compute-runtime/shared/source/memory_manager/memory_manager.cpp

943 lines
41 KiB
C++

/*
* Copyright (C) 2018-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/gmm_helper/page_table_mngr.h"
#include "shared/source/gmm_helper/resource_info.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/api_specific_config.h"
#include "shared/source/helpers/bindless_heaps_helper.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/memory_properties_helpers.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/surface_format_info.h"
#include "shared/source/memory_manager/compression_selector.h"
#include "shared/source/memory_manager/deferrable_allocation_deletion.h"
#include "shared/source/memory_manager/deferred_deleter.h"
#include "shared/source/memory_manager/host_ptr_manager.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/memory_manager/local_memory_usage.h"
#include "shared/source/memory_manager/prefetch_manager.h"
#include "shared/source/os_interface/hw_info_config.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/os_interface/os_interface.h"
#include <algorithm>
namespace NEO {
uint32_t MemoryManager::maxOsContextCount = 0u;
MemoryManager::MemoryManager(ExecutionEnvironment &executionEnvironment) : executionEnvironment(executionEnvironment), hostPtrManager(std::make_unique<HostPtrManager>()),
multiContextResourceDestructor(std::make_unique<DeferredDeleter>()) {
bool anyLocalMemorySupported = false;
const auto rootEnvCount = executionEnvironment.rootDeviceEnvironments.size();
defaultEngineIndex.resize(rootEnvCount);
checkIsaPlacementOnceFlags = std::make_unique<std::once_flag[]>(rootEnvCount);
isaInLocalMemory.resize(rootEnvCount);
for (uint32_t rootDeviceIndex = 0; rootDeviceIndex < rootEnvCount; ++rootDeviceIndex) {
auto &rootDeviceEnvironment = *executionEnvironment.rootDeviceEnvironments[rootDeviceIndex];
auto hwInfo = rootDeviceEnvironment.getHardwareInfo();
auto &gfxCoreHelper = rootDeviceEnvironment.getHelper<GfxCoreHelper>();
internalLocalMemoryUsageBankSelector.emplace_back(new LocalMemoryUsageBankSelector(GfxCoreHelper::getSubDevicesCount(hwInfo)));
externalLocalMemoryUsageBankSelector.emplace_back(new LocalMemoryUsageBankSelector(GfxCoreHelper::getSubDevicesCount(hwInfo)));
this->localMemorySupported.push_back(gfxCoreHelper.getEnableLocalMemory(*hwInfo));
this->enable64kbpages.push_back(OSInterface::osEnabled64kbPages && hwInfo->capabilityTable.ftr64KBpages && !!DebugManager.flags.Enable64kbpages.get());
gfxPartitions.push_back(std::make_unique<GfxPartition>(reservedCpuAddressRange));
anyLocalMemorySupported |= this->localMemorySupported[rootDeviceIndex];
isLocalMemoryUsedForIsa(rootDeviceIndex);
}
if (anyLocalMemorySupported) {
pageFaultManager = PageFaultManager::create();
prefetchManager = PrefetchManager::create();
}
if (DebugManager.flags.EnableMultiStorageResources.get() != -1) {
supportsMultiStorageResources = !!DebugManager.flags.EnableMultiStorageResources.get();
}
}
MemoryManager::~MemoryManager() {
for (auto &engine : registeredEngines) {
engine.osContext->decRefInternal();
}
registeredEngines.clear();
if (reservedMemory) {
MemoryManager::alignedFreeWrapper(reservedMemory);
}
}
bool MemoryManager::isLimitedGPU(uint32_t rootDeviceIndex) {
return peek32bit() && !peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->isFullRangeSvm();
}
bool MemoryManager::isLimitedGPUOnType(uint32_t rootDeviceIndex, AllocationType type) {
return isLimitedGPU(rootDeviceIndex) &&
(type != AllocationType::MAP_ALLOCATION) &&
(type != AllocationType::IMAGE);
}
GmmHelper *MemoryManager::getGmmHelper(uint32_t rootDeviceIndex) {
return executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getGmmHelper();
}
void MemoryManager::zeroCpuMemoryIfRequested(const AllocationData &allocationData, void *cpuPtr, size_t size) {
if (allocationData.flags.zeroMemory) {
memset(cpuPtr, 0, size);
}
}
void *MemoryManager::allocateSystemMemory(size_t size, size_t alignment) {
// Establish a minimum alignment of 16bytes.
constexpr size_t minAlignment = 16;
alignment = std::max(alignment, minAlignment);
auto restrictions = getAlignedMallocRestrictions();
void *ptr = alignedMallocWrapper(size, alignment);
if (restrictions == nullptr || restrictions->minAddress == 0) {
return ptr;
}
if (restrictions->minAddress > reinterpret_cast<uintptr_t>(ptr) && ptr != nullptr) {
StackVec<void *, 100> invalidMemVector;
invalidMemVector.push_back(ptr);
do {
ptr = alignedMallocWrapper(size, alignment);
if (restrictions->minAddress > reinterpret_cast<uintptr_t>(ptr) && ptr != nullptr) {
invalidMemVector.push_back(ptr);
} else {
break;
}
} while (1);
for (auto &it : invalidMemVector) {
alignedFreeWrapper(it);
}
}
return ptr;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryWithHostPtr(const AllocationData &allocationData) {
if (deferredDeleter) {
deferredDeleter->drain(true);
}
GraphicsAllocation *graphicsAllocation = nullptr;
auto osStorage = hostPtrManager->prepareOsStorageForAllocation(*this, allocationData.size, allocationData.hostPtr, allocationData.rootDeviceIndex);
if (osStorage.fragmentCount > 0) {
graphicsAllocation = createGraphicsAllocation(osStorage, allocationData);
if (graphicsAllocation == nullptr) {
hostPtrManager->releaseHandleStorage(allocationData.rootDeviceIndex, osStorage);
cleanOsHandles(osStorage, allocationData.rootDeviceIndex);
}
}
return graphicsAllocation;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryForImageFromHostPtr(const AllocationData &allocationData) {
bool copyRequired = isCopyRequired(*allocationData.imgInfo, allocationData.hostPtr);
if (allocationData.hostPtr && !copyRequired) {
return allocateGraphicsMemoryWithHostPtr(allocationData);
}
return nullptr;
}
void MemoryManager::cleanGraphicsMemoryCreatedFromHostPtr(GraphicsAllocation *graphicsAllocation) {
hostPtrManager->releaseHandleStorage(graphicsAllocation->getRootDeviceIndex(), graphicsAllocation->fragmentsStorage);
cleanOsHandles(graphicsAllocation->fragmentsStorage, graphicsAllocation->getRootDeviceIndex());
}
void *MemoryManager::createMultiGraphicsAllocationInSystemMemoryPool(RootDeviceIndicesContainer &rootDeviceIndices, AllocationProperties &properties, MultiGraphicsAllocation &multiGraphicsAllocation, void *ptr) {
properties.flags.forceSystemMemory = true;
for (auto &rootDeviceIndex : rootDeviceIndices) {
if (multiGraphicsAllocation.getGraphicsAllocation(rootDeviceIndex)) {
continue;
}
properties.rootDeviceIndex = rootDeviceIndex;
properties.flags.isUSMHostAllocation = true;
if (isLimitedRange(properties.rootDeviceIndex)) {
properties.flags.isUSMHostAllocation = false;
DEBUG_BREAK_IF(rootDeviceIndices.size() > 1);
}
if (!ptr) {
auto graphicsAllocation = allocateGraphicsMemoryWithProperties(properties);
if (!graphicsAllocation) {
return nullptr;
}
multiGraphicsAllocation.addAllocation(graphicsAllocation);
ptr = reinterpret_cast<void *>(graphicsAllocation->getUnderlyingBuffer());
} else {
properties.flags.allocateMemory = false;
auto graphicsAllocation = createGraphicsAllocationFromExistingStorage(properties, ptr, multiGraphicsAllocation);
if (!graphicsAllocation) {
for (auto gpuAllocation : multiGraphicsAllocation.getGraphicsAllocations()) {
freeGraphicsMemory(gpuAllocation);
}
return nullptr;
}
multiGraphicsAllocation.addAllocation(graphicsAllocation);
}
}
return ptr;
}
GraphicsAllocation *MemoryManager::createGraphicsAllocationFromExistingStorage(AllocationProperties &properties, void *ptr, MultiGraphicsAllocation &multiGraphicsAllocation) {
return allocateGraphicsMemoryWithProperties(properties, ptr);
}
void MemoryManager::freeSystemMemory(void *ptr) {
::alignedFree(ptr);
}
void MemoryManager::freeGraphicsMemory(GraphicsAllocation *gfxAllocation) {
freeGraphicsMemory(gfxAllocation, false);
}
void MemoryManager::freeGraphicsMemory(GraphicsAllocation *gfxAllocation, bool isImportedAllocation) {
if (!gfxAllocation) {
return;
}
if (ApiSpecificConfig::getBindlessConfiguration() && executionEnvironment.rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->getBindlessHeapsHelper() != nullptr) {
executionEnvironment.rootDeviceEnvironments[gfxAllocation->getRootDeviceIndex()]->getBindlessHeapsHelper()->placeSSAllocationInReuseVectorOnFreeMemory(gfxAllocation);
}
const bool hasFragments = gfxAllocation->fragmentsStorage.fragmentCount != 0;
const bool isLocked = gfxAllocation->isLocked();
DEBUG_BREAK_IF(hasFragments && isLocked);
if (!hasFragments) {
handleFenceCompletion(gfxAllocation);
}
if (isLocked) {
freeAssociatedResourceImpl(*gfxAllocation);
}
getLocalMemoryUsageBankSelector(gfxAllocation->getAllocationType(), gfxAllocation->getRootDeviceIndex())->freeOnBanks(gfxAllocation->storageInfo.getMemoryBanks(), gfxAllocation->getUnderlyingBufferSize());
freeGraphicsMemoryImpl(gfxAllocation, isImportedAllocation);
}
// if not in use destroy in place
// if in use pass to temporary allocation list that is cleaned on blocking calls
void MemoryManager::checkGpuUsageAndDestroyGraphicsAllocations(GraphicsAllocation *gfxAllocation) {
if (gfxAllocation->isUsed()) {
if (gfxAllocation->isUsedByManyOsContexts()) {
multiContextResourceDestructor->deferDeletion(new DeferrableAllocationDeletion{*this, *gfxAllocation});
multiContextResourceDestructor->drain(false);
return;
}
for (auto &engine : getRegisteredEngines()) {
auto osContextId = engine.osContext->getContextId();
auto allocationTaskCount = gfxAllocation->getTaskCount(osContextId);
if (gfxAllocation->isUsedByOsContext(osContextId) &&
allocationTaskCount > *engine.commandStreamReceiver->getTagAddress()) {
engine.commandStreamReceiver->getInternalAllocationStorage()->storeAllocation(std::unique_ptr<GraphicsAllocation>(gfxAllocation),
DEFERRED_DEALLOCATION);
return;
}
}
}
freeGraphicsMemory(gfxAllocation);
}
void MemoryManager::waitForDeletions() {
if (deferredDeleter) {
deferredDeleter->drain(false);
}
deferredDeleter.reset(nullptr);
}
bool MemoryManager::isAsyncDeleterEnabled() const {
return asyncDeleterEnabled;
}
bool MemoryManager::isLocalMemorySupported(uint32_t rootDeviceIndex) const {
return localMemorySupported[rootDeviceIndex];
}
bool MemoryManager::peek64kbPagesEnabled(uint32_t rootDeviceIndex) const {
return enable64kbpages[rootDeviceIndex];
}
bool MemoryManager::isMemoryBudgetExhausted() const {
return false;
}
void MemoryManager::updateLatestContextIdForRootDevice(uint32_t rootDeviceIndex) {
// rootDeviceIndexToContextId map would contain the first entry for context for each rootDevice
auto entry = rootDeviceIndexToContextId.insert(std::pair<uint32_t, uint32_t>(rootDeviceIndex, latestContextId));
if (entry.second == false) {
if (latestContextId == std::numeric_limits<uint32_t>::max()) {
// If we are here, it means we are reinitializing the contextId.
latestContextId = entry.first->second;
}
}
}
OsContext *MemoryManager::createAndRegisterOsContext(CommandStreamReceiver *commandStreamReceiver,
const EngineDescriptor &engineDescriptor) {
auto rootDeviceIndex = commandStreamReceiver->getRootDeviceIndex();
updateLatestContextIdForRootDevice(rootDeviceIndex);
auto contextId = ++latestContextId;
auto osContext = OsContext::create(peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->osInterface.get(), rootDeviceIndex, contextId, engineDescriptor);
osContext->incRefInternal();
UNRECOVERABLE_IF(rootDeviceIndex != osContext->getRootDeviceIndex());
registeredEngines.emplace_back(commandStreamReceiver, osContext);
return osContext;
}
bool MemoryManager::getAllocationData(AllocationData &allocationData, const AllocationProperties &properties, const void *hostPtr, const StorageInfo &storageInfo) {
UNRECOVERABLE_IF(hostPtr == nullptr && !properties.flags.allocateMemory);
UNRECOVERABLE_IF(properties.allocationType == AllocationType::UNKNOWN);
auto &rootDeviceEnvironments = *executionEnvironment.rootDeviceEnvironments[properties.rootDeviceIndex];
auto &hwInfo = *rootDeviceEnvironments.getHardwareInfo();
auto &helper = rootDeviceEnvironments.getHelper<GfxCoreHelper>();
bool allow64KbPages = false;
bool allow32Bit = false;
bool forcePin = properties.flags.forcePin;
bool mayRequireL3Flush = false;
switch (properties.allocationType) {
case AllocationType::BUFFER:
case AllocationType::BUFFER_HOST_MEMORY:
case AllocationType::CONSTANT_SURFACE:
case AllocationType::GLOBAL_SURFACE:
case AllocationType::PIPE:
case AllocationType::PRINTF_SURFACE:
case AllocationType::PRIVATE_SURFACE:
case AllocationType::SCRATCH_SURFACE:
case AllocationType::WORK_PARTITION_SURFACE:
case AllocationType::WRITE_COMBINED:
allow64KbPages = true;
allow32Bit = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::SVM_GPU:
case AllocationType::SVM_ZERO_COPY:
case AllocationType::GPU_TIMESTAMP_DEVICE_BUFFER:
case AllocationType::PREEMPTION:
allow64KbPages = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::BUFFER:
case AllocationType::BUFFER_HOST_MEMORY:
case AllocationType::WRITE_COMBINED:
forcePin = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::BUFFER:
case AllocationType::BUFFER_HOST_MEMORY:
case AllocationType::EXTERNAL_HOST_PTR:
case AllocationType::GLOBAL_SURFACE:
case AllocationType::IMAGE:
case AllocationType::MAP_ALLOCATION:
case AllocationType::PIPE:
case AllocationType::SHARED_BUFFER:
case AllocationType::SHARED_IMAGE:
case AllocationType::SHARED_RESOURCE_COPY:
case AllocationType::SVM_CPU:
case AllocationType::SVM_GPU:
case AllocationType::SVM_ZERO_COPY:
case AllocationType::WRITE_COMBINED:
mayRequireL3Flush = true;
default:
break;
}
switch (properties.allocationType) {
case AllocationType::COMMAND_BUFFER:
case AllocationType::RING_BUFFER:
case AllocationType::SEMAPHORE_BUFFER:
case AllocationType::BUFFER_HOST_MEMORY:
case AllocationType::EXTERNAL_HOST_PTR:
case AllocationType::FILL_PATTERN:
case AllocationType::MAP_ALLOCATION:
case AllocationType::MCS:
case AllocationType::PROFILING_TAG_BUFFER:
case AllocationType::SHARED_CONTEXT_IMAGE:
case AllocationType::SVM_CPU:
case AllocationType::SVM_ZERO_COPY:
case AllocationType::TAG_BUFFER:
case AllocationType::GLOBAL_FENCE:
case AllocationType::INTERNAL_HOST_MEMORY:
case AllocationType::TIMESTAMP_PACKET_TAG_BUFFER:
case AllocationType::DEBUG_CONTEXT_SAVE_AREA:
case AllocationType::DEBUG_SBA_TRACKING_BUFFER:
case AllocationType::SW_TAG_BUFFER:
allocationData.flags.useSystemMemory = true;
default:
break;
}
if (GraphicsAllocation::isIsaAllocationType(properties.allocationType)) {
allocationData.flags.useSystemMemory = helper.useSystemMemoryPlacementForISA(hwInfo);
}
switch (properties.allocationType) {
case AllocationType::DEFERRED_TASKS_LIST:
case AllocationType::COMMAND_BUFFER:
case AllocationType::IMAGE:
case AllocationType::INDIRECT_OBJECT_HEAP:
case AllocationType::INSTRUCTION_HEAP:
case AllocationType::INTERNAL_HEAP:
case AllocationType::KERNEL_ISA:
case AllocationType::KERNEL_ISA_INTERNAL:
case AllocationType::LINEAR_STREAM:
case AllocationType::MCS:
case AllocationType::PREEMPTION:
case AllocationType::SCRATCH_SURFACE:
case AllocationType::WORK_PARTITION_SURFACE:
case AllocationType::SHARED_CONTEXT_IMAGE:
case AllocationType::SHARED_IMAGE:
case AllocationType::SHARED_RESOURCE_COPY:
case AllocationType::SURFACE_STATE_HEAP:
case AllocationType::TIMESTAMP_PACKET_TAG_BUFFER:
case AllocationType::DEBUG_MODULE_AREA:
case AllocationType::GPU_TIMESTAMP_DEVICE_BUFFER:
case AllocationType::RING_BUFFER:
case AllocationType::SEMAPHORE_BUFFER:
allocationData.flags.resource48Bit = true;
break;
default:
allocationData.flags.resource48Bit = properties.flags.resource48Bit;
}
allocationData.flags.shareable = properties.flags.shareable;
allocationData.flags.isUSMDeviceMemory = properties.flags.isUSMDeviceAllocation;
allocationData.flags.requiresCpuAccess = GraphicsAllocation::isCpuAccessRequired(properties.allocationType);
allocationData.flags.allocateMemory = properties.flags.allocateMemory;
allocationData.flags.allow32Bit = allow32Bit;
allocationData.flags.allow64kbPages = allow64KbPages;
allocationData.flags.forcePin = forcePin;
allocationData.flags.uncacheable = properties.flags.uncacheable;
allocationData.flags.flushL3 =
(mayRequireL3Flush ? properties.flags.flushL3RequiredForRead | properties.flags.flushL3RequiredForWrite : 0u);
allocationData.flags.preferCompressed = properties.flags.preferCompressed;
allocationData.flags.preferCompressed |= CompressionSelector::preferCompressedAllocation(properties, hwInfo);
allocationData.flags.multiOsContextCapable = properties.flags.multiOsContextCapable;
allocationData.usmInitialPlacement = properties.usmInitialPlacement;
if (GraphicsAllocation::isDebugSurfaceAllocationType(properties.allocationType)) {
allocationData.flags.zeroMemory = 1;
}
if (properties.allocationType == AllocationType::DEBUG_MODULE_AREA) {
allocationData.flags.use32BitFrontWindow = true;
} else {
allocationData.flags.use32BitFrontWindow = properties.flags.use32BitFrontWindow;
}
allocationData.hostPtr = hostPtr;
if (properties.allocationType == AllocationType::KERNEL_ISA ||
properties.allocationType == AllocationType::KERNEL_ISA_INTERNAL) {
allocationData.size = properties.size + helper.getPaddingForISAAllocation();
} else {
allocationData.size = properties.size;
}
allocationData.type = properties.allocationType;
allocationData.storageInfo = storageInfo;
allocationData.alignment = properties.alignment ? properties.alignment : MemoryConstants::preferredAlignment;
allocationData.imgInfo = properties.imgInfo;
if (allocationData.flags.allocateMemory) {
allocationData.hostPtr = nullptr;
}
allocationData.gpuAddress = properties.gpuAddress;
allocationData.osContext = properties.osContext;
allocationData.rootDeviceIndex = properties.rootDeviceIndex;
allocationData.useMmapObject = properties.useMmapObject;
allocationData.flags.crossRootDeviceAccess = properties.flags.crossRootDeviceAccess;
allocationData.flags.useSystemMemory |= MemoryPropertiesHelper::useSystemMemoryForCrossRootDeviceAccess(properties.flags.crossRootDeviceAccess);
helper.setExtraAllocationData(allocationData, properties, hwInfo);
allocationData.flags.useSystemMemory |= properties.flags.forceSystemMemory;
overrideAllocationData(allocationData, properties);
allocationData.flags.isUSMHostAllocation = properties.flags.isUSMHostAllocation;
allocationData.storageInfo.systemMemoryPlacement = allocationData.flags.useSystemMemory;
return true;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryInPreferredPool(const AllocationProperties &properties, const void *hostPtr) {
AllocationData allocationData;
getAllocationData(allocationData, properties, hostPtr, createStorageInfoFromProperties(properties));
AllocationStatus status = AllocationStatus::Error;
GraphicsAllocation *allocation = allocateGraphicsMemoryInDevicePool(allocationData, status);
if (allocation) {
getLocalMemoryUsageBankSelector(properties.allocationType, properties.rootDeviceIndex)->reserveOnBanks(allocationData.storageInfo.getMemoryBanks(), allocation->getUnderlyingBufferSize());
status = this->registerLocalMemAlloc(allocation, properties.rootDeviceIndex);
}
if (!allocation && status == AllocationStatus::RetryInNonDevicePool) {
allocation = allocateGraphicsMemory(allocationData);
if (allocation) {
status = this->registerSysMemAlloc(allocation);
}
}
if (allocation && status != AllocationStatus::Success) {
freeGraphicsMemory(allocation);
allocation = nullptr;
}
if (!allocation) {
return nullptr;
}
fileLoggerInstance().logAllocation(allocation);
registerAllocationInOs(allocation);
return allocation;
}
GraphicsAllocation *MemoryManager::allocateInternalGraphicsMemoryWithHostCopy(uint32_t rootDeviceIndex,
DeviceBitfield bitField,
const void *ptr,
size_t size) {
NEO::AllocationProperties copyProperties{rootDeviceIndex,
size,
NEO::AllocationType::INTERNAL_HOST_MEMORY,
bitField};
copyProperties.alignment = MemoryConstants::pageSize;
auto allocation = this->allocateGraphicsMemoryWithProperties(copyProperties);
if (allocation) {
memcpy_s(allocation->getUnderlyingBuffer(), allocation->getUnderlyingBufferSize(), ptr, size);
}
return allocation;
}
bool MemoryManager::mapAuxGpuVA(GraphicsAllocation *graphicsAllocation) {
bool ret = false;
for (auto engine : registeredEngines) {
if (engine.commandStreamReceiver->pageTableManager.get()) {
ret = engine.commandStreamReceiver->pageTableManager->updateAuxTable(graphicsAllocation->getGpuAddress(), graphicsAllocation->getDefaultGmm(), true);
if (!ret) {
break;
}
}
}
return ret;
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemory(const AllocationData &allocationData) {
if (allocationData.type == AllocationType::IMAGE || allocationData.type == AllocationType::SHARED_RESOURCE_COPY) {
UNRECOVERABLE_IF(allocationData.imgInfo == nullptr);
return allocateGraphicsMemoryForImage(allocationData);
}
if (allocationData.flags.shareable || allocationData.flags.isUSMDeviceMemory) {
return allocateMemoryByKMD(allocationData);
}
if (((false == allocationData.flags.isUSMHostAllocation) || (nullptr == allocationData.hostPtr)) &&
(useNonSvmHostPtrAlloc(allocationData.type, allocationData.rootDeviceIndex) || isNonSvmBuffer(allocationData.hostPtr, allocationData.type, allocationData.rootDeviceIndex))) {
auto allocation = allocateGraphicsMemoryForNonSvmHostPtr(allocationData);
if (allocation) {
allocation->setFlushL3Required(allocationData.flags.flushL3);
}
return allocation;
}
bool use32Allocator = heapAssigner.use32BitHeap(allocationData.type);
bool isAllocationOnLimitedGPU = isLimitedGPUOnType(allocationData.rootDeviceIndex, allocationData.type);
if (use32Allocator || isAllocationOnLimitedGPU ||
(force32bitAllocations && allocationData.flags.allow32Bit && is64bit)) {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[allocationData.rootDeviceIndex]->getHardwareInfo();
bool useLocalMem = heapAssigner.useExternal32BitHeap(allocationData.type) ? ProductHelper::get(hwInfo->platform.eProductFamily)->heapInLocalMem(*hwInfo) : false;
return allocate32BitGraphicsMemoryImpl(allocationData, useLocalMem);
}
if (allocationData.flags.isUSMHostAllocation && allocationData.hostPtr) {
return allocateUSMHostGraphicsMemory(allocationData);
}
if (allocationData.hostPtr) {
return allocateGraphicsMemoryWithHostPtr(allocationData);
}
if (allocationData.gpuAddress) {
return allocateGraphicsMemoryWithGpuVa(allocationData);
}
if (peek64kbPagesEnabled(allocationData.rootDeviceIndex) && allocationData.flags.allow64kbPages) {
return allocateGraphicsMemory64kb(allocationData);
}
return allocateGraphicsMemoryWithAlignment(allocationData);
}
GraphicsAllocation *MemoryManager::allocateGraphicsMemoryForImage(const AllocationData &allocationData) {
auto gmm = std::make_unique<Gmm>(executionEnvironment.rootDeviceEnvironments[allocationData.rootDeviceIndex]->getGmmHelper(), *allocationData.imgInfo,
allocationData.storageInfo, allocationData.flags.preferCompressed);
// AllocationData needs to be reconfigured for System Memory paths
AllocationData allocationDataWithSize = allocationData;
allocationDataWithSize.size = allocationData.imgInfo->size;
auto hostPtrAllocation = allocateGraphicsMemoryForImageFromHostPtr(allocationDataWithSize);
if (hostPtrAllocation) {
hostPtrAllocation->setDefaultGmm(gmm.release());
return hostPtrAllocation;
}
return allocateGraphicsMemoryForImageImpl(allocationDataWithSize, std::move(gmm));
}
EngineControlContainer &MemoryManager::getRegisteredEngines() {
return registeredEngines;
}
bool MemoryManager::isExternalAllocation(AllocationType allocationType) {
if (allocationType == AllocationType::BUFFER ||
allocationType == AllocationType::BUFFER_HOST_MEMORY ||
allocationType == AllocationType::EXTERNAL_HOST_PTR ||
allocationType == AllocationType::FILL_PATTERN ||
allocationType == AllocationType::IMAGE ||
allocationType == AllocationType::MAP_ALLOCATION ||
allocationType == AllocationType::PIPE ||
allocationType == AllocationType::SHARED_BUFFER ||
allocationType == AllocationType::SHARED_CONTEXT_IMAGE ||
allocationType == AllocationType::SHARED_IMAGE ||
allocationType == AllocationType::SHARED_RESOURCE_COPY ||
allocationType == AllocationType::SVM_CPU ||
allocationType == AllocationType::SVM_GPU ||
allocationType == AllocationType::SVM_ZERO_COPY ||
allocationType == AllocationType::UNIFIED_SHARED_MEMORY ||
allocationType == AllocationType::WRITE_COMBINED) {
return true;
}
return false;
}
LocalMemoryUsageBankSelector *MemoryManager::getLocalMemoryUsageBankSelector(AllocationType allocationType, uint32_t rootDeviceIndex) {
if (isExternalAllocation(allocationType)) {
return externalLocalMemoryUsageBankSelector[rootDeviceIndex].get();
}
return internalLocalMemoryUsageBankSelector[rootDeviceIndex].get();
}
EngineControl *MemoryManager::getRegisteredEngineForCsr(CommandStreamReceiver *commandStreamReceiver) {
EngineControl *engineCtrl = nullptr;
for (auto &engine : registeredEngines) {
if (engine.commandStreamReceiver == commandStreamReceiver) {
engineCtrl = &engine;
break;
}
}
return engineCtrl;
}
void MemoryManager::unregisterEngineForCsr(CommandStreamReceiver *commandStreamReceiver) {
auto numRegisteredEngines = registeredEngines.size();
for (auto i = 0u; i < numRegisteredEngines; i++) {
if (registeredEngines[i].commandStreamReceiver == commandStreamReceiver) {
registeredEngines[i].osContext->decRefInternal();
std::swap(registeredEngines[i], registeredEngines[numRegisteredEngines - 1]);
registeredEngines.pop_back();
return;
}
}
}
void *MemoryManager::lockResource(GraphicsAllocation *graphicsAllocation) {
if (!graphicsAllocation) {
return nullptr;
}
if (graphicsAllocation->isLocked()) {
return graphicsAllocation->getLockedPtr();
}
auto retVal = lockResourceImpl(*graphicsAllocation);
if (!retVal) {
return nullptr;
}
graphicsAllocation->lock(retVal);
return retVal;
}
void MemoryManager::unlockResource(GraphicsAllocation *graphicsAllocation) {
if (!graphicsAllocation) {
return;
}
DEBUG_BREAK_IF(!graphicsAllocation->isLocked());
unlockResourceImpl(*graphicsAllocation);
graphicsAllocation->unlock();
}
HeapIndex MemoryManager::selectHeap(const GraphicsAllocation *allocation, bool hasPointer, bool isFullRangeSVM, bool useFrontWindow) {
if (allocation) {
if (heapAssigner.useInternal32BitHeap(allocation->getAllocationType())) {
return useFrontWindow ? HeapAssigner::mapInternalWindowIndex(selectInternalHeap(allocation->isAllocatedInLocalMemoryPool())) : selectInternalHeap(allocation->isAllocatedInLocalMemoryPool());
}
if (allocation->is32BitAllocation() || heapAssigner.useExternal32BitHeap(allocation->getAllocationType())) {
return useFrontWindow ? HeapAssigner::mapExternalWindowIndex(selectExternalHeap(allocation->isAllocatedInLocalMemoryPool()))
: selectExternalHeap(allocation->isAllocatedInLocalMemoryPool());
}
}
if (isFullRangeSVM) {
if (hasPointer) {
return HeapIndex::HEAP_SVM;
}
if (allocation && allocation->getDefaultGmm()->gmmResourceInfo->is64KBPageSuitable()) {
return HeapIndex::HEAP_STANDARD64KB;
}
return HeapIndex::HEAP_STANDARD;
}
// Limited range allocation goes to STANDARD heap
return HeapIndex::HEAP_STANDARD;
}
bool MemoryManager::copyMemoryToAllocation(GraphicsAllocation *graphicsAllocation, size_t destinationOffset, const void *memoryToCopy, size_t sizeToCopy) {
if (!graphicsAllocation->getUnderlyingBuffer()) {
return false;
}
for (auto i = 0u; i < graphicsAllocation->storageInfo.getNumBanks(); ++i) {
memcpy_s(ptrOffset(static_cast<uint8_t *>(graphicsAllocation->getUnderlyingBuffer()) + i * graphicsAllocation->getUnderlyingBufferSize(), destinationOffset),
(graphicsAllocation->getUnderlyingBufferSize() - destinationOffset), memoryToCopy, sizeToCopy);
if (!GraphicsAllocation::isDebugSurfaceAllocationType(graphicsAllocation->getAllocationType())) {
break;
}
}
return true;
}
bool MemoryManager::copyMemoryToAllocationBanks(GraphicsAllocation *graphicsAllocation, size_t destinationOffset, const void *memoryToCopy, size_t sizeToCopy, DeviceBitfield handleMask) {
memcpy_s(ptrOffset(static_cast<uint8_t *>(graphicsAllocation->getUnderlyingBuffer()), destinationOffset),
(graphicsAllocation->getUnderlyingBufferSize() - destinationOffset), memoryToCopy, sizeToCopy);
return true;
}
void MemoryManager::waitForEnginesCompletion(GraphicsAllocation &graphicsAllocation) {
for (auto &engine : getRegisteredEngines()) {
auto osContextId = engine.osContext->getContextId();
auto allocationTaskCount = graphicsAllocation.getTaskCount(osContextId);
if (graphicsAllocation.isUsedByOsContext(osContextId) &&
engine.commandStreamReceiver->getTagAllocation() != nullptr &&
allocationTaskCount > *engine.commandStreamReceiver->getTagAddress()) {
engine.commandStreamReceiver->waitForCompletionWithTimeout(WaitParams{false, false, TimeoutControls::maxTimeout}, allocationTaskCount);
}
}
}
void MemoryManager::cleanTemporaryAllocationListOnAllEngines(bool waitForCompletion) {
for (auto &engine : getRegisteredEngines()) {
auto csr = engine.commandStreamReceiver;
if (waitForCompletion) {
csr->waitForCompletionWithTimeout(WaitParams{false, false, 0}, csr->peekLatestSentTaskCount());
}
csr->getInternalAllocationStorage()->cleanAllocationList(*csr->getTagAddress(), AllocationUsage::TEMPORARY_ALLOCATION);
}
}
void *MemoryManager::getReservedMemory(size_t size, size_t alignment) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!reservedMemory) {
reservedMemory = allocateSystemMemory(size, alignment);
}
return reservedMemory;
}
bool MemoryManager::isHostPointerTrackingEnabled(uint32_t rootDeviceIndex) {
if (DebugManager.flags.EnableHostPtrTracking.get() != -1) {
return !!DebugManager.flags.EnableHostPtrTracking.get();
}
return (peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo()->capabilityTable.hostPtrTrackingEnabled | is32bit);
}
bool MemoryManager::useNonSvmHostPtrAlloc(AllocationType allocationType, uint32_t rootDeviceIndex) {
bool isExternalHostPtrAlloc = (allocationType == AllocationType::EXTERNAL_HOST_PTR);
bool isMapAlloc = (allocationType == AllocationType::MAP_ALLOCATION);
if (forceNonSvmForExternalHostPtr && isExternalHostPtrAlloc) {
return true;
}
bool isNonSvmPtrCapable = ((!peekExecutionEnvironment().rootDeviceEnvironments[rootDeviceIndex]->isFullRangeSvm() || !isHostPointerTrackingEnabled(rootDeviceIndex)) & !is32bit);
return isNonSvmPtrCapable && (isExternalHostPtrAlloc || isMapAlloc);
}
bool MemoryManager::isCopyRequired(ImageInfo &imgInfo, const void *hostPtr) {
if (!hostPtr) {
return false;
}
size_t imageWidth = imgInfo.imgDesc.imageWidth;
size_t imageHeight = 1;
size_t imageDepth = 1;
size_t imageCount = 1;
switch (imgInfo.imgDesc.imageType) {
case ImageType::Image3D:
imageDepth = imgInfo.imgDesc.imageDepth;
[[fallthrough]];
case ImageType::Image2D:
case ImageType::Image2DArray:
imageHeight = imgInfo.imgDesc.imageHeight;
break;
default:
break;
}
auto hostPtrRowPitch = imgInfo.imgDesc.imageRowPitch ? imgInfo.imgDesc.imageRowPitch : imageWidth * imgInfo.surfaceFormat->ImageElementSizeInBytes;
auto hostPtrSlicePitch = imgInfo.imgDesc.imageSlicePitch ? imgInfo.imgDesc.imageSlicePitch : hostPtrRowPitch * imgInfo.imgDesc.imageHeight;
size_t pointerPassedSize = hostPtrRowPitch * imageHeight * imageDepth * imageCount;
auto alignedSizePassedPointer = alignSizeWholePage(const_cast<void *>(hostPtr), pointerPassedSize);
auto alignedSizeRequiredForAllocation = alignSizeWholePage(const_cast<void *>(hostPtr), imgInfo.size);
// Passed pointer doesn't have enough memory, copy is needed
bool copyRequired = (alignedSizeRequiredForAllocation > alignedSizePassedPointer) |
(imgInfo.rowPitch != hostPtrRowPitch) |
(imgInfo.slicePitch != hostPtrSlicePitch) |
((reinterpret_cast<uintptr_t>(hostPtr) & (MemoryConstants::cacheLineSize - 1)) != 0) |
!imgInfo.linearStorage;
return copyRequired;
}
void MemoryManager::overrideAllocationData(AllocationData &allocationData, const AllocationProperties &properties) {
if (DebugManager.flags.ForceSystemMemoryPlacement.get()) {
if ((1llu << (static_cast<int64_t>(properties.allocationType) - 1)) & DebugManager.flags.ForceSystemMemoryPlacement.get()) {
allocationData.flags.useSystemMemory = true;
}
}
if (DebugManager.flags.ForceNonSystemMemoryPlacement.get()) {
if ((1llu << (static_cast<int64_t>(properties.allocationType) - 1)) & DebugManager.flags.ForceNonSystemMemoryPlacement.get()) {
allocationData.flags.useSystemMemory = false;
}
}
int32_t directRingPlacement = DebugManager.flags.DirectSubmissionBufferPlacement.get();
int32_t directRingAddressing = DebugManager.flags.DirectSubmissionBufferAddressing.get();
if (properties.allocationType == AllocationType::RING_BUFFER) {
if (directRingPlacement != -1) {
if (directRingPlacement == 0) {
allocationData.flags.requiresCpuAccess = true;
allocationData.flags.useSystemMemory = false;
} else {
allocationData.flags.requiresCpuAccess = false;
allocationData.flags.useSystemMemory = true;
}
}
if (directRingAddressing != -1) {
if (directRingAddressing == 0) {
allocationData.flags.resource48Bit = false;
} else {
allocationData.flags.resource48Bit = true;
}
}
}
int32_t directSemaphorePlacement = DebugManager.flags.DirectSubmissionSemaphorePlacement.get();
int32_t directSemaphoreAddressing = DebugManager.flags.DirectSubmissionSemaphoreAddressing.get();
if (properties.allocationType == AllocationType::SEMAPHORE_BUFFER) {
if (directSemaphorePlacement != -1) {
if (directSemaphorePlacement == 0) {
allocationData.flags.requiresCpuAccess = true;
allocationData.flags.useSystemMemory = false;
} else {
allocationData.flags.requiresCpuAccess = false;
allocationData.flags.useSystemMemory = true;
}
}
if (directSemaphoreAddressing != -1) {
if (directSemaphoreAddressing == 0) {
allocationData.flags.resource48Bit = false;
} else {
allocationData.flags.resource48Bit = true;
}
}
}
}
bool MemoryManager::isAllocationTypeToCapture(AllocationType type) const {
switch (type) {
case AllocationType::SCRATCH_SURFACE:
case AllocationType::PRIVATE_SURFACE:
case AllocationType::LINEAR_STREAM:
case AllocationType::INTERNAL_HEAP:
return true;
default:
break;
}
return false;
}
bool MemoryManager::isLocalMemoryUsedForIsa(uint32_t rootDeviceIndex) {
std::call_once(checkIsaPlacementOnceFlags[rootDeviceIndex], [&] {
AllocationProperties properties = {rootDeviceIndex, 0x1000, AllocationType::KERNEL_ISA, 1};
AllocationData data;
getAllocationData(data, properties, nullptr, StorageInfo());
isaInLocalMemory[rootDeviceIndex] = !data.flags.useSystemMemory;
});
return isaInLocalMemory[rootDeviceIndex];
}
OsContext *MemoryManager::getDefaultEngineContext(uint32_t rootDeviceIndex, DeviceBitfield subdevicesBitfield) {
OsContext *defaultContext = nullptr;
for (auto engineIndex = 0u; engineIndex < this->getRegisteredEnginesCount(); engineIndex++) {
OsContext *engine = this->getRegisteredEngines()[engineIndex].osContext;
if ((engine->getRootDeviceIndex() == rootDeviceIndex) &&
(engine->isDefaultContext() && engine->getDeviceBitfield() == subdevicesBitfield)) {
defaultContext = engine;
break;
}
}
if (!defaultContext) {
defaultContext = registeredEngines[defaultEngineIndex[rootDeviceIndex]].osContext;
}
return defaultContext;
}
bool MemoryTransferHelper::transferMemoryToAllocation(bool useBlitter, const Device &device, GraphicsAllocation *dstAllocation, size_t dstOffset, const void *srcMemory, size_t srcSize) {
if (useBlitter) {
if (BlitHelperFunctions::blitMemoryToAllocation(device, dstAllocation, dstOffset, srcMemory, {srcSize, 1, 1}) == BlitOperationResult::Success) {
return true;
}
}
return device.getMemoryManager()->copyMemoryToAllocation(dstAllocation, dstOffset, srcMemory, srcSize);
}
bool MemoryTransferHelper::transferMemoryToAllocationBanks(const Device &device, GraphicsAllocation *dstAllocation, size_t dstOffset, const void *srcMemory,
size_t srcSize, DeviceBitfield dstMemoryBanks) {
auto blitSuccess = BlitHelper::blitMemoryToAllocationBanks(device, dstAllocation, dstOffset, srcMemory, {srcSize, 1, 1}, dstMemoryBanks) == BlitOperationResult::Success;
if (!blitSuccess) {
return device.getMemoryManager()->copyMemoryToAllocationBanks(dstAllocation, dstOffset, srcMemory, srcSize, dstMemoryBanks);
}
return true;
}
} // namespace NEO