compute-runtime/shared/source/command_stream/command_stream_receiver.cpp

591 lines
25 KiB
C++

/*
* Copyright (C) 2018-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/command_stream/experimental_command_buffer.h"
#include "shared/source/command_stream/preemption.h"
#include "shared/source/command_stream/scratch_space_controller.h"
#include "shared/source/device/device.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/array_count.h"
#include "shared/source/helpers/cache_policy.h"
#include "shared/source/helpers/flush_stamp.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/surface.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/os_interface/os_interface.h"
#include "shared/source/utilities/cpuintrinsics.h"
#include "shared/source/utilities/tag_allocator.h"
namespace NEO {
// Global table of CommandStreamReceiver factories for HW and tests
CommandStreamReceiverCreateFunc commandStreamReceiverFactory[2 * IGFX_MAX_CORE] = {};
CommandStreamReceiver::CommandStreamReceiver(ExecutionEnvironment &executionEnvironment, uint32_t rootDeviceIndex, DeviceBitfield deviceBitfield)
: executionEnvironment(executionEnvironment), rootDeviceIndex(rootDeviceIndex), deviceBitfield(deviceBitfield) {
residencyAllocations.reserve(20);
latestSentStatelessMocsConfig = CacheSettings::unknownMocs;
submissionAggregator.reset(new SubmissionAggregator());
if (DebugManager.flags.CsrDispatchMode.get()) {
this->dispatchMode = (DispatchMode)DebugManager.flags.CsrDispatchMode.get();
}
flushStamp.reset(new FlushStampTracker(true));
for (int i = 0; i < IndirectHeap::NUM_TYPES; ++i) {
indirectHeap[i] = nullptr;
}
internalAllocationStorage = std::make_unique<InternalAllocationStorage>(*this);
}
CommandStreamReceiver::~CommandStreamReceiver() {
if (userPauseConfirmation) {
*debugPauseStateAddress = DebugPauseState::terminate;
userPauseConfirmation->join();
}
for (int i = 0; i < IndirectHeap::NUM_TYPES; ++i) {
if (indirectHeap[i] != nullptr) {
auto allocation = indirectHeap[i]->getGraphicsAllocation();
if (allocation != nullptr) {
internalAllocationStorage->storeAllocation(std::unique_ptr<GraphicsAllocation>(allocation), REUSABLE_ALLOCATION);
}
delete indirectHeap[i];
}
}
cleanupResources();
profilingTimeStampAllocator.reset();
perfCounterAllocator.reset();
timestampPacketAllocator.reset();
internalAllocationStorage->cleanAllocationList(-1, REUSABLE_ALLOCATION);
internalAllocationStorage->cleanAllocationList(-1, TEMPORARY_ALLOCATION);
getMemoryManager()->unregisterEngineForCsr(this);
}
bool CommandStreamReceiver::submitBatchBuffer(BatchBuffer &batchBuffer, ResidencyContainer &allocationsForResidency) {
this->latestFlushedTaskCount = taskCount + 1;
this->latestSentTaskCount = taskCount + 1;
auto ret = this->flush(batchBuffer, allocationsForResidency);
taskCount++;
return ret;
}
void CommandStreamReceiver::makeResident(GraphicsAllocation &gfxAllocation) {
auto submissionTaskCount = this->taskCount + 1;
if (gfxAllocation.isResidencyTaskCountBelow(submissionTaskCount, osContext->getContextId())) {
this->getResidencyAllocations().push_back(&gfxAllocation);
checkForNewResources(submissionTaskCount, gfxAllocation.getTaskCount(osContext->getContextId()), gfxAllocation);
gfxAllocation.updateTaskCount(submissionTaskCount, osContext->getContextId());
if (!gfxAllocation.isResident(osContext->getContextId())) {
this->totalMemoryUsed += gfxAllocation.getUnderlyingBufferSize();
}
}
gfxAllocation.updateResidencyTaskCount(submissionTaskCount, osContext->getContextId());
}
void CommandStreamReceiver::processEviction() {
this->getEvictionAllocations().clear();
}
void CommandStreamReceiver::makeNonResident(GraphicsAllocation &gfxAllocation) {
if (gfxAllocation.isResident(osContext->getContextId())) {
if (gfxAllocation.peekEvictable()) {
this->getEvictionAllocations().push_back(&gfxAllocation);
} else {
gfxAllocation.setEvictable(true);
}
}
gfxAllocation.releaseResidencyInOsContext(this->osContext->getContextId());
}
void CommandStreamReceiver::makeSurfacePackNonResident(ResidencyContainer &allocationsForResidency) {
for (auto &surface : allocationsForResidency) {
this->makeNonResident(*surface);
}
allocationsForResidency.clear();
this->processEviction();
}
void CommandStreamReceiver::makeResidentHostPtrAllocation(GraphicsAllocation *gfxAllocation) {
makeResident(*gfxAllocation);
}
void CommandStreamReceiver::waitForTaskCountAndCleanAllocationList(uint32_t requiredTaskCount, uint32_t allocationUsage) {
auto address = tagAddress;
if (address) {
while (*address < requiredTaskCount)
;
}
internalAllocationStorage->cleanAllocationList(requiredTaskCount, allocationUsage);
}
void CommandStreamReceiver::waitForTaskCountAndCleanTemporaryAllocationList(uint32_t requiredTaskCount) {
waitForTaskCountAndCleanAllocationList(requiredTaskCount, TEMPORARY_ALLOCATION);
};
void CommandStreamReceiver::ensureCommandBufferAllocation(LinearStream &commandStream, size_t minimumRequiredSize, size_t additionalAllocationSize) {
if (commandStream.getAvailableSpace() >= minimumRequiredSize) {
return;
}
const auto allocationSize = alignUp(minimumRequiredSize + additionalAllocationSize, MemoryConstants::pageSize64k);
constexpr static auto allocationType = GraphicsAllocation::AllocationType::COMMAND_BUFFER;
auto allocation = this->getInternalAllocationStorage()->obtainReusableAllocation(allocationSize, allocationType).release();
if (allocation == nullptr) {
const AllocationProperties commandStreamAllocationProperties{rootDeviceIndex, true, allocationSize, allocationType,
isMultiOsContextCapable(), false, osContext->getDeviceBitfield()};
allocation = this->getMemoryManager()->allocateGraphicsMemoryWithProperties(commandStreamAllocationProperties);
}
DEBUG_BREAK_IF(allocation == nullptr);
if (commandStream.getGraphicsAllocation() != nullptr) {
getInternalAllocationStorage()->storeAllocation(std::unique_ptr<GraphicsAllocation>(commandStream.getGraphicsAllocation()), REUSABLE_ALLOCATION);
}
commandStream.replaceBuffer(allocation->getUnderlyingBuffer(), allocationSize - additionalAllocationSize);
commandStream.replaceGraphicsAllocation(allocation);
}
MemoryManager *CommandStreamReceiver::getMemoryManager() const {
DEBUG_BREAK_IF(!executionEnvironment.memoryManager);
return executionEnvironment.memoryManager.get();
}
LinearStream &CommandStreamReceiver::getCS(size_t minRequiredSize) {
constexpr static auto additionalAllocationSize = MemoryConstants::cacheLineSize + CSRequirements::csOverfetchSize;
ensureCommandBufferAllocation(this->commandStream, minRequiredSize, additionalAllocationSize);
return commandStream;
}
OSInterface *CommandStreamReceiver::getOSInterface() const {
return executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->osInterface.get();
}
bool CommandStreamReceiver::isRcs() const {
return this->osContext->getEngineType() == aub_stream::ENGINE_RCS;
}
void CommandStreamReceiver::cleanupResources() {
waitForTaskCountAndCleanAllocationList(this->latestFlushedTaskCount, TEMPORARY_ALLOCATION);
waitForTaskCountAndCleanAllocationList(this->latestFlushedTaskCount, REUSABLE_ALLOCATION);
if (debugSurface) {
getMemoryManager()->freeGraphicsMemory(debugSurface);
debugSurface = nullptr;
}
if (commandStream.getCpuBase()) {
getMemoryManager()->freeGraphicsMemory(commandStream.getGraphicsAllocation());
commandStream.replaceGraphicsAllocation(nullptr);
commandStream.replaceBuffer(nullptr, 0);
}
if (tagAllocation) {
getMemoryManager()->freeGraphicsMemory(tagAllocation);
tagAllocation = nullptr;
tagAddress = nullptr;
}
if (globalFenceAllocation) {
getMemoryManager()->freeGraphicsMemory(globalFenceAllocation);
globalFenceAllocation = nullptr;
}
if (preemptionAllocation) {
getMemoryManager()->freeGraphicsMemory(preemptionAllocation);
preemptionAllocation = nullptr;
}
if (perDssBackedBuffer) {
getMemoryManager()->freeGraphicsMemory(perDssBackedBuffer);
perDssBackedBuffer = nullptr;
}
}
bool CommandStreamReceiver::waitForCompletionWithTimeout(bool enableTimeout, int64_t timeoutMicroseconds, uint32_t taskCountToWait) {
std::chrono::high_resolution_clock::time_point time1, time2;
int64_t timeDiff = 0;
uint32_t latestSentTaskCount = this->latestFlushedTaskCount;
if (latestSentTaskCount < taskCountToWait) {
if (!this->flushBatchedSubmissions()) {
return false;
}
}
time1 = std::chrono::high_resolution_clock::now();
while (*getTagAddress() < taskCountToWait && timeDiff <= timeoutMicroseconds) {
std::this_thread::yield();
CpuIntrinsics::pause();
if (enableTimeout) {
time2 = std::chrono::high_resolution_clock::now();
timeDiff = std::chrono::duration_cast<std::chrono::microseconds>(time2 - time1).count();
}
}
if (*getTagAddress() >= taskCountToWait) {
return true;
}
return false;
}
void CommandStreamReceiver::setTagAllocation(GraphicsAllocation *allocation) {
this->tagAllocation = allocation;
UNRECOVERABLE_IF(allocation == nullptr);
this->tagAddress = reinterpret_cast<uint32_t *>(allocation->getUnderlyingBuffer());
this->debugPauseStateAddress = reinterpret_cast<DebugPauseState *>(
reinterpret_cast<uint8_t *>(allocation->getUnderlyingBuffer()) + debugPauseStateAddressOffset);
}
FlushStamp CommandStreamReceiver::obtainCurrentFlushStamp() const {
return flushStamp->peekStamp();
}
void CommandStreamReceiver::setRequiredScratchSizes(uint32_t newRequiredScratchSize, uint32_t newRequiredPrivateScratchSize) {
if (newRequiredScratchSize > requiredScratchSize) {
requiredScratchSize = newRequiredScratchSize;
}
if (newRequiredPrivateScratchSize > requiredPrivateScratchSize) {
requiredPrivateScratchSize = newRequiredPrivateScratchSize;
}
}
GraphicsAllocation *CommandStreamReceiver::getScratchAllocation() {
return scratchSpaceController->getScratchSpaceAllocation();
}
void CommandStreamReceiver::initProgrammingFlags() {
isPreambleSent = false;
GSBAFor32BitProgrammed = false;
bindingTableBaseAddressRequired = true;
mediaVfeStateDirty = true;
lastVmeSubslicesConfig = false;
lastSentL3Config = 0;
lastSentCoherencyRequest = -1;
lastMediaSamplerConfig = -1;
lastPreemptionMode = PreemptionMode::Initial;
latestSentStatelessMocsConfig = 0;
}
void CommandStreamReceiver::programForAubSubCapture(bool wasActiveInPreviousEnqueue, bool isActive) {
if (!wasActiveInPreviousEnqueue && isActive) {
// force CSR reprogramming upon subcapture activation
this->initProgrammingFlags();
}
if (wasActiveInPreviousEnqueue && !isActive) {
// flush BB upon subcapture deactivation
this->flushBatchedSubmissions();
}
}
ResidencyContainer &CommandStreamReceiver::getResidencyAllocations() {
return this->residencyAllocations;
}
ResidencyContainer &CommandStreamReceiver::getEvictionAllocations() {
return this->evictionAllocations;
}
AubSubCaptureStatus CommandStreamReceiver::checkAndActivateAubSubCapture(const MultiDispatchInfo &dispatchInfo) { return {false, false}; }
void CommandStreamReceiver::addAubComment(const char *comment) {}
GraphicsAllocation *CommandStreamReceiver::allocateDebugSurface(size_t size) {
UNRECOVERABLE_IF(debugSurface != nullptr);
debugSurface = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, size, GraphicsAllocation::AllocationType::INTERNAL_HOST_MEMORY, getOsContext().getDeviceBitfield()});
return debugSurface;
}
IndirectHeap &CommandStreamReceiver::getIndirectHeap(IndirectHeap::Type heapType,
size_t minRequiredSize) {
DEBUG_BREAK_IF(static_cast<uint32_t>(heapType) >= arrayCount(indirectHeap));
auto &heap = indirectHeap[heapType];
GraphicsAllocation *heapMemory = nullptr;
if (heap)
heapMemory = heap->getGraphicsAllocation();
if (heap && heap->getAvailableSpace() < minRequiredSize && heapMemory) {
internalAllocationStorage->storeAllocation(std::unique_ptr<GraphicsAllocation>(heapMemory), REUSABLE_ALLOCATION);
heapMemory = nullptr;
}
if (!heapMemory) {
allocateHeapMemory(heapType, minRequiredSize, heap);
}
return *heap;
}
void CommandStreamReceiver::allocateHeapMemory(IndirectHeap::Type heapType,
size_t minRequiredSize, IndirectHeap *&indirectHeap) {
size_t reservedSize = 0;
auto finalHeapSize = defaultHeapSize;
if (IndirectHeap::SURFACE_STATE == heapType) {
finalHeapSize = defaultSshSize;
}
bool requireInternalHeap = IndirectHeap::INDIRECT_OBJECT == heapType ? true : false;
if (DebugManager.flags.AddPatchInfoCommentsForAUBDump.get()) {
requireInternalHeap = false;
}
minRequiredSize += reservedSize;
finalHeapSize = alignUp(std::max(finalHeapSize, minRequiredSize), MemoryConstants::pageSize);
auto allocationType = GraphicsAllocation::AllocationType::LINEAR_STREAM;
if (requireInternalHeap) {
allocationType = GraphicsAllocation::AllocationType::INTERNAL_HEAP;
}
auto heapMemory = internalAllocationStorage->obtainReusableAllocation(finalHeapSize, allocationType).release();
if (!heapMemory) {
heapMemory = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, true, finalHeapSize, allocationType,
isMultiOsContextCapable(), false, osContext->getDeviceBitfield()});
} else {
finalHeapSize = std::max(heapMemory->getUnderlyingBufferSize(), finalHeapSize);
}
if (IndirectHeap::SURFACE_STATE == heapType) {
DEBUG_BREAK_IF(minRequiredSize > defaultSshSize - MemoryConstants::pageSize);
finalHeapSize = defaultSshSize - MemoryConstants::pageSize;
}
if (indirectHeap) {
indirectHeap->replaceBuffer(heapMemory->getUnderlyingBuffer(), finalHeapSize);
indirectHeap->replaceGraphicsAllocation(heapMemory);
} else {
indirectHeap = new IndirectHeap(heapMemory, requireInternalHeap);
indirectHeap->overrideMaxSize(finalHeapSize);
}
scratchSpaceController->reserveHeap(heapType, indirectHeap);
}
void CommandStreamReceiver::releaseIndirectHeap(IndirectHeap::Type heapType) {
DEBUG_BREAK_IF(static_cast<uint32_t>(heapType) >= arrayCount(indirectHeap));
auto &heap = indirectHeap[heapType];
if (heap) {
auto heapMemory = heap->getGraphicsAllocation();
if (heapMemory != nullptr)
internalAllocationStorage->storeAllocation(std::unique_ptr<GraphicsAllocation>(heapMemory), REUSABLE_ALLOCATION);
heap->replaceBuffer(nullptr, 0);
heap->replaceGraphicsAllocation(nullptr);
}
}
void CommandStreamReceiver::setExperimentalCmdBuffer(std::unique_ptr<ExperimentalCommandBuffer> &&cmdBuffer) {
experimentalCmdBuffer = std::move(cmdBuffer);
}
void *CommandStreamReceiver::asyncDebugBreakConfirmation(void *arg) {
auto self = reinterpret_cast<CommandStreamReceiver *>(arg);
auto debugPauseStateAddress = self->debugPauseStateAddress;
while (*debugPauseStateAddress != DebugPauseState::waitingForUserStartConfirmation) {
if (*debugPauseStateAddress == DebugPauseState::terminate) {
return nullptr;
}
std::this_thread::yield();
}
std::cout << "Debug break: Press enter to start workload" << std::endl;
self->debugConfirmationFunction();
*debugPauseStateAddress = DebugPauseState::hasUserStartConfirmation;
while (*debugPauseStateAddress != DebugPauseState::waitingForUserEndConfirmation) {
if (*debugPauseStateAddress == DebugPauseState::terminate) {
return nullptr;
}
std::this_thread::yield();
}
std::cout << "Debug break: Workload ended, press enter to continue" << std::endl;
self->debugConfirmationFunction();
*debugPauseStateAddress = DebugPauseState::hasUserEndConfirmation;
return nullptr;
}
bool CommandStreamReceiver::initializeTagAllocation() {
auto tagAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, MemoryConstants::pageSize, GraphicsAllocation::AllocationType::TAG_BUFFER, systemMemoryBitfield});
if (!tagAllocation) {
return false;
}
this->setTagAllocation(tagAllocation);
*this->tagAddress = DebugManager.flags.EnableNullHardware.get() ? -1 : initialHardwareTag;
*this->debugPauseStateAddress = DebugManager.flags.EnableNullHardware.get() ? DebugPauseState::disabled : DebugPauseState::waitingForFirstSemaphore;
PRINT_DEBUG_STRING(DebugManager.flags.PrintTagAllocationAddress.get(), stdout,
"\nCreated tag allocation %p for engine %u\n",
this->tagAddress, static_cast<uint32_t>(osContext->getEngineType()));
if (DebugManager.flags.PauseOnEnqueue.get() != -1 || DebugManager.flags.PauseOnBlitCopy.get() != -1) {
userPauseConfirmation = Thread::create(CommandStreamReceiver::asyncDebugBreakConfirmation, reinterpret_cast<void *>(this));
}
return true;
}
bool CommandStreamReceiver::createGlobalFenceAllocation() {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
if (!HwHelper::get(hwInfo->platform.eRenderCoreFamily).isFenceAllocationRequired(*hwInfo)) {
return true;
}
DEBUG_BREAK_IF(this->globalFenceAllocation != nullptr);
this->globalFenceAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, MemoryConstants::pageSize, GraphicsAllocation::AllocationType::GLOBAL_FENCE, osContext->getDeviceBitfield()});
return this->globalFenceAllocation != nullptr;
}
bool CommandStreamReceiver::createPreemptionAllocation() {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
AllocationProperties properties{rootDeviceIndex, hwInfo->capabilityTable.requiredPreemptionSurfaceSize, GraphicsAllocation::AllocationType::PREEMPTION, osContext->getDeviceBitfield()};
properties.flags.uncacheable = hwInfo->workaroundTable.waCSRUncachable;
properties.alignment = 256 * MemoryConstants::kiloByte;
this->preemptionAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties(properties);
return this->preemptionAllocation != nullptr;
}
std::unique_lock<CommandStreamReceiver::MutexType> CommandStreamReceiver::obtainUniqueOwnership() {
return std::unique_lock<CommandStreamReceiver::MutexType>(this->ownershipMutex);
}
AllocationsList &CommandStreamReceiver::getTemporaryAllocations() { return internalAllocationStorage->getTemporaryAllocations(); }
AllocationsList &CommandStreamReceiver::getAllocationsForReuse() { return internalAllocationStorage->getAllocationsForReuse(); }
bool CommandStreamReceiver::createAllocationForHostSurface(HostPtrSurface &surface, bool requiresL3Flush) {
auto allocation = internalAllocationStorage->obtainTemporaryAllocationWithPtr(surface.getSurfaceSize(), surface.getMemoryPointer(), GraphicsAllocation::AllocationType::EXTERNAL_HOST_PTR);
if (allocation == nullptr) {
auto memoryManager = getMemoryManager();
AllocationProperties properties{rootDeviceIndex,
false, // allocateMemory
surface.getSurfaceSize(), GraphicsAllocation::AllocationType::EXTERNAL_HOST_PTR,
false, // isMultiStorageAllocation
osContext->getDeviceBitfield()};
properties.flags.flushL3RequiredForRead = properties.flags.flushL3RequiredForWrite = requiresL3Flush;
allocation.reset(memoryManager->allocateGraphicsMemoryWithProperties(properties, surface.getMemoryPointer()));
if (allocation == nullptr && surface.peekIsPtrCopyAllowed()) {
// Try with no host pointer allocation and copy
allocation.reset(memoryManager->allocateInternalGraphicsMemoryWithHostCopy(rootDeviceIndex,
internalAllocationStorage->getDeviceBitfield(),
surface.getMemoryPointer(),
surface.getSurfaceSize()));
}
}
if (allocation == nullptr) {
return false;
}
allocation->updateTaskCount(CompletionStamp::notReady, osContext->getContextId());
surface.setAllocation(allocation.get());
internalAllocationStorage->storeAllocation(std::move(allocation), TEMPORARY_ALLOCATION);
return true;
}
TagAllocator<HwTimeStamps> *CommandStreamReceiver::getEventTsAllocator() {
if (profilingTimeStampAllocator.get() == nullptr) {
profilingTimeStampAllocator = std::make_unique<TagAllocator<HwTimeStamps>>(
rootDeviceIndex, getMemoryManager(), getPreferredTagPoolSize(), MemoryConstants::cacheLineSize, sizeof(HwTimeStamps), false, osContext->getDeviceBitfield());
}
return profilingTimeStampAllocator.get();
}
TagAllocator<HwPerfCounter> *CommandStreamReceiver::getEventPerfCountAllocator(const uint32_t tagSize) {
if (perfCounterAllocator.get() == nullptr) {
perfCounterAllocator = std::make_unique<TagAllocator<HwPerfCounter>>(
rootDeviceIndex, getMemoryManager(), getPreferredTagPoolSize(), MemoryConstants::cacheLineSize, tagSize, false, osContext->getDeviceBitfield());
}
return perfCounterAllocator.get();
}
TagAllocator<TimestampPacketStorage> *CommandStreamReceiver::getTimestampPacketAllocator() {
if (timestampPacketAllocator.get() == nullptr) {
// dont release nodes in aub/tbx mode, to avoid removing semaphores optimization or reusing returned tags
bool doNotReleaseNodes = (getType() > CommandStreamReceiverType::CSR_HW) ||
DebugManager.flags.DisableTimestampPacketOptimizations.get();
timestampPacketAllocator = std::make_unique<TagAllocator<TimestampPacketStorage>>(
rootDeviceIndex, getMemoryManager(), getPreferredTagPoolSize(), MemoryConstants::cacheLineSize * 4,
sizeof(TimestampPacketStorage), doNotReleaseNodes, osContext->getDeviceBitfield());
}
return timestampPacketAllocator.get();
}
size_t CommandStreamReceiver::getPreferredTagPoolSize() const {
if (DebugManager.flags.DisableTimestampPacketOptimizations.get()) {
return 1;
}
return 2048;
}
bool CommandStreamReceiver::expectMemory(const void *gfxAddress, const void *srcAddress,
size_t length, uint32_t compareOperation) {
auto isMemoryEqual = (memcmp(gfxAddress, srcAddress, length) == 0);
auto isEqualMemoryExpected = (compareOperation == AubMemDump::CmdServicesMemTraceMemoryCompare::CompareOperationValues::CompareEqual);
return (isMemoryEqual == isEqualMemoryExpected);
}
bool CommandStreamReceiver::needsPageTableManager(aub_stream::EngineType engineType) const {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto defaultEngineType = getChosenEngineType(*hwInfo);
if (engineType != defaultEngineType) {
return false;
}
auto rootDeviceEnvironment = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex].get();
if (rootDeviceEnvironment->pageTableManager.get() != nullptr) {
return false;
}
return HwHelper::get(hwInfo->platform.eRenderCoreFamily).isPageTableManagerSupported(*hwInfo);
}
void CommandStreamReceiver::printDeviceIndex() {
if (DebugManager.flags.PrintDeviceAndEngineIdOnSubmission.get()) {
printf("Submission to RootDevice Index: %u, Sub-Devices Mask: %lu, EngineId: %u\n", this->getRootDeviceIndex(), this->osContext->getDeviceBitfield().to_ulong(), this->osContext->getEngineType());
}
}
void CommandStreamReceiver::checkForNewResources(uint32_t submittedTaskCount, uint32_t allocationTaskCount, GraphicsAllocation &gfxAllocation) {
if (useNewResourceImplicitFlush) {
if (allocationTaskCount == GraphicsAllocation::objectNotUsed && gfxAllocation.getAllocationType() != GraphicsAllocation::AllocationType::KERNEL_ISA) {
newResources = true;
if (DebugManager.flags.ProvideVerboseImplicitFlush.get()) {
printf("New resource detected of type %llu\n", static_cast<unsigned long long>(gfxAllocation.getAllocationType()));
}
}
}
}
bool CommandStreamReceiver::checkImplicitFlushForGpuIdle() {
if (useGpuIdleImplicitFlush) {
if (this->taskCount == *getTagAddress()) {
return true;
}
}
return false;
}
} // namespace NEO