compute-runtime/shared/source/memory_manager/memory_manager.cpp

1254 lines
55 KiB
C++

/*
* Copyright (C) 2018-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/ail/ail_configuration.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/command_stream/csr_definitions.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/gmm_helper/page_table_mngr.h"
#include "shared/source/gmm_helper/resource_info.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/api_specific_config.h"
#include "shared/source/helpers/bindless_heaps_helper.h"
#include "shared/source/helpers/bit_helpers.h"
#include "shared/source/helpers/blit_helper.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/string_helpers.h"
#include "shared/source/helpers/surface_format_info.h"
#include "shared/source/memory_manager/allocation_properties.h"
#include "shared/source/memory_manager/compression_selector.h"
#include "shared/source/memory_manager/deferrable_allocation_deletion.h"
#include "shared/source/memory_manager/deferred_deleter.h"
#include "shared/source/memory_manager/gfx_partition.h"
#include "shared/source/memory_manager/host_ptr_manager.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/memory_manager/local_memory_usage.h"
#include "shared/source/memory_manager/memory_operations_handler.h"
#include "shared/source/memory_manager/multi_graphics_allocation.h"
#include "shared/source/memory_manager/prefetch_manager.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/os_interface/os_interface.h"
#include "shared/source/os_interface/product_helper.h"
#include "shared/source/page_fault_manager/cpu_page_fault_manager.h"
#include "shared/source/utilities/logger_neo_only.h"
namespace NEO {
uint32_t MemoryManager::maxOsContextCount = 0u;
MemoryManager::MemoryManager(ExecutionEnvironment &executionEnvironment) : executionEnvironment(executionEnvironment), hostPtrManager(std::make_unique<HostPtrManager>()),
multiContextResourceDestructor(std::make_unique<DeferredDeleter>()) {
bool anyLocalMemorySupported = false;
const auto rootEnvCount = executionEnvironment.rootDeviceEnvironments.size();
defaultEngineIndex.resize(rootEnvCount);
checkIsaPlacementOnceFlags = std::make_unique<std::once_flag[]>(rootEnvCount);
isaInLocalMemory.resize(rootEnvCount);
allRegisteredEngines.resize(rootEnvCount + 1);
secondaryEngines.resize(rootEnvCount + 1);
localMemAllocsSize = std::make_unique<std::atomic<size_t>[]>(rootEnvCount);
sysMemAllocsSize.store(0u);
for (uint32_t rootDeviceIndex = 0; rootDeviceIndex < rootEnvCount; ++rootDeviceIndex) {
auto &rootDeviceEnvironment = *executionEnvironment.rootDeviceEnvironments[rootDeviceIndex];
auto hwInfo = rootDeviceEnvironment.getHardwareInfo();
auto &gfxCoreHelper = rootDeviceEnvironment.getHelper<GfxCoreHelper>();
internalLocalMemoryUsageBankSelector.emplace_back(new LocalMemoryUsageBankSelector(GfxCoreHelper::getSubDevicesCount(hwInfo)));
externalLocalMemoryUsageBankSelector.emplace_back(new LocalMemoryUsageBankSelector(GfxCoreHelper::getSubDevicesCount(hwInfo)));
this->localMemorySupported.push_back(gfxCoreHelper.getEnableLocalMemory(*hwInfo));
this->enable64kbpages.push_back(OSInterface::osEnabled64kbPages && hwInfo->capabilityTable.ftr64KBpages && !!debugManager.flags.Enable64kbpages.get());
gfxPartitions.push_back(std::make_unique<GfxPartition>(reservedCpuAddressRange));
anyLocalMemorySupported |= this->localMemorySupported[rootDeviceIndex];
auto globalHeap = ApiSpecificConfig::getGlobalBindlessHeapConfiguration(rootDeviceEnvironment.getReleaseHelper());
heapAssigners.push_back(std::make_unique<HeapAssigner>(globalHeap));
localMemAllocsSize[rootDeviceIndex].store(0u);
}
if (anyLocalMemorySupported || debugManager.isTbxPageFaultManagerEnabled()) {
pageFaultManager = CpuPageFaultManager::create();
if (anyLocalMemorySupported) {
prefetchManager = PrefetchManager::create();
}
}
if (debugManager.flags.EnableMultiStorageResources.get() != -1) {
supportsMultiStorageResources = !!debugManager.flags.EnableMultiStorageResources.get();
}
}
MemoryManager::~MemoryManager() {
for (auto &engineContainer : secondaryEngines) {
for (auto &engine : engineContainer) {
DEBUG_BREAK_IF(true);
engine.osContext->decRefInternal();
}
engineContainer.clear();
}
secondaryEngines.clear();
for (auto &engineContainer : allRegisteredEngines) {
for (auto &engine : engineContainer) {
engine.osContext->decRefInternal();
}
engineContainer.clear();
}
allRegisteredEngines.clear();
if (reservedMemory) {
MemoryManager::alignedFreeWrapper(reservedMemory);
}
}
bool MemoryManager::isLimitedGPU(uint32_t rootDeviceIndex) {
return peek32bit() && !peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->isFullRangeSvm();
}
bool MemoryManager::isLimitedGPUOnType(uint32_t rootDeviceIndex, AllocationType type) {
return isLimitedGPU(rootDeviceIndex) &&
(type != AllocationType::mapAllocation) &&
(type != AllocationType::image);
}
void *MemoryManager::alignedMallocWrapper(size_t bytes, size_t alignment) {
return ::alignedMalloc(bytes, alignment);
}
void MemoryManager::alignedFreeWrapper(void *ptr) {
::alignedFree(ptr);
}
GmmHelper *MemoryManager::getGmmHelper(uint32_t rootDeviceIndex) {
return executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getGmmHelper();
}
AddressRange MemoryManager::reserveCpuAddressWithZeroBaseRetry(const uint64_t requiredStartAddress, size_t size) {
auto addressRange = reserveCpuAddress(requiredStartAddress, size);
if ((addressRange.address == 0) && (requiredStartAddress != 0)) {
addressRange = reserveCpuAddress(0, size);
}
return addressRange;
}
HeapIndex MemoryManager::selectInternalHeap(bool useLocalMemory) {
return useLocalMemory ? HeapIndex::heapInternalDeviceMemory : HeapIndex::heapInternal;
}
HeapIndex MemoryManager::selectExternalHeap(bool useLocalMemory) {
return useLocalMemory ? HeapIndex::heapExternalDeviceMemory : HeapIndex::heapExternal;
}
inline MemoryManager::AllocationStatus MemoryManager::registerSysMemAlloc(GraphicsAllocation *allocation) {
this->sysMemAllocsSize += allocation->getUnderlyingBufferSize();
return AllocationStatus::Success;
}
inline MemoryManager::AllocationStatus MemoryManager::registerLocalMemAlloc(GraphicsAllocation *allocation, uint32_t rootDeviceIndex) {
this->localMemAllocsSize[rootDeviceIndex] += allocation->getUnderlyingBufferSize();
return AllocationStatus::Success;
}
void MemoryManager::zeroCpuMemoryIfRequested(const AllocationData &allocationData, void *cpuPtr, size_t size) {
if (allocationData.flags.zeroMemory) {
memset(cpuPtr, 0, size);
}
}
void *MemoryManager::allocateSystemMemory(size_t size, size_t alignment) {
// Establish a minimum alignment of 16bytes.
constexpr size_t minAlignment = 16;
alignment = std::max(alignment, minAlignment);
auto restrictions = getAlignedMallocRestrictions();
void *ptr = alignedMallocWrapper(size, alignment);
if (restrictions == nullptr || restrictions->minAddress == 0) {
return ptr;
}
if (restrictions->minAddress > reinterpret_cast<uintptr_t>(ptr) && ptr != nullptr) {
StackVec<void *, 100> invalidMemVector;
invalidMemVector.push_back(ptr);
do {
ptr = alignedMallocWrapper(size, alignment);
if (restrictions->minAddress > reinterpret_cast<uintptr_t>(ptr) && ptr != nullptr) {
invalidMemVector.push_back(ptr);
} else {
break;
}
} while (1);
for (auto &it : invalidMemVector) {
alignedFreeWrapper(it);
}
}
return ptr;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryWithHostPtr(const AllocationData &allocationData) {
if (deferredDeleter) {
deferredDeleter->drain(true, false);
}
GraphicsAllocation *graphicsAllocation = nullptr;
auto osStorage = hostPtrManager->prepareOsStorageForAllocation(*this, allocationData.size, allocationData.hostPtr, allocationData.rootDeviceIndex);
if (osStorage.fragmentCount > 0) {
graphicsAllocation = createGraphicsAllocation(osStorage, allocationData);
if (graphicsAllocation == nullptr) {
hostPtrManager->releaseHandleStorage(allocationData.rootDeviceIndex, osStorage);
cleanOsHandles(osStorage, allocationData.rootDeviceIndex);
}
}
return graphicsAllocation;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryForImageFromHostPtr(const AllocationData &allocationData) {
bool copyRequired = isCopyRequired(*allocationData.imgInfo, allocationData.hostPtr);
if (allocationData.hostPtr && !copyRequired) {
return allocateGraphicsMemoryWithHostPtr(allocationData);
}
return nullptr;
}
void MemoryManager::cleanGraphicsMemoryCreatedFromHostPtr(GraphicsAllocation *graphicsAllocation) {
hostPtrManager->releaseHandleStorage(graphicsAllocation->getRootDeviceIndex(), graphicsAllocation->fragmentsStorage);
cleanOsHandles(graphicsAllocation->fragmentsStorage, graphicsAllocation->getRootDeviceIndex());
}
void *MemoryManager::createMultiGraphicsAllocationInSystemMemoryPool(RootDeviceIndicesContainer &rootDeviceIndices, AllocationProperties &properties, MultiGraphicsAllocation &multiGraphicsAllocation, void *ptr) {
properties.flags.forceSystemMemory = true;
for (auto &rootDeviceIndex : rootDeviceIndices) {
if (multiGraphicsAllocation.getGraphicsAllocation(rootDeviceIndex)) {
continue;
}
properties.rootDeviceIndex = rootDeviceIndex;
properties.flags.isUSMHostAllocation = true;
if (isLimitedRange(properties.rootDeviceIndex)) {
properties.flags.isUSMHostAllocation = false;
DEBUG_BREAK_IF(rootDeviceIndices.size() > 1);
}
if (!ptr) {
auto graphicsAllocation = allocateGraphicsMemoryWithProperties(properties);
if (!graphicsAllocation) {
return nullptr;
}
multiGraphicsAllocation.addAllocation(graphicsAllocation);
ptr = reinterpret_cast<void *>(graphicsAllocation->getUnderlyingBuffer());
} else {
properties.flags.allocateMemory = false;
auto graphicsAllocation = createGraphicsAllocationFromExistingStorage(properties, ptr, multiGraphicsAllocation);
if (!graphicsAllocation) {
for (auto &gpuAllocation : multiGraphicsAllocation.getGraphicsAllocations()) {
freeGraphicsMemory(gpuAllocation);
}
return nullptr;
}
multiGraphicsAllocation.addAllocation(graphicsAllocation);
}
}
return ptr;
}
GraphicsAllocation *MemoryManager::createGraphicsAllocationFromExistingStorage(AllocationProperties &properties, void *ptr, MultiGraphicsAllocation &multiGraphicsAllocation) {
return allocateGraphicsMemoryWithProperties(properties, ptr);
}
void MemoryManager::freeSystemMemory(void *ptr) {
::alignedFree(ptr);
}
void MemoryManager::freeGraphicsMemory(GraphicsAllocation *gfxAllocation) {
freeGraphicsMemory(gfxAllocation, false);
}
void MemoryManager::freeGraphicsMemory(GraphicsAllocation *gfxAllocation, bool isImportedAllocation) {
if (!gfxAllocation) {
return;
}
bool rootEnvAvailable = executionEnvironment.rootDeviceEnvironments.size() > 0;
if (rootEnvAvailable) {
if (executionEnvironment.rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->getBindlessHeapsHelper() != nullptr) {
executionEnvironment.rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->getBindlessHeapsHelper()->releaseSSToReusePool(gfxAllocation->getBindlessInfo());
}
if (this->peekExecutionEnvironment().rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->memoryOperationsInterface) {
this->peekExecutionEnvironment().rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->memoryOperationsInterface->free(nullptr, *gfxAllocation);
}
}
const bool hasFragments = gfxAllocation->fragmentsStorage.fragmentCount != 0;
const bool isLocked = gfxAllocation->isLocked();
DEBUG_BREAK_IF(hasFragments && isLocked);
if (!hasFragments) {
handleFenceCompletion(gfxAllocation);
}
if (isLocked) {
freeAssociatedResourceImpl(*gfxAllocation);
}
DBG_LOG(ResidencyDebugEnable, "Residency:", __FUNCTION__, "Free allocation, gpu address = ", std::hex, gfxAllocation->getGpuAddress());
getLocalMemoryUsageBankSelector(gfxAllocation->getAllocationType(), gfxAllocation->getRootDeviceIndex())->freeOnBanks(gfxAllocation->storageInfo.getMemoryBanks(), gfxAllocation->getUnderlyingBufferSize());
freeGraphicsMemoryImpl(gfxAllocation, isImportedAllocation);
}
// if not in use destroy in place
// if in use pass to temporary allocation list that is cleaned on blocking calls
void MemoryManager::checkGpuUsageAndDestroyGraphicsAllocations(GraphicsAllocation *gfxAllocation) {
if (gfxAllocation->isUsed()) {
if (gfxAllocation->isUsedByManyOsContexts()) {
multiContextResourceDestructor->deferDeletion(new DeferrableAllocationDeletion{*this, *gfxAllocation});
multiContextResourceDestructor->drain(false, false);
return;
}
for (auto &engine : getRegisteredEngines(gfxAllocation->getRootDeviceIndex())) {
auto osContextId = engine.osContext->getContextId();
auto allocationTaskCount = gfxAllocation->getTaskCount(osContextId);
if (gfxAllocation->isUsedByOsContext(osContextId) &&
engine.commandStreamReceiver->getTagAllocation() != nullptr &&
allocationTaskCount > *engine.commandStreamReceiver->getTagAddress()) {
engine.commandStreamReceiver->getInternalAllocationStorage()->storeAllocation(std::unique_ptr<GraphicsAllocation>(gfxAllocation),
DEFERRED_DEALLOCATION);
return;
}
}
}
freeGraphicsMemory(gfxAllocation);
}
uint64_t MemoryManager::getInternalHeapBaseAddress(uint32_t rootDeviceIndex, bool useLocalMemory) {
return getGfxPartition(rootDeviceIndex)->getHeapBase(selectInternalHeap(useLocalMemory));
}
uint64_t MemoryManager::getExternalHeapBaseAddress(uint32_t rootDeviceIndex, bool useLocalMemory) {
return getGfxPartition(rootDeviceIndex)->getHeapBase(selectExternalHeap(useLocalMemory));
}
bool MemoryManager::isLimitedRange(uint32_t rootDeviceIndex) {
return getGfxPartition(rootDeviceIndex)->isLimitedRange();
}
void MemoryManager::waitForDeletions() {
if (deferredDeleter) {
deferredDeleter->drain(false, false);
}
deferredDeleter.reset(nullptr);
}
bool MemoryManager::isAsyncDeleterEnabled() const {
return asyncDeleterEnabled;
}
bool MemoryManager::isLocalMemorySupported(uint32_t rootDeviceIndex) const {
return localMemorySupported[rootDeviceIndex];
}
bool MemoryManager::peek64kbPagesEnabled(uint32_t rootDeviceIndex) const {
return enable64kbpages[rootDeviceIndex];
}
bool MemoryManager::isMemoryBudgetExhausted() const {
return false;
}
void MemoryManager::updateLatestContextIdForRootDevice(uint32_t rootDeviceIndex) {
// rootDeviceIndexToContextId map would contain the first entry for context for each rootDevice
auto entry = rootDeviceIndexToContextId.insert(std::pair<uint32_t, uint32_t>(rootDeviceIndex, latestContextId));
if (entry.second == false) {
if (latestContextId == std::numeric_limits<uint32_t>::max()) {
// If we are here, it means we are reinitializing the contextId.
latestContextId = entry.first->second;
}
}
}
uint32_t MemoryManager::getFirstContextIdForRootDevice(uint32_t rootDeviceIndex) {
auto entry = rootDeviceIndexToContextId.find(rootDeviceIndex);
if (entry != rootDeviceIndexToContextId.end()) {
return entry->second + 1;
}
return 0;
}
void MemoryManager::initUsmReuseLimits() {
const auto systemSharedMemorySize = this->getSystemSharedMemory(0u);
auto fractionOfTotalMemoryForReuse = 0.02;
if (debugManager.flags.ExperimentalEnableHostAllocationCache.get() != -1) {
fractionOfTotalMemoryForReuse = 0.01 * std::min(100, debugManager.flags.ExperimentalEnableHostAllocationCache.get());
}
auto maxAllocationsSavedForReuseSize = static_cast<uint64_t>(fractionOfTotalMemoryForReuse * systemSharedMemorySize);
auto limitAllocationsReuseThreshold = static_cast<uint64_t>(0.8 * systemSharedMemorySize);
const auto limitFlagValue = debugManager.flags.ExperimentalUSMAllocationReuseLimitThreshold.get();
if (limitFlagValue != -1) {
if (limitFlagValue == 0) {
limitAllocationsReuseThreshold = UsmReuseInfo::notLimited;
} else {
const auto fractionOfTotalMemoryToLimitReuse = limitFlagValue / 100.0;
limitAllocationsReuseThreshold = static_cast<uint64_t>(fractionOfTotalMemoryToLimitReuse * systemSharedMemorySize);
}
}
this->usmReuseInfo.init(maxAllocationsSavedForReuseSize, limitAllocationsReuseThreshold);
}
OsContext *MemoryManager::createAndRegisterOsContext(CommandStreamReceiver *commandStreamReceiver,
const EngineDescriptor &engineDescriptor) {
auto rootDeviceIndex = commandStreamReceiver->getRootDeviceIndex();
updateLatestContextIdForRootDevice(rootDeviceIndex);
auto contextId = ++latestContextId;
auto osContext = OsContext::create(peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->osInterface.get(), rootDeviceIndex, contextId, engineDescriptor);
osContext->incRefInternal();
UNRECOVERABLE_IF(rootDeviceIndex != osContext->getRootDeviceIndex());
allRegisteredEngines[rootDeviceIndex].emplace_back(commandStreamReceiver, osContext);
return osContext;
}
OsContext *MemoryManager::createAndRegisterSecondaryOsContext(const OsContext *primaryContext, CommandStreamReceiver *commandStreamReceiver,
const EngineDescriptor &engineDescriptor) {
auto rootDeviceIndex = commandStreamReceiver->getRootDeviceIndex();
updateLatestContextIdForRootDevice(rootDeviceIndex);
auto contextId = ++latestContextId;
auto osContext = OsContext::create(peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->osInterface.get(), rootDeviceIndex, contextId, engineDescriptor);
osContext->incRefInternal();
osContext->setPrimaryContext(primaryContext);
UNRECOVERABLE_IF(rootDeviceIndex != osContext->getRootDeviceIndex());
secondaryEngines[rootDeviceIndex].emplace_back(commandStreamReceiver, osContext);
allRegisteredEngines[rootDeviceIndex].emplace_back(commandStreamReceiver, osContext);
return osContext;
}
void MemoryManager::releaseSecondaryOsContexts(uint32_t rootDeviceIndex) {
auto &engineContainer = secondaryEngines[rootDeviceIndex];
for (auto &engine : engineContainer) {
engine.osContext->decRefInternal();
}
engineContainer.clear();
}
bool MemoryManager::getAllocationData(AllocationData &allocationData, const AllocationProperties &properties, const void *hostPtr, const StorageInfo &storageInfo) {
UNRECOVERABLE_IF(hostPtr == nullptr && !properties.flags.allocateMemory);
UNRECOVERABLE_IF(properties.allocationType == AllocationType::unknown);
auto &rootDeviceEnvironment = *executionEnvironment.rootDeviceEnvironments[properties.rootDeviceIndex];
auto &hwInfo = *rootDeviceEnvironment.getHardwareInfo();
auto &helper = rootDeviceEnvironment.getHelper<GfxCoreHelper>();
auto &productHelper = rootDeviceEnvironment.getProductHelper();
if (storageInfo.getMemoryBanks() == 0) {
allocationData.flags.useSystemMemory = true;
}
bool allow64KbPages = false;
bool allow32Bit = false;
bool forcePin = properties.flags.forcePin;
bool mayRequireL3Flush = false;
switch (properties.allocationType) {
case AllocationType::buffer:
case AllocationType::bufferHostMemory:
case AllocationType::constantSurface:
case AllocationType::globalSurface:
case AllocationType::pipe:
case AllocationType::printfSurface:
case AllocationType::privateSurface:
case AllocationType::scratchSurface:
case AllocationType::workPartitionSurface:
case AllocationType::writeCombined:
case AllocationType::assertBuffer:
allow64KbPages = true;
allow32Bit = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::svmGpu:
case AllocationType::svmZeroCopy:
case AllocationType::gpuTimestampDeviceBuffer:
case AllocationType::preemption:
case AllocationType::syncDispatchToken:
allow64KbPages = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::buffer:
case AllocationType::bufferHostMemory:
case AllocationType::writeCombined:
forcePin = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::buffer:
case AllocationType::bufferHostMemory:
case AllocationType::externalHostPtr:
case AllocationType::globalSurface:
case AllocationType::image:
case AllocationType::mapAllocation:
case AllocationType::pipe:
case AllocationType::sharedBuffer:
case AllocationType::sharedImage:
case AllocationType::sharedResourceCopy:
case AllocationType::svmCpu:
case AllocationType::svmGpu:
case AllocationType::svmZeroCopy:
case AllocationType::writeCombined:
mayRequireL3Flush = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::commandBuffer:
case AllocationType::ringBuffer:
case AllocationType::semaphoreBuffer:
case AllocationType::bufferHostMemory:
case AllocationType::externalHostPtr:
case AllocationType::fillPattern:
case AllocationType::mapAllocation:
case AllocationType::mcs:
case AllocationType::profilingTagBuffer:
case AllocationType::svmCpu:
case AllocationType::svmZeroCopy:
case AllocationType::tagBuffer:
case AllocationType::globalFence:
case AllocationType::internalHostMemory:
case AllocationType::debugContextSaveArea:
case AllocationType::debugSbaTrackingBuffer:
case AllocationType::swTagBuffer:
allocationData.flags.useSystemMemory = true;
default:
break;
}
if (GraphicsAllocation::isIsaAllocationType(properties.allocationType)) {
allocationData.flags.useSystemMemory = helper.useSystemMemoryPlacementForISA(hwInfo);
}
switch (properties.allocationType) {
case AllocationType::commandBuffer:
case AllocationType::ringBuffer:
allocationData.flags.resource48Bit = helper.is48ResourceNeededForCmdBuffer();
break;
case AllocationType::deferredTasksList:
case AllocationType::image:
case AllocationType::indirectObjectHeap:
case AllocationType::instructionHeap:
case AllocationType::internalHeap:
case AllocationType::kernelIsa:
case AllocationType::kernelIsaInternal:
case AllocationType::linearStream:
case AllocationType::mcs:
case AllocationType::preemption:
case AllocationType::scratchSurface:
case AllocationType::workPartitionSurface:
case AllocationType::sharedImage:
case AllocationType::sharedResourceCopy:
case AllocationType::surfaceStateHeap:
case AllocationType::timestampPacketTagBuffer:
case AllocationType::debugModuleArea:
case AllocationType::gpuTimestampDeviceBuffer:
case AllocationType::semaphoreBuffer:
case AllocationType::syncDispatchToken:
allocationData.flags.resource48Bit = true;
break;
default:
allocationData.flags.resource48Bit = properties.flags.resource48Bit;
}
allocationData.forceKMDAllocation = properties.forceKMDAllocation;
allocationData.makeGPUVaDifferentThanCPUPtr = properties.makeGPUVaDifferentThanCPUPtr;
allocationData.flags.shareable = properties.flags.shareable;
allocationData.flags.isUSMDeviceMemory = properties.flags.isUSMDeviceAllocation;
allocationData.flags.requiresCpuAccess = GraphicsAllocation::isCpuAccessRequired(properties.allocationType);
allocationData.flags.allocateMemory = properties.flags.allocateMemory;
allocationData.flags.allow32Bit = allow32Bit;
allocationData.flags.allow64kbPages = allow64KbPages;
allocationData.flags.forcePin = forcePin;
allocationData.flags.uncacheable = properties.flags.uncacheable;
allocationData.flags.flushL3 =
(mayRequireL3Flush ? properties.flags.flushL3RequiredForRead | properties.flags.flushL3RequiredForWrite : 0u);
allocationData.flags.preferCompressed = properties.flags.preferCompressed;
allocationData.flags.preferCompressed |= CompressionSelector::preferCompressedAllocation(properties);
allocationData.flags.multiOsContextCapable = properties.flags.multiOsContextCapable;
allocationData.usmInitialPlacement = properties.usmInitialPlacement;
if (GraphicsAllocation::isDebugSurfaceAllocationType(properties.allocationType) ||
GraphicsAllocation::isConstantOrGlobalSurfaceAllocationType(properties.allocationType)) {
allocationData.flags.zeroMemory = 1;
}
if (properties.allocationType == AllocationType::debugModuleArea) {
allocationData.flags.use32BitFrontWindow = true;
} else {
allocationData.flags.use32BitFrontWindow = properties.flags.use32BitFrontWindow;
}
allocationData.hostPtr = hostPtr;
if (GraphicsAllocation::isKernelIsaAllocationType(properties.allocationType)) {
allocationData.size = properties.size + helper.getPaddingForISAAllocation();
} else {
allocationData.size = properties.size;
}
allocationData.type = properties.allocationType;
allocationData.storageInfo = storageInfo;
allocationData.alignment = properties.alignment ? properties.alignment : MemoryConstants::preferredAlignment;
allocationData.imgInfo = properties.imgInfo;
if (allocationData.flags.allocateMemory) {
allocationData.hostPtr = nullptr;
}
allocationData.gpuAddress = properties.gpuAddress;
allocationData.osContext = properties.osContext;
allocationData.rootDeviceIndex = properties.rootDeviceIndex;
allocationData.useMmapObject = properties.useMmapObject;
helper.setExtraAllocationData(allocationData, properties, rootDeviceEnvironment);
allocationData.flags.useSystemMemory |= properties.flags.forceSystemMemory;
overrideAllocationData(allocationData, properties);
allocationData.flags.isUSMHostAllocation = properties.flags.isUSMHostAllocation;
allocationData.storageInfo.systemMemoryPlacement = allocationData.flags.useSystemMemory;
allocationData.storageInfo.systemMemoryForced = properties.flags.forceSystemMemory;
allocationData.allocationMethod = getPreferredAllocationMethod(properties);
bool useLocalPreferredForCacheableBuffers = productHelper.useLocalPreferredForCacheableBuffers();
if (debugManager.flags.UseLocalPreferredForCacheableBuffers.get() != -1) {
useLocalPreferredForCacheableBuffers = debugManager.flags.UseLocalPreferredForCacheableBuffers.get() == 1;
}
switch (properties.allocationType) {
case AllocationType::buffer:
case AllocationType::svmGpu:
case AllocationType::image:
if (false == allocationData.flags.uncacheable && useLocalPreferredForCacheableBuffers) {
if (!allocationData.flags.preferCompressed) {
allocationData.storageInfo.localOnlyRequired = false;
}
allocationData.storageInfo.systemMemoryPlacement = false;
}
default:
break;
}
return true;
}
GfxMemoryAllocationMethod MemoryManager::getPreferredAllocationMethod(const AllocationProperties &allocationProperties) const {
return GfxMemoryAllocationMethod::notDefined;
}
GraphicsAllocation *MemoryManager::allocatePhysicalGraphicsMemory(const AllocationProperties &properties) {
AllocationData allocationData;
GraphicsAllocation *allocation = nullptr;
getAllocationData(allocationData, properties, nullptr, createStorageInfoFromProperties(properties));
AllocationStatus status = AllocationStatus::Error;
if (allocationData.flags.isUSMDeviceMemory) {
if (this->localMemorySupported[allocationData.rootDeviceIndex]) {
allocation = allocatePhysicalLocalDeviceMemory(allocationData, status);
if (allocation) {
getLocalMemoryUsageBankSelector(properties.allocationType, properties.rootDeviceIndex)->reserveOnBanks(allocationData.storageInfo.getMemoryBanks(), allocation->getUnderlyingBufferSize());
status = this->registerLocalMemAlloc(allocation, properties.rootDeviceIndex);
}
} else {
allocation = allocatePhysicalDeviceMemory(allocationData, status);
if (allocation) {
status = this->registerSysMemAlloc(allocation);
}
}
} else {
allocation = allocatePhysicalHostMemory(allocationData, status);
if (allocation) {
status = this->registerSysMemAlloc(allocation);
}
}
if (allocation && status != AllocationStatus::Success) {
freeGraphicsMemory(allocation);
allocation = nullptr;
}
if (!allocation) {
return nullptr;
}
logAllocation(fileLoggerInstance(), allocation, this);
registerAllocationInOs(allocation);
return allocation;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryInPreferredPool(const AllocationProperties &properties, const void *hostPtr) {
AllocationData allocationData;
getAllocationData(allocationData, properties, hostPtr, createStorageInfoFromProperties(properties));
AllocationStatus status = AllocationStatus::Error;
GraphicsAllocation *allocation = allocateGraphicsMemoryInDevicePool(allocationData, status);
if (allocation) {
getLocalMemoryUsageBankSelector(properties.allocationType, properties.rootDeviceIndex)->reserveOnBanks(allocationData.storageInfo.getMemoryBanks(), allocation->getUnderlyingBufferSize());
status = this->registerLocalMemAlloc(allocation, properties.rootDeviceIndex);
}
if (!allocation && status == AllocationStatus::RetryInNonDevicePool) {
allocation = allocateGraphicsMemory(allocationData);
if (allocation) {
status = this->registerSysMemAlloc(allocation);
}
}
if (allocation && status != AllocationStatus::Success) {
freeGraphicsMemory(allocation);
allocation = nullptr;
}
if (!allocation) {
return nullptr;
}
allocation->checkAllocationTypeReadOnlyRestrictions(properties);
auto &rootDeviceEnvironment = *executionEnvironment.rootDeviceEnvironments[properties.rootDeviceIndex];
auto &productHelper = rootDeviceEnvironment.getProductHelper();
if (productHelper.supportReadOnlyAllocations() &&
!productHelper.isBlitCopyRequiredForLocalMemory(rootDeviceEnvironment, *allocation) &&
allocation->canBeReadOnly()) {
allocation->setAsReadOnly();
}
logAllocation(fileLoggerInstance(), allocation, this);
registerAllocationInOs(allocation);
return allocation;
}
GraphicsAllocation *MemoryManager::allocateInternalGraphicsMemoryWithHostCopy(uint32_t rootDeviceIndex,
DeviceBitfield bitField,
const void *ptr,
size_t size) {
NEO::AllocationProperties copyProperties{rootDeviceIndex,
size,
NEO::AllocationType::internalHostMemory,
bitField};
copyProperties.alignment = MemoryConstants::pageSize;
auto allocation = this->allocateGraphicsMemoryWithProperties(copyProperties);
if (allocation) {
memcpy_s(allocation->getUnderlyingBuffer(), allocation->getUnderlyingBufferSize(), ptr, size);
}
return allocation;
}
bool MemoryManager::mapAuxGpuVA(GraphicsAllocation *graphicsAllocation) {
bool ret = false;
for (auto &engine : getRegisteredEngines(graphicsAllocation->getRootDeviceIndex())) {
if (engine.commandStreamReceiver->pageTableManager.get()) {
ret = engine.commandStreamReceiver->pageTableManager->updateAuxTable(graphicsAllocation->getGpuAddress(), graphicsAllocation->getDefaultGmm(), true);
if (!ret) {
break;
}
}
}
return ret;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemory(const AllocationData &allocationData) {
auto ail = executionEnvironment.rootDeviceEnvironments[allocationData.rootDeviceIndex]->getAILConfigurationHelper();
if (allocationData.type == AllocationType::externalHostPtr &&
allocationData.hostPtr &&
this->getDeferredDeleter() &&
(!ail || ail->drainHostptrs())) {
this->getDeferredDeleter()->drain(true, true);
}
if (allocationData.type == AllocationType::image || allocationData.type == AllocationType::sharedResourceCopy) {
UNRECOVERABLE_IF(allocationData.imgInfo == nullptr);
return allocateGraphicsMemoryForImage(allocationData);
}
if (allocationData.flags.shareable || allocationData.flags.isUSMDeviceMemory) {
return allocateMemoryByKMD(allocationData);
}
if (((false == allocationData.flags.isUSMHostAllocation) || (nullptr == allocationData.hostPtr)) &&
(useNonSvmHostPtrAlloc(allocationData.type, allocationData.rootDeviceIndex) || isNonSvmBuffer(allocationData.hostPtr, allocationData.type, allocationData.rootDeviceIndex))) {
auto allocation = allocateGraphicsMemoryForNonSvmHostPtr(allocationData);
if (allocation) {
allocation->setFlushL3Required(allocationData.flags.flushL3);
}
return allocation;
}
bool use32Allocator = heapAssigners[allocationData.rootDeviceIndex]->use32BitHeap(allocationData.type);
bool isAllocationOnLimitedGPU = isLimitedGPUOnType(allocationData.rootDeviceIndex, allocationData.type);
if (use32Allocator || isAllocationOnLimitedGPU ||
(force32bitAllocations && allocationData.flags.allow32Bit && is64bit)) {
return allocate32BitGraphicsMemoryImpl(allocationData);
}
if (allocationData.flags.isUSMHostAllocation && allocationData.hostPtr) {
return allocateUSMHostGraphicsMemory(allocationData);
}
if (allocationData.hostPtr) {
return allocateGraphicsMemoryWithHostPtr(allocationData);
}
if (allocationData.gpuAddress) {
return allocateGraphicsMemoryWithGpuVa(allocationData);
}
if (peek64kbPagesEnabled(allocationData.rootDeviceIndex) && allocationData.flags.allow64kbPages) {
return allocateGraphicsMemory64kb(allocationData);
}
return allocateGraphicsMemoryWithAlignment(allocationData);
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryForImage(const AllocationData &allocationData) {
auto gmm = std::make_unique<Gmm>(executionEnvironment.rootDeviceEnvironments[allocationData.rootDeviceIndex]->getGmmHelper(), *allocationData.imgInfo,
allocationData.storageInfo, allocationData.flags.preferCompressed);
// AllocationData needs to be reconfigured for System Memory paths
AllocationData allocationDataWithSize = allocationData;
allocationDataWithSize.size = allocationData.imgInfo->size;
auto hostPtrAllocation = allocateGraphicsMemoryForImageFromHostPtr(allocationDataWithSize);
if (hostPtrAllocation) {
hostPtrAllocation->setDefaultGmm(gmm.release());
return hostPtrAllocation;
}
return allocateGraphicsMemoryForImageImpl(allocationDataWithSize, std::move(gmm));
}
bool MemoryManager::isExternalAllocation(AllocationType allocationType) {
if (allocationType == AllocationType::buffer ||
allocationType == AllocationType::bufferHostMemory ||
allocationType == AllocationType::externalHostPtr ||
allocationType == AllocationType::fillPattern ||
allocationType == AllocationType::image ||
allocationType == AllocationType::mapAllocation ||
allocationType == AllocationType::pipe ||
allocationType == AllocationType::sharedBuffer ||
allocationType == AllocationType::sharedImage ||
allocationType == AllocationType::sharedResourceCopy ||
allocationType == AllocationType::svmCpu ||
allocationType == AllocationType::svmGpu ||
allocationType == AllocationType::svmZeroCopy ||
allocationType == AllocationType::unifiedSharedMemory ||
allocationType == AllocationType::writeCombined) {
return true;
}
return false;
}
LocalMemoryUsageBankSelector *MemoryManager::getLocalMemoryUsageBankSelector(AllocationType allocationType, uint32_t rootDeviceIndex) {
if (isExternalAllocation(allocationType)) {
return externalLocalMemoryUsageBankSelector[rootDeviceIndex].get();
}
return internalLocalMemoryUsageBankSelector[rootDeviceIndex].get();
}
const EngineControl *MemoryManager::getRegisteredEngineForCsr(CommandStreamReceiver *commandStreamReceiver) {
const EngineControl *engineCtrl = nullptr;
for (auto &engine : getRegisteredEngines(commandStreamReceiver->getRootDeviceIndex())) {
if (engine.commandStreamReceiver == commandStreamReceiver) {
engineCtrl = &engine;
break;
}
}
return engineCtrl;
}
void MemoryManager::unregisterEngineForCsr(CommandStreamReceiver *commandStreamReceiver) {
auto &registeredEngines = allRegisteredEngines[commandStreamReceiver->getRootDeviceIndex()];
auto numRegisteredEngines = registeredEngines.size();
for (auto i = 0u; i < numRegisteredEngines; i++) {
if (registeredEngines[i].commandStreamReceiver == commandStreamReceiver) {
registeredEngines[i].osContext->decRefInternal();
std::swap(registeredEngines[i], registeredEngines[numRegisteredEngines - 1]);
registeredEngines.pop_back();
return;
}
}
}
void *MemoryManager::lockResource(GraphicsAllocation *graphicsAllocation) {
if (!graphicsAllocation) {
return nullptr;
}
if (graphicsAllocation->isLocked()) {
return graphicsAllocation->getLockedPtr();
}
auto retVal = lockResourceImpl(*graphicsAllocation);
if (!retVal) {
return nullptr;
}
graphicsAllocation->lock(retVal);
return retVal;
}
void MemoryManager::unlockResource(GraphicsAllocation *graphicsAllocation) {
if (!graphicsAllocation) {
return;
}
DEBUG_BREAK_IF(!graphicsAllocation->isLocked());
unlockResourceImpl(*graphicsAllocation);
graphicsAllocation->unlock();
}
HeapIndex MemoryManager::selectHeap(const GraphicsAllocation *allocation, bool hasPointer, bool isFullRangeSVM, bool useFrontWindow) {
if (allocation) {
if (heapAssigners[allocation->getRootDeviceIndex()]->useInternal32BitHeap(allocation->getAllocationType())) {
return useFrontWindow ? HeapAssigner::mapInternalWindowIndex(selectInternalHeap(allocation->isAllocatedInLocalMemoryPool())) : selectInternalHeap(allocation->isAllocatedInLocalMemoryPool());
}
if (allocation->is32BitAllocation() || heapAssigners[allocation->getRootDeviceIndex()]->useExternal32BitHeap(allocation->getAllocationType())) {
return useFrontWindow ? HeapAssigner::mapExternalWindowIndex(selectExternalHeap(allocation->isAllocatedInLocalMemoryPool()))
: selectExternalHeap(allocation->isAllocatedInLocalMemoryPool());
}
}
if (isFullRangeSVM) {
if (hasPointer) {
return HeapIndex::heapSvm;
}
if (allocation && allocation->getDefaultGmm()->gmmResourceInfo->is64KBPageSuitable()) {
return HeapIndex::heapStandard64KB;
}
return HeapIndex::heapStandard;
}
// Limited range allocation goes to STANDARD heap
return HeapIndex::heapStandard;
}
bool MemoryManager::copyMemoryToAllocation(GraphicsAllocation *graphicsAllocation, size_t destinationOffset, const void *memoryToCopy, size_t sizeToCopy) {
if (!graphicsAllocation->getUnderlyingBuffer()) {
return false;
}
for (auto i = 0u; i < graphicsAllocation->storageInfo.getNumBanks(); ++i) {
memcpy_s(ptrOffset(static_cast<uint8_t *>(graphicsAllocation->getUnderlyingBuffer()) + i * graphicsAllocation->getUnderlyingBufferSize(), destinationOffset),
(graphicsAllocation->getUnderlyingBufferSize() - destinationOffset), memoryToCopy, sizeToCopy);
if (!GraphicsAllocation::isDebugSurfaceAllocationType(graphicsAllocation->getAllocationType())) {
break;
}
}
return true;
}
bool MemoryManager::copyMemoryToAllocationBanks(GraphicsAllocation *graphicsAllocation, size_t destinationOffset, const void *memoryToCopy, size_t sizeToCopy, DeviceBitfield handleMask) {
DEBUG_BREAK_IF(graphicsAllocation->storageInfo.getNumBanks() > 1 && handleMask.count() > 0);
memcpy_s(ptrOffset(static_cast<uint8_t *>(graphicsAllocation->getUnderlyingBuffer()), destinationOffset),
(graphicsAllocation->getUnderlyingBufferSize() - destinationOffset), memoryToCopy, sizeToCopy);
return true;
}
void MemoryManager::waitForEnginesCompletion(GraphicsAllocation &graphicsAllocation) {
for (auto &engine : getRegisteredEngines(graphicsAllocation.getRootDeviceIndex())) {
auto osContextId = engine.osContext->getContextId();
auto allocationTaskCount = graphicsAllocation.getTaskCount(osContextId);
if (graphicsAllocation.isUsedByOsContext(osContextId) &&
engine.commandStreamReceiver->getTagAllocation() != nullptr &&
allocationTaskCount > *engine.commandStreamReceiver->getTagAddress()) {
engine.commandStreamReceiver->waitForCompletionWithTimeout(WaitParams{false, false, false, TimeoutControls::maxTimeout}, allocationTaskCount);
}
}
}
bool MemoryManager::allocInUse(GraphicsAllocation &graphicsAllocation) {
for (auto &engine : getRegisteredEngines(graphicsAllocation.getRootDeviceIndex())) {
auto osContextId = engine.osContext->getContextId();
auto allocationTaskCount = graphicsAllocation.getTaskCount(osContextId);
if (graphicsAllocation.isUsedByOsContext(osContextId) &&
engine.commandStreamReceiver->getTagAllocation() != nullptr &&
allocationTaskCount > *engine.commandStreamReceiver->getTagAddress()) {
return true;
}
}
return false;
}
void MemoryManager::cleanTemporaryAllocationListOnAllEngines(bool waitForCompletion) {
for (auto &engineContainer : allRegisteredEngines) {
for (auto &engine : engineContainer) {
auto csr = engine.commandStreamReceiver;
if (waitForCompletion) {
csr->waitForCompletionWithTimeout(WaitParams{false, false, false, 0}, csr->peekLatestSentTaskCount());
}
csr->getInternalAllocationStorage()->cleanAllocationList(*csr->getTagAddress(), AllocationUsage::TEMPORARY_ALLOCATION);
}
}
}
void *MemoryManager::getReservedMemory(size_t size, size_t alignment) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!reservedMemory) {
reservedMemory = allocateSystemMemory(size, alignment);
}
return reservedMemory;
}
bool MemoryManager::isHostPointerTrackingEnabled(uint32_t rootDeviceIndex) {
if (debugManager.flags.EnableHostPtrTracking.get() != -1) {
return !!debugManager.flags.EnableHostPtrTracking.get();
}
return is32bit;
}
bool MemoryManager::useNonSvmHostPtrAlloc(AllocationType allocationType, uint32_t rootDeviceIndex) {
bool isExternalHostPtrAlloc = (allocationType == AllocationType::externalHostPtr);
bool isMapAlloc = (allocationType == AllocationType::mapAllocation);
if (forceNonSvmForExternalHostPtr && isExternalHostPtrAlloc) {
return true;
}
bool isNonSvmPtrCapable = ((!peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->isFullRangeSvm() || !isHostPointerTrackingEnabled(rootDeviceIndex)) & !is32bit);
return isNonSvmPtrCapable && (isExternalHostPtrAlloc || isMapAlloc);
}
bool MemoryManager::isCopyRequired(ImageInfo &imgInfo, const void *hostPtr) {
if (!hostPtr) {
return false;
}
size_t imageWidth = imgInfo.imgDesc.imageWidth;
size_t imageHeight = 1;
size_t imageDepth = 1;
size_t imageCount = 1;
switch (imgInfo.imgDesc.imageType) {
case ImageType::image3D:
imageDepth = imgInfo.imgDesc.imageDepth;
[[fallthrough]];
case ImageType::image2D:
case ImageType::image2DArray:
imageHeight = imgInfo.imgDesc.imageHeight;
break;
default:
break;
}
auto hostPtrRowPitch = imgInfo.imgDesc.imageRowPitch ? imgInfo.imgDesc.imageRowPitch : imageWidth * imgInfo.surfaceFormat->imageElementSizeInBytes;
auto hostPtrSlicePitch = imgInfo.imgDesc.imageSlicePitch ? imgInfo.imgDesc.imageSlicePitch : hostPtrRowPitch * imgInfo.imgDesc.imageHeight;
size_t pointerPassedSize = hostPtrRowPitch * imageHeight * imageDepth * imageCount;
auto alignedSizePassedPointer = alignSizeWholePage(const_cast<void *>(hostPtr), pointerPassedSize);
auto alignedSizeRequiredForAllocation = alignSizeWholePage(const_cast<void *>(hostPtr), imgInfo.size);
// Passed pointer doesn't have enough memory, copy is needed
bool copyRequired = (alignedSizeRequiredForAllocation > alignedSizePassedPointer) |
(imgInfo.rowPitch != hostPtrRowPitch) |
(imgInfo.slicePitch != hostPtrSlicePitch) |
((reinterpret_cast<uintptr_t>(hostPtr) & (MemoryConstants::cacheLineSize - 1)) != 0) |
!imgInfo.linearStorage;
return copyRequired;
}
void MemoryManager::overrideAllocationData(AllocationData &allocationData, const AllocationProperties &properties) {
if (debugManager.flags.ForceSystemMemoryPlacement.get()) {
UNRECOVERABLE_IF(properties.allocationType == AllocationType::unknown);
if ((1llu << (static_cast<int64_t>(properties.allocationType) - 1)) & debugManager.flags.ForceSystemMemoryPlacement.get()) {
allocationData.flags.useSystemMemory = true;
}
}
if (debugManager.flags.ForceNonSystemMemoryPlacement.get()) {
UNRECOVERABLE_IF(properties.allocationType == AllocationType::unknown);
if ((1llu << (static_cast<int64_t>(properties.allocationType) - 1)) & debugManager.flags.ForceNonSystemMemoryPlacement.get()) {
allocationData.flags.useSystemMemory = false;
}
}
int32_t directRingPlacement = debugManager.flags.DirectSubmissionBufferPlacement.get();
int32_t directRingAddressing = debugManager.flags.DirectSubmissionBufferAddressing.get();
if (properties.allocationType == AllocationType::ringBuffer) {
if (directRingPlacement != -1) {
if (directRingPlacement == 0) {
allocationData.flags.requiresCpuAccess = true;
allocationData.flags.useSystemMemory = false;
} else {
allocationData.flags.requiresCpuAccess = false;
allocationData.flags.useSystemMemory = true;
}
}
if (directRingAddressing != -1) {
if (directRingAddressing == 0) {
allocationData.flags.resource48Bit = false;
} else {
allocationData.flags.resource48Bit = true;
}
}
}
int32_t directSemaphorePlacement = debugManager.flags.DirectSubmissionSemaphorePlacement.get();
int32_t directSemaphoreAddressing = debugManager.flags.DirectSubmissionSemaphoreAddressing.get();
if (properties.allocationType == AllocationType::semaphoreBuffer) {
if (directSemaphorePlacement != -1) {
if (directSemaphorePlacement == 0) {
allocationData.flags.requiresCpuAccess = true;
allocationData.flags.useSystemMemory = false;
} else {
allocationData.flags.requiresCpuAccess = false;
allocationData.flags.useSystemMemory = true;
}
}
if (directSemaphoreAddressing != -1) {
if (directSemaphoreAddressing == 0) {
allocationData.flags.resource48Bit = false;
} else {
allocationData.flags.resource48Bit = true;
}
}
}
}
bool MemoryManager::isAllocationTypeToCapture(AllocationType type) const {
switch (type) {
case AllocationType::scratchSurface:
case AllocationType::privateSurface:
case AllocationType::linearStream:
case AllocationType::internalHeap:
return true;
default:
break;
}
return false;
}
bool MemoryManager::isLocalMemoryUsedForIsa(uint32_t rootDeviceIndex) {
std::call_once(checkIsaPlacementOnceFlags[rootDeviceIndex], [&] {
AllocationProperties properties = {rootDeviceIndex, 0x1000, AllocationType::kernelIsa, 1};
AllocationData data;
getAllocationData(data, properties, nullptr, createStorageInfoFromProperties(properties));
isaInLocalMemory[rootDeviceIndex] = !data.flags.useSystemMemory;
});
return isaInLocalMemory[rootDeviceIndex];
}
bool MemoryManager::isKernelBinaryReuseEnabled() {
auto reuseBinaries = false;
if (debugManager.flags.ReuseKernelBinaries.get() != -1) {
reuseBinaries = debugManager.flags.ReuseKernelBinaries.get();
}
return reuseBinaries;
}
OsContext *MemoryManager::getDefaultEngineContext(uint32_t rootDeviceIndex, DeviceBitfield subdevicesBitfield) {
OsContext *defaultContext = nullptr;
for (auto &engine : getRegisteredEngines(rootDeviceIndex)) {
auto osContext = engine.osContext;
if (osContext->isDefaultContext() && osContext->getDeviceBitfield() == subdevicesBitfield) {
defaultContext = osContext;
break;
}
}
if (!defaultContext) {
defaultContext = getRegisteredEngines(rootDeviceIndex)[defaultEngineIndex[rootDeviceIndex]].osContext;
}
return defaultContext;
}
bool MemoryManager::allocateBindlessSlot(GraphicsAllocation *allocation) {
auto bindlessHelper = peekExecutionEnvironment().rootDeviceEnvironments[allocation->getRootDeviceIndex()]->getBindlessHeapsHelper();
if (bindlessHelper && allocation->getBindlessOffset() == std::numeric_limits<uint64_t>::max()) {
auto &gfxCoreHelper = peekExecutionEnvironment().rootDeviceEnvironments[allocation->getRootDeviceIndex()]->getHelper<GfxCoreHelper>();
const auto isImage = allocation->getAllocationType() == AllocationType::image || allocation->getAllocationType() == AllocationType::sharedImage;
auto surfStateCount = isImage ? NEO::BindlessImageSlot::max : 1;
auto surfaceStateSize = surfStateCount * gfxCoreHelper.getRenderSurfaceStateSize();
auto surfaceStateInfo = bindlessHelper->allocateSSInHeap(surfaceStateSize, allocation, NEO::BindlessHeapsHelper::globalSsh);
if (surfaceStateInfo.heapAllocation == nullptr) {
return false;
}
allocation->setBindlessInfo(surfaceStateInfo);
}
return true;
}
bool MemoryTransferHelper::transferMemoryToAllocation(bool useBlitter, const Device &device, GraphicsAllocation *dstAllocation, size_t dstOffset, const void *srcMemory, size_t srcSize) {
if (useBlitter) {
if (BlitHelperFunctions::blitMemoryToAllocation(device, dstAllocation, dstOffset, srcMemory, {srcSize, 1, 1}) == BlitOperationResult::success) {
return true;
}
}
return device.getMemoryManager()->copyMemoryToAllocation(dstAllocation, dstOffset, srcMemory, srcSize);
}
bool MemoryTransferHelper::transferMemoryToAllocationBanks(const Device &device, GraphicsAllocation *dstAllocation, size_t dstOffset, const void *srcMemory,
size_t srcSize, DeviceBitfield dstMemoryBanks) {
auto blitSuccess = BlitHelper::blitMemoryToAllocationBanks(device, dstAllocation, dstOffset, srcMemory, {srcSize, 1, 1}, dstMemoryBanks) == BlitOperationResult::success;
if (!blitSuccess) {
return device.getMemoryManager()->copyMemoryToAllocationBanks(dstAllocation, dstOffset, srcMemory, srcSize, dstMemoryBanks);
}
return true;
}
uint64_t MemoryManager::adjustToggleBitFlagForGpuVa(AllocationType inputAllocationType, uint64_t gpuAddress) {
if (debugManager.flags.ToggleBitIn57GpuVa.get() != "unk") {
auto toggleBitIn57GpuVaEntries = StringHelpers::split(debugManager.flags.ToggleBitIn57GpuVa.get(), ",");
for (const auto &entry : toggleBitIn57GpuVaEntries) {
auto subEntries = StringHelpers::split(entry, ":");
UNRECOVERABLE_IF(subEntries.size() < 2u);
uint32_t allocationType = StringHelpers::toUint32t(subEntries[0]);
uint32_t bitNumber = StringHelpers::toUint32t(subEntries[1]);
UNRECOVERABLE_IF(allocationType >= static_cast<uint32_t>(AllocationType::count));
UNRECOVERABLE_IF(bitNumber >= 56);
if (allocationType == static_cast<uint32_t>(inputAllocationType)) {
if (isBitSet(gpuAddress, bitNumber)) {
gpuAddress &= ~(1ull << bitNumber);
} else {
gpuAddress |= 1ull << bitNumber;
}
}
}
}
return gpuAddress;
}
void MemoryManager::addCustomHeapAllocatorConfig(AllocationType allocationType, bool isFrontWindowPool, const CustomHeapAllocatorConfig &config) {
customHeapAllocators[{allocationType, isFrontWindowPool}] = config;
}
std::optional<std::reference_wrapper<CustomHeapAllocatorConfig>> MemoryManager::getCustomHeapAllocatorConfig(AllocationType allocationType, bool isFrontWindowPool) {
auto it = customHeapAllocators.find({allocationType, isFrontWindowPool});
if (it != customHeapAllocators.end()) {
return it->second;
}
return std::nullopt;
}
void MemoryManager::removeCustomHeapAllocatorConfig(AllocationType allocationType, bool isFrontWindowPool) {
customHeapAllocators.erase({allocationType, isFrontWindowPool});
}
} // namespace NEO