEST_F(ProgramTests, GivenFailingGenBinaryProgramWhenRebuildingBinaryThenInvalidBinaryErrorIsReturned) {
cl_int retVal;
auto program = std::make_unique<FailingGenBinaryProgram>(*pDevice->getExecutionEnvironment());
EXPECT_NE(nullptr, program);
cl_device_id deviceId = pContext->getDevice(0);
ClDevice *pDevice = castToObject<ClDevice>(deviceId);
program->setDevice(&pDevice->getDevice());
// Load a binary program file
std::string filePath;
retrieveBinaryKernelFilename(filePath, "CopyBuffer_simd16_", ".bin");
size_t binarySize = 0;
auto pBinary = loadDataFromFile(filePath.c_str(), binarySize);
EXPECT_NE(0u, binarySize);
// Create program from loaded binary
retVal = program->createProgramFromBinary(pBinary.get(), binarySize);
EXPECT_EQ(CL_SUCCESS, retVal);
// Ask to rebuild program from its IR binary - it should fail (simulated invalid binary)
retVal = program->rebuildProgramFromIr();
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
TEST_F(ProgramTests, GivenZeroPrivateSizeInBlockWhenAllocateBlockProvateSurfacesCalledThenNoSurfaceIsCreated) {
MockProgram *program = new MockProgram(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
uint32_t crossThreadOffsetBlock = 0;
KernelInfo *infoBlock = new KernelInfo;
SPatchAllocateStatelessPrivateSurface *privateSurfaceBlock = new SPatchAllocateStatelessPrivateSurface;
privateSurfaceBlock->DataParamOffset = crossThreadOffsetBlock;
privateSurfaceBlock->DataParamSize = 8;
privateSurfaceBlock->Size = 8;
privateSurfaceBlock->SurfaceStateHeapOffset = 0;
privateSurfaceBlock->Token = 0;
privateSurfaceBlock->PerThreadPrivateMemorySize = 0;
infoBlock->patchInfo.pAllocateStatelessPrivateSurface = privateSurfaceBlock;
program->blockKernelManager->addBlockKernelInfo(infoBlock);
program->allocateBlockPrivateSurfaces(pDevice->getRootDeviceIndex());
EXPECT_EQ(nullptr, program->getBlockKernelManager()->getPrivateSurface(0));
delete privateSurfaceBlock;
delete program;
}
TEST_F(ProgramTests, GivenNonZeroPrivateSizeInBlockWhenAllocateBlockProvateSurfacesCalledThenSurfaceIsCreated) {
MockProgram *program = new MockProgram(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
uint32_t crossThreadOffsetBlock = 0;
KernelInfo *infoBlock = new KernelInfo;
SPatchAllocateStatelessPrivateSurface *privateSurfaceBlock = new SPatchAllocateStatelessPrivateSurface;
privateSurfaceBlock->DataParamOffset = crossThreadOffsetBlock;
privateSurfaceBlock->DataParamSize = 8;
privateSurfaceBlock->Size = 8;
privateSurfaceBlock->SurfaceStateHeapOffset = 0;
privateSurfaceBlock->Token = 0;
privateSurfaceBlock->PerThreadPrivateMemorySize = 1000;
infoBlock->patchInfo.pAllocateStatelessPrivateSurface = privateSurfaceBlock;
program->blockKernelManager->addBlockKernelInfo(infoBlock);
program->allocateBlockPrivateSurfaces(pDevice->getRootDeviceIndex());
EXPECT_NE(nullptr, program->getBlockKernelManager()->getPrivateSurface(0));
delete privateSurfaceBlock;
delete program;
}
TEST_F(ProgramTests, GivenNonZeroPrivateSizeInBlockWhenAllocateBlockProvateSurfacesCalledThenSecondSurfaceIsNotCreated) {
MockProgram *program = new MockProgram(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
uint32_t crossThreadOffsetBlock = 0;
KernelInfo *infoBlock = new KernelInfo;
SPatchAllocateStatelessPrivateSurface *privateSurfaceBlock = new SPatchAllocateStatelessPrivateSurface;
privateSurfaceBlock->DataParamOffset = crossThreadOffsetBlock;
privateSurfaceBlock->DataParamSize = 8;
privateSurfaceBlock->Size = 8;
privateSurfaceBlock->SurfaceStateHeapOffset = 0;
privateSurfaceBlock->Token = 0;
privateSurfaceBlock->PerThreadPrivateMemorySize = 1000;
infoBlock->patchInfo.pAllocateStatelessPrivateSurface = privateSurfaceBlock;
program->blockKernelManager->addBlockKernelInfo(infoBlock);
program->allocateBlockPrivateSurfaces(pDevice->getRootDeviceIndex());
GraphicsAllocation *privateSurface = program->getBlockKernelManager()->getPrivateSurface(0);
EXPECT_NE(nullptr, privateSurface);
program->allocateBlockPrivateSurfaces(pDevice->getRootDeviceIndex());
GraphicsAllocation *privateSurface2 = program->getBlockKernelManager()->getPrivateSurface(0);
EXPECT_EQ(privateSurface, privateSurface2);
delete privateSurfaceBlock;
delete program;
}
TEST_F(ProgramTests, givenProgramWithBlockKernelsWhenfreeBlockResourcesisCalledThenFreeGraphhicsAllocationsFromBlockKernelManagerIsCalled) {
MockProgram *program = new MockProgram(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
uint32_t crossThreadOffsetBlock = 0;
KernelInfo *infoBlock = new KernelInfo;
SPatchAllocateStatelessPrivateSurface *privateSurfaceBlock = new SPatchAllocateStatelessPrivateSurface;
privateSurfaceBlock->DataParamOffset = crossThreadOffsetBlock;
privateSurfaceBlock->DataParamSize = 8;
privateSurfaceBlock->Size = 8;
privateSurfaceBlock->SurfaceStateHeapOffset = 0;
privateSurfaceBlock->Token = 0;
privateSurfaceBlock->PerThreadPrivateMemorySize = 1000;
infoBlock->patchInfo.pAllocateStatelessPrivateSurface = privateSurfaceBlock;
program->blockKernelManager->addBlockKernelInfo(infoBlock);
GraphicsAllocation *privateSurface = program->getDevice().getMemoryManager()->allocateGraphicsMemoryWithProperties(MockAllocationProperties{pDevice->getRootDeviceIndex(), MemoryConstants::pageSize});
EXPECT_NE(nullptr, privateSurface);
program->getBlockKernelManager()->pushPrivateSurface(privateSurface, 0);
program->freeBlockResources();
delete privateSurfaceBlock;
delete program;
}
class Program32BitTests : public ProgramTests {
public:
void SetUp() override {
DebugManager.flags.Force32bitAddressing.set(true);
ProgramTests::SetUp();
}
void TearDown() override {
ProgramTests::TearDown();
DebugManager.flags.Force32bitAddressing.set(false);
}
};
TEST_F(Program32BitTests, givenDeviceWithForce32BitAddressingOnWhenBuiltinIsCreatedThenNoFlagsArePassedAsInternalOptions) {
MockProgram program(*pDevice->getExecutionEnvironment());
auto &internalOptions = program.getInternalOptions();
EXPECT_THAT(internalOptions, testing::HasSubstr(std::string("")));
}
TEST_F(Program32BitTests, givenDeviceWithForce32BitAddressingOnWhenProgramIsCreatedThen32bitFlagIsPassedAsInternalOption) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto &internalOptions = program.getInternalOptions();
std::string s1 = internalOptions;
size_t pos = s1.find(NEO::CompilerOptions::arch32bit);
if (is64bit) {
EXPECT_NE(pos, std::string::npos);
} else {
EXPECT_EQ(pos, std::string::npos);
}
}
TEST_F(ProgramTests, givenNewProgramTheStatelessToStatefulBufferOffsetOtimizationIsMatchingThePlatformEnablingStatus) {
MockProgram prog(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto &internalOpts = prog.getInternalOptions();
HardwareCapabilities hwCaps = {0};
HwHelper::get(prog.getDevice().getHardwareInfo().platform.eRenderCoreFamily).setupHardwareCapabilities(&hwCaps, prog.getDevice().getHardwareInfo());
if (hwCaps.isStatelesToStatefullWithOffsetSupported) {
EXPECT_TRUE(CompilerOptions::contains(internalOpts, CompilerOptions::hasBufferOffsetArg));
} else {
EXPECT_FALSE(CompilerOptions::contains(internalOpts, CompilerOptions::hasBufferOffsetArg));
}
}
template <int32_t ErrCodeToReturn, bool spirv = true>
struct CreateProgramFromBinaryMock : public MockProgram {
CreateProgramFromBinaryMock(ExecutionEnvironment &executionEnvironment, Context *context, bool isBuiltIn, Device *device)
: MockProgram(executionEnvironment, context, isBuiltIn, nullptr) {
}
cl_int createProgramFromBinary(const void *pBinary,
size_t binarySize) override {
this->irBinary.reset(new char[binarySize]);
this->irBinarySize = binarySize;
this->isSpirV = spirv;
memcpy_s(this->irBinary.get(), binarySize, pBinary, binarySize);
return ErrCodeToReturn;
}
};
TEST_F(ProgramTests, GivenFailedBinaryWhenCreatingFromIlThenInvalidBinaryErrorIsReturned) {
REQUIRE_OCL_21_OR_SKIP(pContext);
const uint32_t notSpirv[16] = {0xDEADBEEF};
cl_int retVal = CL_SUCCESS;
auto prog = Program::createFromIL<CreateProgramFromBinaryMock<CL_INVALID_BINARY>>(pContext, reinterpret_cast<const void *>(notSpirv), sizeof(notSpirv), retVal);
EXPECT_EQ(nullptr, prog);
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
TEST_F(ProgramTests, GivenSuccessfullyBuiltBinaryWhenCreatingFromIlThenValidProgramIsReturned) {
REQUIRE_OCL_21_OR_SKIP(pContext);
const uint32_t spirv[16] = {0x03022307};
cl_int retVal = CL_SUCCESS;
auto prog = Program::createFromIL<CreateProgramFromBinaryMock<CL_SUCCESS>>(pContext, reinterpret_cast<const void *>(spirv), sizeof(spirv), retVal);
ASSERT_NE(nullptr, prog);
EXPECT_EQ(CL_SUCCESS, retVal);
prog->release();
}
TEST_F(ProgramTests, givenProgramCreatedFromILWhenCompileIsCalledThenReuseTheILInsteadOfCallingCompilerInterface) {
REQUIRE_OCL_21_OR_SKIP(pContext);
const uint32_t spirv[16] = {0x03022307};
cl_int errCode = 0;
auto prog = Program::createFromIL<MockProgram>(pContext, reinterpret_cast<const void *>(spirv), sizeof(spirv), errCode);
ASSERT_NE(nullptr, prog);
cl_device_id deviceId = pClDevice;
auto debugVars = NEO::getIgcDebugVars();
debugVars.forceBuildFailure = true;
gEnvironment->fclPushDebugVars(debugVars);
auto compilerErr = prog->compile(1, &deviceId, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, compilerErr);
gEnvironment->fclPopDebugVars();
prog->release();
}
TEST_F(ProgramTests, givenProgramCreatedFromIntermediateBinaryRepresentationWhenCompileIsCalledThenReuseTheILInsteadOfCallingCompilerInterface) {
const uint32_t spirv[16] = {0x03022307};
cl_int errCode = 0;
cl_device_id deviceId = pClDevice;
cl_context ctx = pContext;
size_t lengths = sizeof(spirv);
const unsigned char *binaries[1] = {reinterpret_cast<const unsigned char *>(spirv)};
auto prog = Program::create<MockProgram>(ctx, 1U, &deviceId, &lengths, binaries, nullptr, errCode);
ASSERT_NE(nullptr, prog);
auto debugVars = NEO::getIgcDebugVars();
debugVars.forceBuildFailure = true;
gEnvironment->fclPushDebugVars(debugVars);
auto compilerErr = prog->compile(1, &deviceId, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, compilerErr);
gEnvironment->fclPopDebugVars();
prog->release();
}
TEST_F(ProgramTests, GivenIlIsNullptrWhenCreatingFromIlThenInvalidBinaryErrorIsReturned) {
REQUIRE_OCL_21_OR_SKIP(pContext);
cl_int retVal = CL_SUCCESS;
auto prog = Program::createFromIL<CreateProgramFromBinaryMock<CL_INVALID_BINARY>>(pContext, nullptr, 16, retVal);
EXPECT_EQ(nullptr, prog);
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
TEST_F(ProgramTests, GivenIlSizeZeroWhenCreatingFromIlThenInvalidBinaryErrorIsReturned) {
REQUIRE_OCL_21_OR_SKIP(pContext);
const uint32_t spirv[16] = {0x03022307};
cl_int retVal = CL_SUCCESS;
auto prog = Program::createFromIL<CreateProgramFromBinaryMock<CL_INVALID_BINARY>>(pContext, reinterpret_cast<const void *>(spirv), 0, retVal);
EXPECT_EQ(nullptr, prog);
EXPECT_EQ(CL_INVALID_BINARY, retVal);
}
TEST_F(ProgramTests, WhenCreatingFromIlThenIsSpirvIsSetCorrectly) {
REQUIRE_OCL_21_OR_SKIP(pContext);
const uint32_t spirv[16] = {0x03022307};
cl_int retVal = CL_SUCCESS;
auto prog = Program::createFromIL<Program>(pContext, reinterpret_cast<const void *>(spirv), sizeof(spirv), retVal);
EXPECT_NE(nullptr, prog);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(prog->getIsSpirV());
prog->release();
const char llvmBc[16] = {'B', 'C', '\xc0', '\xde'};
prog = Program::createFromIL<Program>(pContext, reinterpret_cast<const void *>(llvmBc), sizeof(llvmBc), retVal);
EXPECT_NE(nullptr, prog);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_FALSE(prog->getIsSpirV());
prog->release();
}
static const uint8_t llvmBinary[] = "BC\xc0\xde ";
TEST(isValidLlvmBinary, whenLlvmMagicWasFoundThenBinaryIsValidLLvm) {
EXPECT_TRUE(NEO::isLlvmBitcode(llvmBinary));
}
TEST(isValidLlvmBinary, whenBinaryIsNullptrThenBinaryIsNotValidLLvm) {
EXPECT_FALSE(NEO::isLlvmBitcode(ArrayRef<const uint8_t>()));
}
TEST(isValidLlvmBinary, whenBinaryIsShorterThanLllvMagicThenBinaryIsNotValidLLvm) {
EXPECT_FALSE(NEO::isLlvmBitcode(ArrayRef<const uint8_t>(llvmBinary, 2)));
}
TEST(isValidLlvmBinary, whenBinaryDoesNotContainLllvMagicThenBinaryIsNotValidLLvm) {
const uint8_t notLlvmBinary[] = "ABCDEFGHIJKLMNO";
EXPECT_FALSE(NEO::isLlvmBitcode(notLlvmBinary));
}
const uint32_t spirv[16] = {0x03022307};
const uint32_t spirvInvEndianes[16] = {0x07230203};
TEST(isValidSpirvBinary, whenSpirvMagicWasFoundThenBinaryIsValidSpirv) {
EXPECT_TRUE(NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(&spirv), sizeof(spirv))));
EXPECT_TRUE(NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(&spirvInvEndianes), sizeof(spirvInvEndianes))));
}
TEST(isValidSpirvBinary, whenBinaryIsNullptrThenBinaryIsNotValidLLvm) {
EXPECT_FALSE(NEO::isSpirVBitcode(ArrayRef<const uint8_t>()));
}
TEST(isValidSpirvBinary, whenBinaryIsShorterThanLllvMagicThenBinaryIsNotValidLLvm) {
EXPECT_FALSE(NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(&spirvInvEndianes), 2)));
}
TEST(isValidSpirvBinary, whenBinaryDoesNotContainLllvMagicThenBinaryIsNotValidLLvm) {
const uint8_t notSpirvBinary[] = "ABCDEFGHIJKLMNO";
EXPECT_FALSE(NEO::isSpirVBitcode(notSpirvBinary));
}
TEST_F(ProgramTests, WhenLinkingTwoValidSpirvProgramsThenValidProgramIsReturned) {
REQUIRE_OCL_21_OR_SKIP(pContext);
const uint32_t spirv[16] = {0x03022307};
cl_int errCode = CL_SUCCESS;
auto node1 = Program::createFromIL<CreateProgramFromBinaryMock<CL_SUCCESS, false>>(pContext, reinterpret_cast<const void *>(spirv), sizeof(spirv), errCode);
ASSERT_NE(nullptr, node1);
EXPECT_EQ(CL_SUCCESS, errCode);
auto node2 = Program::createFromIL<CreateProgramFromBinaryMock<CL_SUCCESS>>(pContext, reinterpret_cast<const void *>(spirv), sizeof(spirv), errCode);
ASSERT_NE(nullptr, node2);
EXPECT_EQ(CL_SUCCESS, errCode);
auto prog = Program::createFromIL<CreateProgramFromBinaryMock<CL_SUCCESS>>(pContext, reinterpret_cast<const void *>(spirv), sizeof(spirv), errCode);
ASSERT_NE(nullptr, prog);
EXPECT_EQ(CL_SUCCESS, errCode);
cl_program linkNodes[] = {node1, node2};
errCode = prog->link(0, nullptr, nullptr, 2, linkNodes, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, errCode);
prog->release();
node2->release();
node1->release();
}
TEST_F(ProgramTests, givenSeparateBlockKernelsWhenNoParentAndSubgroupKernelsThenSeparateNoneKernel) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
EXPECT_EQ(0u, program.getKernelInfoArray().size());
EXPECT_EQ(0u, program.getParentKernelInfoArray().size());
EXPECT_EQ(0u, program.getSubgroupKernelInfoArray().size());
program.separateBlockKernels();
EXPECT_EQ(0u, program.getKernelInfoArray().size());
EXPECT_EQ(0u, program.getBlockKernelManager()->getCount());
}
TEST_F(ProgramTests, givenSeparateBlockKernelsWhenRegularKernelsThenSeparateNoneKernel) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto pRegularKernel1Info = new KernelInfo();
pRegularKernel1Info->name = "regular_kernel_1";
program.getKernelInfoArray().push_back(pRegularKernel1Info);
auto pRegularKernel2Info = new KernelInfo();
pRegularKernel2Info->name = "regular_kernel_2";
program.getKernelInfoArray().push_back(pRegularKernel2Info);
EXPECT_EQ(2u, program.getKernelInfoArray().size());
program.separateBlockKernels();
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(0, strcmp("regular_kernel_1", program.getKernelInfoArray().at(0)->name.c_str()));
EXPECT_EQ(0, strcmp("regular_kernel_2", program.getKernelInfoArray().at(1)->name.c_str()));
EXPECT_EQ(0u, program.getBlockKernelManager()->getCount());
}
TEST_F(ProgramTests, givenSeparateBlockKernelsWhenChildLikeKernelWithoutParentKernelThenSeparateNoneKernel) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto pParentKernelInfo = new KernelInfo();
pParentKernelInfo->name = "another_parent_kernel";
program.getKernelInfoArray().push_back(pParentKernelInfo);
program.getParentKernelInfoArray().push_back(pParentKernelInfo);
auto pChildKernelInfo = new KernelInfo();
pChildKernelInfo->name = "childlike_kernel_dispatch_0";
program.getKernelInfoArray().push_back(pChildKernelInfo);
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(1u, program.getParentKernelInfoArray().size());
program.separateBlockKernels();
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(0, strcmp("another_parent_kernel", program.getKernelInfoArray().at(0)->name.c_str()));
EXPECT_EQ(0, strcmp("childlike_kernel_dispatch_0", program.getKernelInfoArray().at(1)->name.c_str()));
EXPECT_EQ(0u, program.getBlockKernelManager()->getCount());
}
TEST_F(ProgramTests, givenSeparateBlockKernelsWhenChildLikeKernelWithoutSubgroupKernelThenSeparateNoneKernel) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto pSubgroupKernelInfo = new KernelInfo();
pSubgroupKernelInfo->name = "another_subgroup_kernel";
program.getKernelInfoArray().push_back(pSubgroupKernelInfo);
program.getSubgroupKernelInfoArray().push_back(pSubgroupKernelInfo);
auto pChildKernelInfo = new KernelInfo();
pChildKernelInfo->name = "childlike_kernel_dispatch_0";
program.getKernelInfoArray().push_back(pChildKernelInfo);
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(1u, program.getSubgroupKernelInfoArray().size());
program.separateBlockKernels();
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(0, strcmp("another_subgroup_kernel", program.getKernelInfoArray().at(0)->name.c_str()));
EXPECT_EQ(0, strcmp("childlike_kernel_dispatch_0", program.getKernelInfoArray().at(1)->name.c_str()));
EXPECT_EQ(0u, program.getBlockKernelManager()->getCount());
}
TEST_F(ProgramTests, givenSeparateBlockKernelsWhenParentKernelWithChildKernelThenSeparateChildKernel) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto pParentKernelInfo = new KernelInfo();
pParentKernelInfo->name = "parent_kernel";
program.getKernelInfoArray().push_back(pParentKernelInfo);
program.getParentKernelInfoArray().push_back(pParentKernelInfo);
auto pChildKernelInfo = new KernelInfo();
pChildKernelInfo->name = "parent_kernel_dispatch_0";
program.getKernelInfoArray().push_back(pChildKernelInfo);
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(1u, program.getParentKernelInfoArray().size());
program.separateBlockKernels();
EXPECT_EQ(1u, program.getKernelInfoArray().size());
EXPECT_EQ(0, strcmp("parent_kernel", program.getKernelInfoArray().at(0)->name.c_str()));
EXPECT_EQ(1u, program.getBlockKernelManager()->getCount());
EXPECT_EQ(0, strcmp("parent_kernel_dispatch_0", program.getBlockKernelManager()->getBlockKernelInfo(0)->name.c_str()));
}
TEST_F(ProgramTests, givenSeparateBlockKernelsWhenSubgroupKernelWithChildKernelThenSeparateChildKernel) {
MockProgram program(*pDevice->getExecutionEnvironment(), pContext, false, pDevice);
auto pSubgroupKernelInfo = new KernelInfo();
pSubgroupKernelInfo->name = "subgroup_kernel";
program.getKernelInfoArray().push_back(pSubgroupKernelInfo);
program.getSubgroupKernelInfoArray().push_back(pSubgroupKernelInfo);
auto pChildKernelInfo = new KernelInfo();
pChildKernelInfo->name = "subgroup_kernel_dispatch_0";
program.getKernelInfoArray().push_back(pChildKernelInfo);
EXPECT_EQ(2u, program.getKernelInfoArray().size());
EXPECT_EQ(1u, program.getSubgroupKernelInfoArray().size());
program.separateBlockKernels();
EXPECT_EQ(1u, program.getKernelInfoArray().size());
EXPECT_EQ(0, strcmp("subgroup_kernel", program.getKernelInfoArray().at(0)->name.c_str()));
EXPECT_EQ(1u, program.getBlockKernelManager()->getCount());
EXPECT_EQ(0, strcmp("subgroup_kernel_dispatch_0", program.getBlockKernelManager()->getBlockKernelInfo(0)->name.c_str()));
}
TEST(SimpleProgramTests, givenDefaultProgramWhenSetDeviceIsCalledThenDeviceIsSet) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
EXPECT_EQ(nullptr, program.getDevicePtr());
auto dummyDevice = (Device *)0x1337;
program.SetDevice(dummyDevice);
EXPECT_EQ(dummyDevice, program.getDevicePtr());
program.SetDevice(nullptr);
EXPECT_EQ(nullptr, program.getDevicePtr());
}
TEST(ProgramDestructionTests, givenProgramUsingDeviceWhenItIsDestroyedAfterPlatfromCleanupThenItIsCleanedUpProperly) {
initPlatform();
auto device = platform()->getClDevice(0);
MockContext *context = new MockContext(device, false);
MockProgram *pProgram = new MockProgram(*device->getExecutionEnvironment(), context, false, &device->getDevice());
auto globalAllocation = device->getMemoryManager()->allocateGraphicsMemoryWithProperties(MockAllocationProperties{device->getRootDeviceIndex(), MemoryConstants::pageSize});
pProgram->setGlobalSurface(globalAllocation);
platformsImpl.clear();
EXPECT_EQ(1, device->getRefInternalCount());
EXPECT_EQ(1, pProgram->getRefInternalCount());
context->decRefInternal();
pProgram->decRefInternal();
}
TEST_F(ProgramTests, givenProgramWithSpirvWhenRebuildProgramIsCalledThenSpirvPathIsTaken) {
auto device = castToObject<ClDevice>(pContext->getDevice(0));
auto compilerInterface = new MockCompilerInterface();
auto compilerMain = new MockCIFMain();
compilerInterface->setFclMain(compilerMain);
compilerMain->Retain();
compilerInterface->setIgcMain(compilerMain);
compilerMain->setDefaultCreatorFunc<NEO::MockIgcOclDeviceCtx>(NEO::MockIgcOclDeviceCtx::Create);
compilerMain->setDefaultCreatorFunc<NEO::MockFclOclDeviceCtx>(NEO::MockFclOclDeviceCtx::Create);
pDevice->getExecutionEnvironment()->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]->compilerInterface.reset(compilerInterface);
std::string receivedInput;
MockCompilerDebugVars debugVars = {};
debugVars.receivedInput = &receivedInput;
debugVars.forceBuildFailure = true;
gEnvironment->igcPushDebugVars(debugVars);
std::unique_ptr<void, void (*)(void *)> igcDebugVarsAutoPop{&gEnvironment, [](void *) { gEnvironment->igcPopDebugVars(); }};
auto program = clUniquePtr(new MockProgram(*pDevice->getExecutionEnvironment()));
program->setDevice(&device->getDevice());
uint32_t spirv[16] = {0x03022307, 0x23471113, 0x17192329};
program->irBinary = makeCopy(spirv, sizeof(spirv));
program->irBinarySize = sizeof(spirv);
program->isSpirV = true;
auto buildRet = program->rebuildProgramFromIr();
EXPECT_NE(CL_SUCCESS, buildRet);
ASSERT_EQ(sizeof(spirv), receivedInput.size());
EXPECT_EQ(0, memcmp(spirv, receivedInput.c_str(), receivedInput.size()));
ASSERT_EQ(1U, compilerInterface->requestedTranslationCtxs.size());
EXPECT_EQ(IGC::CodeType::spirV, compilerInterface->requestedTranslationCtxs[0].first);
EXPECT_EQ(IGC::CodeType::oclGenBin, compilerInterface->requestedTranslationCtxs[0].second);
}
TEST_F(ProgramTests, whenRebuildingProgramThenStoreDeviceBinaryProperly) {
auto device = castToObject<ClDevice>(pContext->getDevice(0));
auto compilerInterface = new MockCompilerInterface();
pDevice->getExecutionEnvironment()->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]->compilerInterface.reset(compilerInterface);
auto compilerMain = new MockCIFMain();
compilerInterface->setIgcMain(compilerMain);
compilerMain->setDefaultCreatorFunc<NEO::MockIgcOclDeviceCtx>(NEO::MockIgcOclDeviceCtx::Create);
MockCompilerDebugVars debugVars = {};
char binaryToReturn[] = "abcdfghijklmnop";
debugVars.binaryToReturn = binaryToReturn;
debugVars.binaryToReturnSize = sizeof(binaryToReturn);
gEnvironment->igcPushDebugVars(debugVars);
std::unique_ptr<void, void (*)(void *)> igcDebugVarsAutoPop{&gEnvironment, [](void *) { gEnvironment->igcPopDebugVars(); }};
auto program = clUniquePtr(new MockProgram(*pDevice->getExecutionEnvironment()));
program->setDevice(&device->getDevice());
uint32_t ir[16] = {0x03022307, 0x23471113, 0x17192329};
program->irBinary = makeCopy(ir, sizeof(ir));
program->irBinarySize = sizeof(ir);
EXPECT_EQ(nullptr, program->unpackedDeviceBinary);
EXPECT_EQ(0U, program->unpackedDeviceBinarySize);
program->rebuildProgramFromIr();
ASSERT_NE(nullptr, program->unpackedDeviceBinary);
ASSERT_EQ(sizeof(binaryToReturn), program->unpackedDeviceBinarySize);
EXPECT_EQ(0, memcmp(binaryToReturn, program->unpackedDeviceBinary.get(), program->unpackedDeviceBinarySize));
}
TEST_F(ProgramTests, givenProgramWhenInternalOptionsArePassedThenTheyAreAddedToProgramInternalOptions) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
program.getInternalOptions().erase();
EXPECT_EQ(nullptr, program.getDevicePtr());
std::string buildOptions = NEO::CompilerOptions::gtpinRera.str();
program.extractInternalOptions(buildOptions);
EXPECT_STREQ(program.getInternalOptions().c_str(), NEO::CompilerOptions::gtpinRera.data());
}
TEST_F(ProgramTests, givenProgramWhenUnknownInternalOptionsArePassedThenTheyAreNotAddedToProgramInternalOptions) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
program.getInternalOptions().erase();
EXPECT_EQ(nullptr, program.getDevicePtr());
const char *internalOption = "-unknown-internal-options-123";
std::string buildOptions(internalOption);
program.extractInternalOptions(buildOptions);
EXPECT_EQ(0u, program.getInternalOptions().length());
}
TEST_F(ProgramTests, givenProgramWhenAllInternalOptionsArePassedMixedWithUnknownInputThenTheyAreParsedCorrectly) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
program.getInternalOptions().erase();
EXPECT_EQ(nullptr, program.getDevicePtr());
std::string buildOptions = CompilerOptions::concatenate("###", CompilerOptions::gtpinRera, "###", CompilerOptions::greaterThan4gbBuffersRequired, "###");
std::string expectedOutput = CompilerOptions::concatenate(CompilerOptions::gtpinRera, CompilerOptions::greaterThan4gbBuffersRequired);
program.extractInternalOptions(buildOptions);
EXPECT_EQ(expectedOutput, program.getInternalOptions());
}
TEST_F(ProgramTests, givenProgramWhenInternalOptionsArePassedWithValidValuesThenTheyAreAddedToProgramInternalOptions) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
program.getInternalOptions().erase();
EXPECT_EQ(nullptr, program.getDevicePtr());
program.isFlagOptionOverride = false;
program.isOptionValueValidOverride = true;
std::string buildOptions = CompilerOptions::concatenate(CompilerOptions::gtpinRera, "someValue");
program.extractInternalOptions(buildOptions);
EXPECT_EQ(buildOptions, program.getInternalOptions()) << program.getInternalOptions();
}
TEST_F(ProgramTests, givenProgramWhenInternalOptionsArePassedWithInvalidValuesThenTheyAreNotAddedToProgramInternalOptions) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
EXPECT_EQ(nullptr, program.getDevicePtr());
program.isFlagOptionOverride = false;
std::string buildOptions = CompilerOptions::concatenate(CompilerOptions::gtpinRera, "someValue");
std::string expectedOutput = "";
program.getInternalOptions().erase();
program.extractInternalOptions(buildOptions);
EXPECT_EQ(expectedOutput, program.getInternalOptions());
program.isOptionValueValidOverride = true;
buildOptions = CompilerOptions::gtpinRera;
program.getInternalOptions().erase();
program.extractInternalOptions(buildOptions);
EXPECT_EQ(expectedOutput, program.getInternalOptions());
}
TEST_F(ProgramTests, givenProgramWhenGetSymbolsIsCalledThenMapWithExportedSymbolsIsReturned) {
ExecutionEnvironment executionEnvironment;
MockProgram program(executionEnvironment);
EXPECT_EQ(&program.symbols, &program.getSymbols());
}
class AdditionalOptionsMockProgram : public MockProgram {
public:
AdditionalOptionsMockProgram() : MockProgram(executionEnvironment) {}
void applyAdditionalOptions() override {
applyAdditionalOptionsCalled++;
MockProgram::applyAdditionalOptions();
}
uint32_t applyAdditionalOptionsCalled = 0;
ExecutionEnvironment executionEnvironment;
};
TEST_F(ProgramTests, givenProgramWhenBuiltThenAdditionalOptionsAreApplied) {
AdditionalOptionsMockProgram program;
program.setDevice(pDevice);
cl_device_id device = pClDevice;
program.build(1, &device, nullptr, nullptr, nullptr, false);
EXPECT_EQ(1u, program.applyAdditionalOptionsCalled);
}
TEST_F(ProgramTests, WhenProgramIsCreatedThenItsDeviceIsProperlySet) {
auto wasValidClDeviceUsed = [](MockProgram &program) -> bool {
return (program.getInternalOptions().find(CompilerOptions::arch32bit) != std::string::npos);
};
MockExecutionEnvironment executionEnvironment;
MockDevice mockDevice;
mockDevice.deviceInfo.force32BitAddressess = true;
auto pContextMockDevice = new MockDevice;
MockClDevice contextMockClDevice{pContextMockDevice};
MockContext mockContext{&contextMockClDevice};
MockProgram programWithDeviceGiven{executionEnvironment, &mockContext, false, &mockDevice};
EXPECT_EQ(&mockDevice, programWithDeviceGiven.pDevice);
MockProgram programWithDeviceFromContext{executionEnvironment, &mockContext, false, nullptr};
EXPECT_EQ(pContextMockDevice, programWithDeviceFromContext.pDevice);
MockProgram programWithDeviceWithoutSpecializedDevice{executionEnvironment, nullptr, false, &mockDevice};
EXPECT_FALSE(wasValidClDeviceUsed(programWithDeviceWithoutSpecializedDevice));
MockDevice invalidClDevice;
mockDevice.setSpecializedDevice(&invalidClDevice);
MockProgram programWithDeviceWithInvalidSpecializedDevice{executionEnvironment, nullptr, false, &mockDevice};
EXPECT_FALSE(wasValidClDeviceUsed(programWithDeviceWithInvalidSpecializedDevice));
MockClDevice validClDevice{new MockDevice};
validClDevice.sharedDeviceInfo.force32BitAddressess = true;
MockProgram programWithDeviceWithValidSpecializedDevice{executionEnvironment, nullptr, false, &validClDevice.getDevice()};
EXPECT_TRUE(wasValidClDeviceUsed(programWithDeviceWithValidSpecializedDevice));
}
TEST(CreateProgramFromBinaryTests, givenBinaryProgramWhenKernelRebulildIsForcedThenDeviceBinaryIsNotUsed) {
DebugManagerStateRestore dbgRestorer;
DebugManager.flags.RebuildPrecompiledKernels.set(true);
cl_int retVal = CL_INVALID_BINARY;
PatchTokensTestData::ValidEmptyProgram programTokens;
auto clDevice = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
std::unique_ptr<MockProgram> pProgram(Program::createFromGenBinary<MockProgram>(*clDevice->getExecutionEnvironment(), nullptr, programTokens.storage.data(), programTokens.storage.size(), false, &retVal, &clDevice->getDevice()));
pProgram->pDevice = &clDevice->getDevice();
ASSERT_NE(nullptr, pProgram.get());
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->createProgramFromBinary(programTokens.storage.data(), programTokens.storage.size());
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(nullptr, pProgram->unpackedDeviceBinary.get());
EXPECT_EQ(0U, pProgram->unpackedDeviceBinarySize);
EXPECT_EQ(nullptr, pProgram->packedDeviceBinary);
EXPECT_EQ(0U, pProgram->packedDeviceBinarySize);
}
TEST(CreateProgramFromBinaryTests, givenBinaryProgramWhenKernelRebulildIsNotForcedThenDeviceBinaryIsUsed) {
cl_int retVal = CL_INVALID_BINARY;
PatchTokensTestData::ValidEmptyProgram programTokens;
auto clDevice = std::make_unique<MockClDevice>(MockDevice::createWithNewExecutionEnvironment<MockDevice>(nullptr));
std::unique_ptr<MockProgram> pProgram(Program::createFromGenBinary<MockProgram>(*clDevice->getExecutionEnvironment(), nullptr, programTokens.storage.data(), programTokens.storage.size(), false, &retVal, &clDevice->getDevice()));
pProgram->pDevice = &clDevice->getDevice();
ASSERT_NE(nullptr, pProgram.get());
EXPECT_EQ(CL_SUCCESS, retVal);
retVal = pProgram->createProgramFromBinary(programTokens.storage.data(), programTokens.storage.size());
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, reinterpret_cast<uint8_t *>(pProgram->unpackedDeviceBinary.get()));
EXPECT_EQ(programTokens.storage.size(), pProgram->unpackedDeviceBinarySize);
EXPECT_NE(nullptr, reinterpret_cast<uint8_t *>(pProgram->packedDeviceBinary.get()));
EXPECT_EQ(programTokens.storage.size(), pProgram->packedDeviceBinarySize);
}
struct SpecializationConstantProgramMock : public MockProgram {
using MockProgram::MockProgram;
cl_int updateSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) override {
return CL_SUCCESS;
}
};
struct SpecializationConstantCompilerInterfaceMock : public CompilerInterface {
TranslationOutput::ErrorCode retVal = TranslationOutput::ErrorCode::Success;
int counter = 0;
const char *spirV = nullptr;
TranslationOutput::ErrorCode getSpecConstantsInfo(const NEO::Device &device, ArrayRef<const char> srcSpirV, SpecConstantInfo &output) override {
counter++;
spirV = srcSpirV.begin();
return retVal;
}
void returnError() {
retVal = TranslationOutput::ErrorCode::CompilationFailure;
}
};
struct SpecializationConstantRootDeviceEnvironemnt : public RootDeviceEnvironment {
SpecializationConstantRootDeviceEnvironemnt(ExecutionEnvironment &executionEnvironment) : RootDeviceEnvironment(executionEnvironment) {
compilerInterface.reset(new SpecializationConstantCompilerInterfaceMock());
}
CompilerInterface *getCompilerInterface() override {
return compilerInterface.get();
}
};
struct setProgramSpecializationConstantTests : public ::testing::Test {
void SetUp() override {
mockCompiler = new SpecializationConstantCompilerInterfaceMock();
auto rootDeviceEnvironment = device.getExecutionEnvironment()->rootDeviceEnvironments[0].get();
rootDeviceEnvironment->compilerInterface.reset(mockCompiler);
mockProgram.reset(new SpecializationConstantProgramMock(*device.getExecutionEnvironment()));
mockProgram->isSpirV = true;
mockProgram->setDevice(&device);
EXPECT_FALSE(mockProgram->areSpecializationConstantsInitialized);
EXPECT_EQ(0, mockCompiler->counter);
}
SpecializationConstantCompilerInterfaceMock *mockCompiler = nullptr;
std::unique_ptr<SpecializationConstantProgramMock> mockProgram;
MockDevice device;
int specValue = 1;
};
TEST_F(setProgramSpecializationConstantTests, whenSetProgramSpecializationConstantThenBinarySourceIsUsed) {
auto retVal = mockProgram->setProgramSpecializationConstant(1, sizeof(int), &specValue);
EXPECT_EQ(1, mockCompiler->counter);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(mockProgram->areSpecializationConstantsInitialized);
EXPECT_EQ(mockProgram->irBinary.get(), mockCompiler->spirV);
}
TEST_F(setProgramSpecializationConstantTests, whenSetProgramSpecializationConstantMultipleTimesThenSpecializationConstantsAreInitializedOnce) {
auto retVal = mockProgram->setProgramSpecializationConstant(1, sizeof(int), &specValue);
EXPECT_EQ(1, mockCompiler->counter);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(mockProgram->areSpecializationConstantsInitialized);
retVal = mockProgram->setProgramSpecializationConstant(1, sizeof(int), &specValue);
EXPECT_EQ(1, mockCompiler->counter);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_TRUE(mockProgram->areSpecializationConstantsInitialized);
}
TEST_F(setProgramSpecializationConstantTests, givenInvalidGetSpecConstantsInfoReturnValueWhenSetProgramSpecializationConstantThenErrorIsReturned) {
mockCompiler->returnError();
auto retVal = mockProgram->setProgramSpecializationConstant(1, sizeof(int), &specValue);
EXPECT_EQ(1, mockCompiler->counter);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
EXPECT_FALSE(mockProgram->areSpecializationConstantsInitialized);
}
TEST(setProgramSpecializationConstantTest, givenUninitializedCompilerinterfaceWhenSetProgramSpecializationConstantThenErrorIsReturned) {
auto executionEnvironment = new MockExecutionEnvironment();
executionEnvironment->rootDeviceEnvironments[0] = std::make_unique<NoCompilerInterfaceRootDeviceEnvironment>(*executionEnvironment);
executionEnvironment->rootDeviceEnvironments[0]->setHwInfo(defaultHwInfo.get());
MockDevice mockDevice(executionEnvironment, 0);
SpecializationConstantProgramMock mockProgram(*executionEnvironment);
mockProgram.setDevice(&mockDevice);
mockProgram.isSpirV = true;
int specValue = 1;
auto retVal = mockProgram.setProgramSpecializationConstant(1, sizeof(int), &specValue);
EXPECT_EQ(CL_OUT_OF_HOST_MEMORY, retVal);
}
using ProgramBinTest = Test<ProgramSimpleFixture>;
TEST_F(ProgramBinTest, givenPrintProgramBinaryProcessingTimeSetWhenBuildProgramThenProcessingTimeIsPrinted) {
DebugManagerStateRestore restorer;
DebugManager.flags.PrintProgramBinaryProcessingTime.set(true);
testing::internal::CaptureStdout();
cl_device_id device = pClDevice;
CreateProgramFromBinary(pContext, &device, "kernel_data_param");
auto retVal = pProgram->build(
1,
&device,
nullptr,
nullptr,
nullptr,
false);
auto output = testing::internal::GetCapturedStdout();
EXPECT_FALSE(output.compare(0, 14, "Elapsed time: "));
EXPECT_EQ(CL_SUCCESS, retVal);
}
struct DebugDataGuard {
DebugDataGuard(const DebugDataGuard &) = delete;
DebugDataGuard(DebugDataGuard &&) = delete;
DebugDataGuard() {
for (size_t n = 0; n < sizeof(mockDebugData); n++) {
mockDebugData[n] = (char)n;
}
auto vars = NEO::getIgcDebugVars();
vars.debugDataToReturn = mockDebugData;
vars.debugDataToReturnSize = sizeof(mockDebugData);
NEO::setIgcDebugVars(vars);
}
~DebugDataGuard() {
auto vars = NEO::getIgcDebugVars();
vars.debugDataToReturn = nullptr;
vars.debugDataToReturnSize = 0;
NEO::setIgcDebugVars(vars);
}
char mockDebugData[32];
};
TEST_F(ProgramBinTest, GivenBuildWithDebugDataThenBuildDataAvailableViaGetInfo) {
DebugDataGuard debugDataGuard;
cl_device_id device = pClDevice;
const char *sourceCode = "__kernel void\nCB(\n__global unsigned int* src, __global unsigned int* dst)\n{\nint id = (int)get_global_id(0);\ndst[id] = src[id];\n}\n";
pProgram = Program::create<MockProgram>(
pContext,
1,
&sourceCode,
&knownSourceSize,
retVal);
retVal = pProgram->build(1, &device, nullptr, nullptr, nullptr, false);
EXPECT_EQ(CL_SUCCESS, retVal);
// Verify
size_t debugDataSize = 0;
retVal = pProgram->getInfo(CL_PROGRAM_DEBUG_INFO_SIZES_INTEL, sizeof(debugDataSize), &debugDataSize, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
std::unique_ptr<char[]> debugData{new char[debugDataSize]};
for (size_t n = 0; n < sizeof(debugData); n++) {
debugData[n] = 0;
}
char *pDebugData = &debugData[0];
size_t retData = 0;
bool isOK = true;
retVal = pProgram->getInfo(CL_PROGRAM_DEBUG_INFO_INTEL, 1, &pDebugData, &retData);
EXPECT_EQ(CL_INVALID_VALUE, retVal);
retVal = pProgram->getInfo(CL_PROGRAM_DEBUG_INFO_INTEL, debugDataSize, &pDebugData, &retData);
EXPECT_EQ(CL_SUCCESS, retVal);
cl_uint numDevices;
retVal = clGetProgramInfo(pProgram, CL_PROGRAM_NUM_DEVICES, sizeof(numDevices), &numDevices, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(numDevices * sizeof(debugData), retData);
// Check integrity of returned debug data
for (size_t n = 0; n < debugDataSize; n++) {
if (debugData[n] != (char)n) {
isOK = false;
break;
}
}
EXPECT_TRUE(isOK);
for (size_t n = debugDataSize; n < sizeof(debugData); n++) {
if (debugData[n] != (char)0) {
isOK = false;
break;
}
}
EXPECT_TRUE(isOK);
retData = 0;
retVal = pProgram->getInfo(CL_PROGRAM_DEBUG_INFO_INTEL, debugDataSize, nullptr, &retData);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(numDevices * sizeof(debugData), retData);
}
TEST_F(ProgramBinTest, GivenDebugDataAvailableWhenLinkingProgramThenDebugDataIsStoredInProgram) {
DebugDataGuard debugDataGuard;
cl_device_id device = pClDevice;
const char *sourceCode = "__kernel void\nCB(\n__global unsigned int* src, __global unsigned int* dst)\n{\nint id = (int)get_global_id(0);\ndst[id] = src[id];\n}\n";
pProgram = Program::create<MockProgram>(
pContext,
1,
&sourceCode,
&knownSourceSize,
retVal);
retVal = pProgram->compile(1, &device, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
cl_program programToLink = pProgram;
retVal = pProgram->link(1, &device, nullptr, 1, &programToLink, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_NE(nullptr, pProgram->getDebugData());
}
using ProgramMultiRootDeviceTests = MultiRootDeviceFixture;
TEST_F(ProgramMultiRootDeviceTests, WhenPrivateSurfaceIsCreatedThenItHasCorrectRootDeviceIndex) {
auto program = std::make_unique<MockProgram>(*device->getExecutionEnvironment(), context.get(), false, &device->getDevice());
auto privateSurfaceBlock = std::make_unique<SPatchAllocateStatelessPrivateSurface>();
privateSurfaceBlock->DataParamOffset = 0;
privateSurfaceBlock->DataParamSize = 8;
privateSurfaceBlock->Size = 8;
privateSurfaceBlock->SurfaceStateHeapOffset = 0;
privateSurfaceBlock->Token = 0;
privateSurfaceBlock->PerThreadPrivateMemorySize = 1000;
auto infoBlock = std::make_unique<KernelInfo>();
infoBlock->patchInfo.pAllocateStatelessPrivateSurface = privateSurfaceBlock.get();
program->blockKernelManager->addBlockKernelInfo(infoBlock.release());
program->allocateBlockPrivateSurfaces(device->getRootDeviceIndex());
auto privateSurface = program->getBlockKernelManager()->getPrivateSurface(0);
EXPECT_NE(nullptr, privateSurface);
EXPECT_EQ(expectedRootDeviceIndex, privateSurface->getRootDeviceIndex());
}
class MockCompilerInterfaceWithGtpinParam : public CompilerInterface {
public:
TranslationOutput::ErrorCode link(
const NEO::Device &device,
const TranslationInput &input,
TranslationOutput &output) override {
gtpinInfoPassed = input.GTPinInput;
return CompilerInterface::link(device, input, output);
}
void *gtpinInfoPassed;
};
TEST_F(ProgramBinTest, GivenSourceKernelWhenLinkingProgramThenGtpinInitInfoIsPassed) {
cl_device_id device = pClDevice;
void *pIgcInitPtr = reinterpret_cast<void *>(0x1234);
gtpinSetIgcInit(pIgcInitPtr);
const char *sourceCode = "__kernel void\nCB(\n__global unsigned int* src, __global unsigned int* dst)\n{\nint id = (int)get_global_id(0);\ndst[id] = src[id];\n}\n";
pProgram = Program::create<MockProgram>(
pContext,
1,
&sourceCode,
&knownSourceSize,
retVal);
std::unique_ptr<MockCompilerInterfaceWithGtpinParam> mockCompilerInterface(new MockCompilerInterfaceWithGtpinParam);
retVal = pProgram->compile(1, &device, nullptr, 0, nullptr, nullptr, nullptr, nullptr);
EXPECT_EQ(CL_SUCCESS, retVal);
pDevice->getExecutionEnvironment()->rootDeviceEnvironments[pDevice->getRootDeviceIndex()]->compilerInterface.reset(mockCompilerInterface.get());
cl_program programToLink = pProgram;
retVal = pProgram->link(1, &device, nullptr, 1, &programToLink, nullptr, nullptr);
EXPECT_EQ(pIgcInitPtr, mockCompilerInterface->gtpinInfoPassed);
mockCompilerInterface.release();
}