compute-runtime/opencl/test/unit_test/kernel/kernel_immediate_arg_tests.cpp

367 lines
16 KiB
C++

/*
* Copyright (C) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/source/kernel/kernel.h"
#include "opencl/test/unit_test/fixtures/multi_root_device_fixture.h"
#include "opencl/test/unit_test/mocks/mock_context.h"
#include "opencl/test/unit_test/mocks/mock_kernel.h"
#include "opencl/test/unit_test/mocks/mock_program.h"
#include "test.h"
#include "CL/cl.h"
#include "gtest/gtest.h"
using namespace NEO;
template <typename T>
class KernelArgImmediateTest : public MultiRootDeviceWithSubDevicesFixture {
public:
protected:
void SetUp() override {
MultiRootDeviceWithSubDevicesFixture::SetUp();
program = std::make_unique<MockProgram>(context.get(), false, context->getDevices());
KernelInfoContainer kernelInfos;
kernelInfos.resize(3);
KernelVectorType kernels;
kernels.resize(3);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
memset(&pCrossThreadData[rootDeviceIndex], 0xfe, sizeof(pCrossThreadData[rootDeviceIndex]));
// define kernel info
this->pKernelInfo = std::make_unique<MockKernelInfo>();
this->pKernelInfo->kernelDescriptor.kernelAttributes.simdSize = 1;
this->pKernelInfo->addArgImmediate(0, sizeof(T), 0x50);
this->pKernelInfo->addArgImmediate(1, sizeof(T), 0x40);
this->pKernelInfo->addArgImmediate(2, sizeof(T), 0x30);
this->pKernelInfo->addArgImmediate(3, sizeof(T), 0x20);
this->pKernelInfo->argAsVal(3).elements.push_back(ArgDescValue::Element{0x28, sizeof(T), 0});
this->pKernelInfo->argAsVal(3).elements.push_back(ArgDescValue::Element{0x38, sizeof(T), 0});
kernelInfos[rootDeviceIndex] = this->pKernelInfo.get();
}
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
pKernel[rootDeviceIndex] = new MockKernel(program.get(), *pKernelInfo, *deviceFactory->rootDevices[rootDeviceIndex]);
kernels[rootDeviceIndex] = pKernel[rootDeviceIndex];
ASSERT_EQ(CL_SUCCESS, pKernel[rootDeviceIndex]->initialize());
}
pMultiDeviceKernel = std::make_unique<MultiDeviceKernel>(kernels, kernelInfos);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
pKernel[rootDeviceIndex]->setCrossThreadData(&pCrossThreadData[rootDeviceIndex], sizeof(pCrossThreadData[rootDeviceIndex]));
}
}
void TearDown() override {
MultiRootDeviceWithSubDevicesFixture::TearDown();
}
cl_int retVal = CL_SUCCESS;
std::unique_ptr<MockProgram> program;
std::unique_ptr<MultiDeviceKernel> pMultiDeviceKernel;
MockKernel *pKernel[3] = {nullptr};
std::unique_ptr<MockKernelInfo> pKernelInfo;
char pCrossThreadData[3][0x60];
};
typedef ::testing::Types<
char,
float,
int,
short,
long,
unsigned char,
unsigned int,
unsigned short,
unsigned long>
KernelArgImmediateTypes;
TYPED_TEST_CASE(KernelArgImmediateTest, KernelArgImmediateTypes);
TYPED_TEST(KernelArgImmediateTest, WhenSettingKernelArgThenArgIsSetCorrectly) {
auto val = (TypeParam)0xaaaaaaaaULL;
auto pVal = &val;
this->pMultiDeviceKernel->setArg(0, sizeof(TypeParam), pVal);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(0).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
}
TYPED_TEST(KernelArgImmediateTest, GivenInvalidIndexWhenSettingKernelArgThenInvalidArgIndexErrorIsReturned) {
auto val = (TypeParam)0U;
auto pVal = &val;
auto ret = this->pMultiDeviceKernel->setArg((uint32_t)-1, sizeof(TypeParam), pVal);
EXPECT_EQ(ret, CL_INVALID_ARG_INDEX);
}
TYPED_TEST(KernelArgImmediateTest, GivenMultipleArgumentsWhenSettingKernelArgThenEachArgIsSetCorrectly) {
auto val = (TypeParam)0xaaaaaaaaULL;
auto pVal = &val;
this->pMultiDeviceKernel->setArg(0, sizeof(TypeParam), pVal);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(0).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
val = (TypeParam)0xbbbbbbbbULL;
this->pMultiDeviceKernel->setArg(1, sizeof(TypeParam), &val);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(1).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
val = (TypeParam)0xccccccccULL;
this->pMultiDeviceKernel->setArg(2, sizeof(TypeParam), &val);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(2).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
}
TYPED_TEST(KernelArgImmediateTest, GivenCrossThreadDataOverwritesWhenSettingKernelArgThenArgsAreSetCorrectly) {
TypeParam val = (TypeParam)0xaaaaaaaaULL;
TypeParam *pVal = &val;
this->pMultiDeviceKernel->setArg(0, sizeof(TypeParam), pVal);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
TypeParam *pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(0).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
val = (TypeParam)0xbbbbbbbbULL;
this->pMultiDeviceKernel->setArg(1, sizeof(TypeParam), &val);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(1).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
val = (TypeParam)0xccccccccULL;
this->pMultiDeviceKernel->setArg(0, sizeof(TypeParam), &val);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pKernelArg = (TypeParam *)(pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(0).elements[0].offset);
EXPECT_EQ(val, *pKernelArg);
}
}
TYPED_TEST(KernelArgImmediateTest, GivenMultipleStructElementsWhenSettingKernelArgThenArgsAreSetCorrectly) {
struct ImmediateStruct {
TypeParam a;
unsigned char unused[3]; // want to force a gap, ideally unpadded
TypeParam b;
} immediateStruct;
immediateStruct.a = (TypeParam)0xaaaaaaaaULL;
immediateStruct.b = (TypeParam)0xbbbbbbbbULL;
immediateStruct.unused[0] = 0xfe;
immediateStruct.unused[1] = 0xfe;
immediateStruct.unused[2] = 0xfe;
auto &elements = this->pKernelInfo->argAsVal(3).elements;
elements[0].sourceOffset = offsetof(struct ImmediateStruct, a);
elements[1].sourceOffset = offsetof(struct ImmediateStruct, b);
this->pMultiDeviceKernel->setArg(3, sizeof(immediateStruct), &immediateStruct);
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
auto pCrossthreadA = (TypeParam *)(pKernel->getCrossThreadData() + elements[0].offset);
EXPECT_EQ(immediateStruct.a, *pCrossthreadA);
auto pCrossthreadB = (TypeParam *)(pKernel->getCrossThreadData() + elements[1].offset);
EXPECT_EQ(immediateStruct.b, *pCrossthreadB);
}
}
TYPED_TEST(KernelArgImmediateTest, givenTooLargePatchSizeWhenSettingArgThenDontReadMemoryBeyondLimit) {
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress = pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(0).elements[0].offset;
const auto memoryBeyondLimitAddress = destinationMemoryAddress + sizeof(TypeParam);
const auto memoryBeyondLimitBefore = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
this->pKernelInfo->argAsVal(0).elements[0].size = sizeof(TypeParam) + 1;
auto retVal = pKernel->setArg(0, sizeof(TypeParam), &memory[0]);
const auto memoryBeyondLimitAfter = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
EXPECT_EQ(memoryBeyondLimitBefore, memoryBeyondLimitAfter);
EXPECT_EQ(memory[0], *reinterpret_cast<TypeParam *>(destinationMemoryAddress));
EXPECT_EQ(CL_SUCCESS, retVal);
}
}
TYPED_TEST(KernelArgImmediateTest, givenNotTooLargePatchSizeWhenSettingArgThenDontReadMemoryBeyondLimit) {
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress = pKernel->getCrossThreadData() +
this->pKernelInfo->argAsVal(0).elements[0].offset;
const auto memoryBeyondLimitAddress = destinationMemoryAddress + sizeof(TypeParam);
const auto memoryBeyondLimitBefore = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
this->pKernelInfo->argAsVal(0).elements[0].size = sizeof(TypeParam);
auto retVal = pKernel->setArg(0, sizeof(TypeParam), &memory[0]);
const auto memoryBeyondLimitAfter = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
EXPECT_EQ(memoryBeyondLimitBefore, memoryBeyondLimitAfter);
EXPECT_EQ(memory[0], *reinterpret_cast<TypeParam *>(destinationMemoryAddress));
EXPECT_EQ(CL_SUCCESS, retVal);
}
}
TYPED_TEST(KernelArgImmediateTest, givenMulitplePatchesAndFirstPatchSizeTooLargeWhenSettingArgThenDontReadMemoryBeyondLimit) {
if (sizeof(TypeParam) == 1)
return; // multiple patch chars don't make sense
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
auto &elements = this->pKernelInfo->argAsVal(3).elements;
const auto destinationMemoryAddress1 = pKernel->getCrossThreadData() +
elements[2].offset;
const auto destinationMemoryAddress2 = pKernel->getCrossThreadData() +
elements[1].offset;
const auto memoryBeyondLimitAddress1 = destinationMemoryAddress1 + sizeof(TypeParam);
const auto memoryBeyondLimitAddress2 = destinationMemoryAddress2 + sizeof(TypeParam) / 2;
const std::vector<unsigned char> memoryBeyondLimitBefore1(memoryBeyondLimitAddress1, memoryBeyondLimitAddress1 + sizeof(TypeParam));
const std::vector<unsigned char> memoryBeyondLimitBefore2(memoryBeyondLimitAddress2, memoryBeyondLimitAddress2 + sizeof(TypeParam) / 2);
elements[2].sourceOffset = 0;
elements[1].sourceOffset = sizeof(TypeParam) / 2;
elements[2].size = sizeof(TypeParam);
elements[1].size = sizeof(TypeParam) / 2;
auto retVal = pKernel->setArg(3, sizeof(TypeParam), &memory[0]);
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore1.data(), memoryBeyondLimitAddress1, sizeof(TypeParam)));
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore2.data(), memoryBeyondLimitAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress1, sizeof(TypeParam)));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(CL_SUCCESS, retVal);
}
}
TYPED_TEST(KernelArgImmediateTest, givenMulitplePatchesAndSecondPatchSizeTooLargeWhenSettingArgThenDontReadMemoryBeyondLimit) {
if (sizeof(TypeParam) == 1)
return; // multiple patch chars don't make sense
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
auto &elements = this->pKernelInfo->argAsVal(3).elements;
const auto destinationMemoryAddress1 = pKernel->getCrossThreadData() +
elements[2].offset;
const auto destinationMemoryAddress2 = pKernel->getCrossThreadData() +
elements[1].offset;
const auto memoryBeyondLimitAddress1 = destinationMemoryAddress1 + sizeof(TypeParam) / 2;
const auto memoryBeyondLimitAddress2 = destinationMemoryAddress2 + sizeof(TypeParam) / 2;
const std::vector<unsigned char> memoryBeyondLimitBefore1(memoryBeyondLimitAddress1, memoryBeyondLimitAddress1 + sizeof(TypeParam) / 2);
const std::vector<unsigned char> memoryBeyondLimitBefore2(memoryBeyondLimitAddress2, memoryBeyondLimitAddress2 + sizeof(TypeParam) / 2);
elements[0].size = 0;
elements[2].sourceOffset = 0;
elements[1].sourceOffset = sizeof(TypeParam) / 2;
elements[2].size = sizeof(TypeParam) / 2;
elements[1].size = sizeof(TypeParam);
auto retVal = pKernel->setArg(3, sizeof(TypeParam), &memory[0]);
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore1.data(), memoryBeyondLimitAddress1, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore2.data(), memoryBeyondLimitAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress1, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(CL_SUCCESS, retVal);
}
}
TYPED_TEST(KernelArgImmediateTest, givenMultiplePatchesAndOneSourceOffsetBeyondArgumentWhenSettingArgThenDontCopyThisPatch) {
for (auto &rootDeviceIndex : this->context->getRootDeviceIndices()) {
auto pKernel = this->pMultiDeviceKernel->getKernel(rootDeviceIndex);
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
auto &elements = this->pKernelInfo->argAsVal(3).elements;
const auto destinationMemoryAddress1 = pKernel->getCrossThreadData() +
elements[1].offset;
const auto destinationMemoryAddress2 = pKernel->getCrossThreadData() +
elements[2].offset;
const auto memoryBeyondLimitAddress1 = destinationMemoryAddress1 + sizeof(TypeParam);
const auto memoryBeyondLimitAddress2 = destinationMemoryAddress2;
const std::vector<unsigned char> memoryBeyondLimitBefore1(memoryBeyondLimitAddress1, memoryBeyondLimitAddress1 + sizeof(TypeParam));
const std::vector<unsigned char> memoryBeyondLimitBefore2(memoryBeyondLimitAddress2, memoryBeyondLimitAddress2 + sizeof(TypeParam));
elements[0].size = 0;
elements[1].sourceOffset = 0;
elements[1].size = sizeof(TypeParam);
elements[2].sourceOffset = sizeof(TypeParam);
elements[2].size = 1;
auto retVal = pKernel->setArg(3, sizeof(TypeParam), &memory[0]);
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore1.data(), memoryBeyondLimitAddress1, memoryBeyondLimitBefore1.size()));
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore2.data(), memoryBeyondLimitAddress2, memoryBeyondLimitBefore2.size()));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress1, sizeof(TypeParam)));
EXPECT_EQ(CL_SUCCESS, retVal);
}
}