compute-runtime/shared/source/helpers/local_id_gen.inl

153 lines
3.7 KiB
C++

/*
* Copyright (C) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/helpers/local_id_gen.h"
#include <array>
namespace NEO {
template <typename Vec, int simd>
inline void generateLocalIDsSimd(void *b, const std::array<uint16_t, 3> &localWorkgroupSize, uint16_t threadsPerWorkGroup,
const std::array<uint8_t, 3> &dimensionsOrder, bool chooseMaxRowSize) {
const int passes = simd / Vec::numChannels;
int pass = 0;
uint32_t xDimNum = dimensionsOrder[0];
uint32_t yDimNum = dimensionsOrder[1];
uint32_t zDimNum = dimensionsOrder[2];
const Vec vLwsX(localWorkgroupSize[xDimNum]);
const Vec vLwsY(localWorkgroupSize[yDimNum]);
auto zero = Vec::zero();
auto one = Vec::one();
const auto threadSkipSize = ((simd == 32 || chooseMaxRowSize) ? 32 : 16) * sizeof(uint16_t);
Vec vSimdX(simd);
Vec vSimdY = zero;
Vec vSimdZ = zero;
Vec xWrap;
Vec yWrap;
// We need to convert simd into appropriate delta adders
do {
xWrap = vSimdX >= vLwsX;
// xWrap ? lwsX : 0;
auto deltaX = blend(vLwsX, zero, xWrap);
// x -= xWrap ? lwsX : 0;
vSimdX -= deltaX;
// xWrap ? 1 : 0;
auto deltaY = blend(one, zero, xWrap);
// y += xWrap ? 1 : 0;
vSimdY += deltaY;
yWrap = vSimdY >= vLwsY;
// yWrap ? lwsY : 0;
auto deltaY2 = blend(vLwsY, zero, yWrap);
// y -= yWrap ? lwsY : 0;
vSimdY -= deltaY2;
// yWrap ? 1 : 0;
auto deltaZ = blend(one, zero, yWrap);
// z += yWrap ? 1 : 0;
vSimdZ += deltaZ;
} while (xWrap || yWrap);
// Loop for each of the passes
do {
auto buffer = b;
Vec x(&initialLocalID[pass * Vec::numChannels]);
Vec y = zero;
Vec z = zero;
// Convert the initial SIMD lanes to localIDs
do {
xWrap = x >= vLwsX;
// xWrap ? lwsX : 0;
auto deltaX = blend(vLwsX, zero, xWrap);
// x -= xWrap ? lwsX : 0;
x -= deltaX;
// xWrap ? 1 : 0;
auto deltaY = blend(one, zero, xWrap);
// y += xWrap ? 1 : 0;
y += deltaY;
yWrap = y >= vLwsY;
// yWrap ? lwsY : 0;
auto deltaY2 = blend(vLwsY, zero, yWrap);
// y -= yWrap ? lwsY : 0;
y -= deltaY2;
// yWrap ? 1 : 0;
auto deltaZ = blend(one, zero, yWrap);
// z += yWrap ? 1 : 0;
z += deltaZ;
} while (xWrap);
for (size_t i = 0; i < threadsPerWorkGroup; ++i) {
x.store(ptrOffset(buffer, xDimNum * threadSkipSize));
y.store(ptrOffset(buffer, yDimNum * threadSkipSize));
z.store(ptrOffset(buffer, zDimNum * threadSkipSize));
x += vSimdX;
y += vSimdY;
z += vSimdZ;
xWrap = x >= vLwsX;
// xWrap ? lwsX : 0;
auto deltaX = blend(vLwsX, zero, xWrap);
// x -= xWrap ? lwsX : 0;
x -= deltaX;
// xWrap ? 1 : 0;
auto deltaY = blend(one, zero, xWrap);
// y += xWrap ? 1 : 0;
y += deltaY;
yWrap = y >= vLwsY;
// yWrap ? lwsY : 0;
auto deltaY2 = blend(vLwsY, zero, yWrap);
// y -= yWrap ? lwsY : 0;
y -= deltaY2;
// yWrap ? 1 : 0;
auto deltaZ = blend(one, zero, yWrap);
// z += yWrap ? 1 : 0;
z += deltaZ;
buffer = ptrOffset(buffer, 3 * threadSkipSize);
}
// Adjust buffer for next pass
b = ptrOffset(b, Vec::numChannels * sizeof(uint16_t));
} while (++pass < passes);
}
} // namespace NEO