compute-runtime/unit_tests/command_queue/enqueue_fill_image_tests.cpp

281 lines
12 KiB
C++

/*
* Copyright (c) 2017 - 2018, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <algorithm>
#include "reg_configs_common.h"
#include "runtime/helpers/convert_color.h"
#include "unit_tests/command_queue/enqueue_fill_image_fixture.h"
#include "unit_tests/gen_common/gen_commands_common_validation.h"
#include "unit_tests/helpers/unit_test_helper.h"
#include "test.h"
using namespace OCLRT;
class EnqueueFillImageTest : public EnqueueFillImageTestFixture,
public ::testing::Test {
void SetUp(void) override {
EnqueueFillImageTestFixture::SetUp();
}
void TearDown(void) override {
EnqueueFillImageTestFixture::TearDown();
}
};
HWTEST_F(EnqueueFillImageTest, alignsToCSR) {
//this test case assumes IOQ
auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
csr.taskCount = pCmdQ->taskCount + 100;
csr.taskLevel = pCmdQ->taskLevel + 50;
EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount);
EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, gpgpuWalker) {
typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER;
enqueueFillImage<FamilyType>();
auto *cmd = reinterpret_cast<GPGPU_WALKER *>(cmdWalker);
ASSERT_NE(nullptr, cmd);
// Verify GPGPU_WALKER parameters
EXPECT_NE(0u, cmd->getThreadGroupIdXDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdYDimension());
EXPECT_NE(0u, cmd->getThreadGroupIdZDimension());
EXPECT_NE(0u, cmd->getRightExecutionMask());
EXPECT_NE(0u, cmd->getBottomExecutionMask());
EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize());
EXPECT_NE(0u, cmd->getIndirectDataLength());
EXPECT_FALSE(cmd->getIndirectParameterEnable());
// Compute the SIMD lane mask
size_t simd =
cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8;
uint64_t simdMask = (1ull << simd) - 1;
// Mask off lanes based on the execution masks
auto laneMaskRight = cmd->getRightExecutionMask() & simdMask;
auto lanesPerThreadX = 0;
while (laneMaskRight) {
lanesPerThreadX += laneMaskRight & 1;
laneMaskRight >>= 1;
}
}
HWTEST_F(EnqueueFillImageTest, bumpsTaskLevel) {
auto taskLevelBefore = pCmdQ->taskLevel;
EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore);
}
HWTEST_F(EnqueueFillImageTest, addsCommands) {
auto usedCmdBufferBefore = pCS->getUsed();
EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
EXPECT_NE(usedCmdBufferBefore, pCS->getUsed());
}
HWTEST_F(EnqueueFillImageTest, addsIndirectData) {
auto dshBefore = pDSH->getUsed();
auto iohBefore = pIOH->getUsed();
auto sshBefore = pSSH->getUsed();
EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
EXPECT_TRUE(UnitTestHelper<FamilyType>::evaluateDshUsage(dshBefore, pDSH->getUsed(), nullptr));
EXPECT_NE(iohBefore, pIOH->getUsed());
EXPECT_NE(sshBefore, pSSH->getUsed());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, loadRegisterImmediateL3CNTLREG) {
enqueueFillImage<FamilyType>();
validateL3Programming<FamilyType>(cmdList, itorWalker);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) {
enqueueFillImage<FamilyType>();
validateStateBaseAddress<FamilyType>(this->pDevice->getCommandStreamReceiver().getMemoryManager()->getInternalHeapBaseAddress(),
pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, mediaInterfaceDescriptorLoad) {
typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueFillImage<FamilyType>();
// All state should be programmed before walker
auto cmd = reinterpret_cast<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdMediaInterfaceDescriptorLoad);
ASSERT_NE(nullptr, cmd);
// Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA));
// Validate the start address
size_t alignmentStartAddress = 64 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress);
// Validate the length
EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength());
size_t alignmentTotalLength = 32 * sizeof(uint8_t);
EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength);
// Generically validate this command
FamilyType::PARSE::template validateCommand<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdList.begin(), itorMediaInterfaceDescriptorLoad);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, interfaceDescriptorData) {
typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;
enqueueFillImage<FamilyType>();
// Extract the interfaceDescriptorData
auto cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress;
auto &interfaceDescriptorData = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData;
// Validate the kernel start pointer. Technically, a kernel can start at address 0 but let's force a value.
auto kernelStartPointer = ((uint64_t)interfaceDescriptorData.getKernelStartPointerHigh() << 32) + interfaceDescriptorData.getKernelStartPointer();
EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize);
size_t maxLocalSize = 256u;
auto localWorkSize = std::min(maxLocalSize,
Image2dDefaults::imageDesc.image_width * Image2dDefaults::imageDesc.image_height);
auto simd = 32u;
auto threadsPerThreadGroup = (localWorkSize + simd - 1) / simd;
EXPECT_EQ(threadsPerThreadGroup, interfaceDescriptorData.getNumberOfThreadsInGpgpuThreadGroup());
EXPECT_NE(0u, interfaceDescriptorData.getCrossThreadConstantDataReadLength());
EXPECT_NE(0u, interfaceDescriptorData.getConstantIndirectUrbEntryReadLength());
// We shouldn't have these pointers the same.
EXPECT_NE(kernelStartPointer, interfaceDescriptorData.getBindingTablePointer());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, surfaceState) {
typedef typename FamilyType::RENDER_SURFACE_STATE RENDER_SURFACE_STATE;
enqueueFillImage<FamilyType>();
const auto &surfaceState = getSurfaceState<FamilyType>(0);
const auto &imageDesc = image->getImageDesc();
EXPECT_EQ(imageDesc.image_width, surfaceState.getWidth());
EXPECT_EQ(imageDesc.image_height, surfaceState.getHeight());
EXPECT_NE(0u, surfaceState.getSurfacePitch());
EXPECT_NE(0u, surfaceState.getSurfaceType());
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_HORIZONTAL_ALIGNMENT_HALIGN_4, surfaceState.getSurfaceHorizontalAlignment());
EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_VERTICAL_ALIGNMENT_VALIGN_4, surfaceState.getSurfaceVerticalAlignment());
const auto &srcSurfaceState = getSurfaceState<FamilyType>(0);
EXPECT_EQ(reinterpret_cast<uint64_t>(image->getCpuAddress()), srcSurfaceState.getSurfaceBaseAddress());
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, pipelineSelect) {
enqueueFillImage<FamilyType>();
int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect<FamilyType>();
EXPECT_EQ(1, numCommands);
}
HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, mediaVFEState) {
enqueueFillImage<FamilyType>();
validateMediaVFEState<FamilyType>(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState);
}
TEST_F(EnqueueFillImageTest, sRGBConvert) {
float *fillColor;
int iFillColor[4] = {0};
float LessThanZeroArray[4] = {-1.0f, -1.0f, -1.0f, 1.0f};
float MoreThanOneArray[4] = {2.0f, 2.0f, 2.0f, 1.0f};
float NaNArray[4] = {NAN, NAN, NAN, 1.0f};
float distance;
cl_image_format oldImageFormat = {CL_sRGBA, CL_UNORM_INT8};
cl_image_format newImageFormat = {CL_RGBA, CL_UNSIGNED_INT8};
fillColor = LessThanZeroArray;
convertFillColor(static_cast<const void *>(fillColor), iFillColor, oldImageFormat, newImageFormat);
for (int i = 0; i < 3; i++) {
distance = std::fabs(0.0f - static_cast<float>(iFillColor[i]));
EXPECT_GE(0.6f, distance);
}
EXPECT_EQ(255, iFillColor[3]);
fillColor = MoreThanOneArray;
convertFillColor(static_cast<const void *>(fillColor), iFillColor, oldImageFormat, newImageFormat);
for (int i = 0; i < 3; i++) {
distance = std::fabs(255.0f - static_cast<float>(iFillColor[i]));
EXPECT_GE(0.6f, distance);
}
EXPECT_EQ(255, iFillColor[3]);
fillColor = NaNArray;
convertFillColor(static_cast<const void *>(fillColor), iFillColor, oldImageFormat, newImageFormat);
for (int i = 0; i < 3; i++) {
distance = std::fabs(0.0f - static_cast<float>(iFillColor[i]));
EXPECT_GE(0.6f, distance);
}
EXPECT_EQ(255, iFillColor[3]);
}
TEST(ColorConvertTest, givenSnorm8FormatWhenConvertingThenUseNormalizingFactor) {
float fFillColor[4] = {0.3f, -0.3f, 0.0f, 1.0f};
int32_t iFillColor[4] = {};
int32_t expectedIFillColor[4] = {};
cl_image_format oldFormat = {CL_R, CL_SNORM_INT8};
cl_image_format newFormat = {CL_R, CL_UNSIGNED_INT8};
auto normalizingFactor = selectNormalizingFactor(oldFormat.image_channel_data_type);
for (size_t i = 0; i < 4; i++) {
expectedIFillColor[i] = static_cast<int32_t>(normalizingFactor * fFillColor[i]);
expectedIFillColor[i] = expectedIFillColor[i] & 0xFF;
}
convertFillColor(static_cast<const void *>(fFillColor), iFillColor, oldFormat, newFormat);
EXPECT_TRUE(memcmp(expectedIFillColor, iFillColor, 4 * sizeof(int32_t)) == 0);
}
TEST(ColorConvertTest, givenSnorm16FormatWhenConvertingThenUseNormalizingFactor) {
float fFillColor[4] = {0.3f, -0.3f, 0.0f, 1.0f};
int32_t iFillColor[4] = {};
int32_t expectedIFillColor[4] = {};
cl_image_format oldFormat = {CL_R, CL_SNORM_INT16};
cl_image_format newFormat = {CL_R, CL_UNSIGNED_INT16};
auto normalizingFactor = selectNormalizingFactor(oldFormat.image_channel_data_type);
for (size_t i = 0; i < 4; i++) {
expectedIFillColor[i] = static_cast<int32_t>(normalizingFactor * fFillColor[i]);
expectedIFillColor[i] = expectedIFillColor[i] & 0xFFFF;
}
convertFillColor(static_cast<const void *>(fFillColor), iFillColor, oldFormat, newFormat);
EXPECT_TRUE(memcmp(expectedIFillColor, iFillColor, 4 * sizeof(int32_t)) == 0);
}