compute-runtime/runtime/program/program.cpp

452 lines
14 KiB
C++

/*
* Copyright (c) 2017 - 2018, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "program.h"
#include "elf/writer.h"
#include "runtime/context/context.h"
#include "runtime/helpers/debug_helpers.h"
#include "runtime/helpers/string.h"
#include "runtime/memory_manager/memory_manager.h"
#include "runtime/compiler_interface/compiler_interface.h"
#include <sstream>
namespace OCLRT {
const std::string Program::clOptNameClVer("-cl-std=CL");
const std::string Program::clOptNameUniformWgs{"-cl-uniform-work-group-size"};
Program::Program() : Program(nullptr) {
numDevices = 0;
}
Program::Program(Context *context) : context(context) {
if (this->context) {
this->context->incRefInternal();
}
blockKernelManager = new BlockKernelManager();
pDevice = context ? context->getDevice(0) : nullptr;
numDevices = 1;
elfBinary = nullptr;
elfBinarySize = 0;
genBinary = nullptr;
genBinarySize = 0;
llvmBinary = nullptr;
llvmBinarySize = 0;
debugData = nullptr;
debugDataSize = 0;
buildStatus = CL_BUILD_NONE;
programBinaryType = CL_PROGRAM_BINARY_TYPE_NONE;
isCreatedFromBinary = false;
isProgramBinaryResolved = false;
constantSurface = nullptr;
globalSurface = nullptr;
globalVarTotalSize = 0;
programScopePatchListSize = 0;
programScopePatchList = nullptr;
programOptionVersion = 12u;
allowNonUniform = false;
char paramValue[32] = {};
bool force32BitAddressess = false;
if (pDevice) {
pDevice->getDeviceInfo(CL_DEVICE_VERSION, 32, paramValue, nullptr);
if (strstr(paramValue, "2.1")) {
internalOptions = "-ocl-version=210 ";
} else if (strstr(paramValue, "2.0")) {
internalOptions = "-ocl-version=200 ";
} else if (strstr(paramValue, "1.2")) {
internalOptions = "-ocl-version=120 ";
}
force32BitAddressess = pDevice->getDeviceInfo().force32BitAddressess;
if (force32BitAddressess) {
internalOptions += "-m32 ";
}
pDevice->increaseProgramCount();
if (DebugManager.flags.DisableStatelessToStatefulOptimization.get()) {
internalOptions += "-cl-intel-greater-than-4GB-buffer-required ";
}
kernelDebugEnabled = pDevice->isSourceLevelDebuggerActive();
}
if (DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get()) {
internalOptions += "-cl-intel-has-buffer-offset-arg ";
}
internalOptions += "-fpreserve-vec3-type ";
}
Program::~Program() {
if (context) {
context->decRefInternal();
}
delete[] genBinary;
genBinary = nullptr;
delete[] llvmBinary;
llvmBinary = nullptr;
delete[] debugData;
debugData = nullptr;
delete[] elfBinary;
elfBinary = nullptr;
elfBinarySize = 0;
cleanCurrentKernelInfo();
freeBlockResources();
delete blockKernelManager;
if (constantSurface) {
pDevice->getMemoryManager()->checkGpuUsageAndDestroyGraphicsAllocations(constantSurface);
constantSurface = nullptr;
}
if (globalSurface) {
pDevice->getMemoryManager()->checkGpuUsageAndDestroyGraphicsAllocations(globalSurface);
globalSurface = nullptr;
}
}
cl_int Program::createProgramFromBinary(
const void *pBinary,
size_t binarySize) {
cl_int retVal = CL_SUCCESS;
uint32_t binaryVersion = iOpenCL::CURRENT_ICBE_VERSION;
if (Program::isValidLlvmBinary(pBinary, binarySize)) {
retVal = processSpirBinary(pBinary, binarySize, false);
} else if (Program::isValidSpirvBinary(pBinary, binarySize)) {
retVal = processSpirBinary(pBinary, binarySize, true);
} else {
retVal = processElfBinary(pBinary, binarySize, binaryVersion);
if (retVal == CL_SUCCESS) {
isCreatedFromBinary = true;
} else if (binaryVersion != iOpenCL::CURRENT_ICBE_VERSION) {
// Version of compiler used to create program binary is invalid,
// needs to recompile program binary from its LLVM (if available).
// if recompile fails propagate error retVal from previous function
if (!rebuildProgramFromLLVM()) {
retVal = CL_SUCCESS;
}
}
}
return retVal;
}
cl_int Program::rebuildProgramFromLLVM() {
cl_int retVal = CL_SUCCESS;
size_t dataSize;
char *pData = nullptr;
CLElfLib::CElfWriter *pElfWriter = nullptr;
do {
if (!Program::isValidLlvmBinary(llvmBinary, llvmBinarySize)) {
retVal = CL_INVALID_PROGRAM;
break;
}
pElfWriter = CLElfLib::CElfWriter::create(CLElfLib::EH_TYPE_OPENCL_OBJECTS, CLElfLib::EH_MACHINE_NONE, 0);
CLElfLib::SSectionNode sectionNode;
sectionNode.Name = "";
sectionNode.Type = CLElfLib::SH_TYPE_OPENCL_LLVM_BINARY;
sectionNode.Flags = 0;
sectionNode.pData = llvmBinary;
sectionNode.DataSize = static_cast<unsigned int>(llvmBinarySize);
pElfWriter->addSection(&sectionNode);
pElfWriter->resolveBinary(nullptr, dataSize);
pData = new char[dataSize];
pElfWriter->resolveBinary(pData, dataSize);
CompilerInterface *pCompilerInterface = getCompilerInterface();
if (nullptr == pCompilerInterface) {
retVal = CL_OUT_OF_HOST_MEMORY;
break;
}
TranslationArgs inputArgs = {};
inputArgs.pInput = pData;
inputArgs.InputSize = static_cast<unsigned int>(dataSize);
inputArgs.pOptions = options.c_str();
inputArgs.OptionsSize = static_cast<unsigned int>(options.length());
inputArgs.pInternalOptions = internalOptions.c_str();
inputArgs.InternalOptionsSize = static_cast<unsigned int>(internalOptions.length());
inputArgs.pTracingOptions = nullptr;
inputArgs.TracingOptionsCount = 0;
retVal = pCompilerInterface->link(*this, inputArgs);
if (retVal != CL_SUCCESS) {
break;
}
retVal = processGenBinary();
if (retVal != CL_SUCCESS) {
break;
}
programBinaryType = CL_PROGRAM_BINARY_TYPE_EXECUTABLE;
isCreatedFromBinary = true;
isProgramBinaryResolved = true;
} while (false);
CLElfLib::CElfWriter::destroy(pElfWriter);
delete[] pData;
return retVal;
}
void Program::getProgramCompilerVersion(
SProgramBinaryHeader *pSectionData,
uint32_t &binaryVersion) const {
if (pSectionData != nullptr) {
binaryVersion = pSectionData->Version;
}
}
bool Program::isValidLlvmBinary(
const void *pBinary,
size_t binarySize) {
const char *pLlvmMagic = "BC\xc0\xde";
bool retVal = false;
if (pBinary && (binarySize > (strlen(pLlvmMagic) + 1))) {
if (strstr((char *)pBinary, pLlvmMagic) != nullptr) {
retVal = true;
}
}
return retVal;
}
void Program::setSource(char *pSourceString) {
sourceCode = pSourceString;
}
cl_int Program::getSource(char *&pBinary, unsigned int &dataSize) const {
cl_int retVal = CL_INVALID_PROGRAM;
pBinary = nullptr;
dataSize = 0;
if (!sourceCode.empty()) {
pBinary = (char *)(sourceCode.c_str());
dataSize = (unsigned int)(sourceCode.size());
retVal = CL_SUCCESS;
}
return retVal;
}
void Program::storeGenBinary(
const void *pSrc,
const size_t srcSize) {
storeBinary(genBinary, genBinarySize, pSrc, srcSize);
}
void Program::storeLlvmBinary(
const void *pSrc,
const size_t srcSize) {
storeBinary(llvmBinary, llvmBinarySize, pSrc, srcSize);
}
void Program::storeDebugData(
const void *pSrc,
const size_t srcSize) {
storeBinary(debugData, debugDataSize, pSrc, srcSize);
}
void Program::storeBinary(
char *&pDst,
size_t &dstSize,
const void *pSrc,
const size_t srcSize) {
dstSize = 0;
DEBUG_BREAK_IF(!(pSrc && srcSize > 0));
delete[] pDst;
pDst = new char[srcSize];
dstSize = (cl_uint)srcSize;
memcpy_s(pDst, dstSize, pSrc, srcSize);
}
void Program::updateBuildLog(const Device *pDevice, const char *pErrorString,
size_t errorStringSize) {
if ((pErrorString == nullptr) || (errorStringSize == 0) || (pErrorString[0] == '\0')) {
return;
}
if (pErrorString[errorStringSize - 1] == '\0') {
--errorStringSize;
}
auto it = buildLog.find(pDevice);
if (it == buildLog.end()) {
buildLog[pDevice].assign(pErrorString, pErrorString + errorStringSize);
return;
}
buildLog[pDevice].append("\n");
buildLog[pDevice].append(pErrorString, pErrorString + errorStringSize);
}
const char *Program::getBuildLog(const Device *pDevice) const {
const char *entry = nullptr;
auto it = buildLog.find(pDevice);
if (it != buildLog.end()) {
entry = it->second.c_str();
}
return entry;
}
CompilerInterface *Program::getCompilerInterface() const {
return CompilerInterface::getInstance();
}
void Program::separateBlockKernels() {
if ((0 == parentKernelInfoArray.size()) && (0 == subgroupKernelInfoArray.size())) {
return;
}
auto allKernelInfos(kernelInfoArray);
kernelInfoArray.clear();
for (auto &i : allKernelInfos) {
auto end = i->name.rfind("_dispatch_");
if (end != std::string::npos) {
bool baseKernelFound = false;
std::string baseKernelName(i->name, 0, end);
for (auto &j : parentKernelInfoArray) {
if (j->name.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
if (!baseKernelFound) {
for (auto &j : subgroupKernelInfoArray) {
if (j->name.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
}
if (baseKernelFound) {
//Parent or subgroup kernel found -> child kernel
blockKernelManager->addBlockKernelInfo(i);
} else {
kernelInfoArray.push_back(i);
}
} else {
//Regular kernel found
kernelInfoArray.push_back(i);
}
}
allKernelInfos.clear();
}
void Program::allocateBlockPrivateSurfaces() {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *info = blockKernelManager->getBlockKernelInfo(i);
if (info->patchInfo.pAllocateStatelessPrivateSurface) {
size_t privateSize = info->patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize;
if (privateSize > 0 && blockKernelManager->getPrivateSurface(i) == nullptr) {
privateSize *= getDevice(0).getDeviceInfo().computeUnitsUsedForScratch * info->getMaxSimdSize();
auto *privateSurface = getDevice(0).getMemoryManager()->createGraphicsAllocationWithRequiredBitness(privateSize, nullptr);
blockKernelManager->pushPrivateSurface(privateSurface, i);
}
}
}
}
void Program::freeBlockResources() {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
auto *privateSurface = blockKernelManager->getPrivateSurface(i);
if (privateSurface != nullptr) {
blockKernelManager->pushPrivateSurface(nullptr, i);
getDevice(0).getMemoryManager()->freeGraphicsMemory(privateSurface);
}
auto kernelInfo = blockKernelManager->getBlockKernelInfo(i);
DEBUG_BREAK_IF(!kernelInfo->kernelAllocation);
if (kernelInfo->kernelAllocation) {
getDevice(0).getMemoryManager()->freeGraphicsMemory(kernelInfo->kernelAllocation);
}
}
}
void Program::cleanCurrentKernelInfo() {
for (auto &kernelInfo : kernelInfoArray) {
if (kernelInfo->kernelAllocation) {
this->pDevice->getMemoryManager()->checkGpuUsageAndDestroyGraphicsAllocations(kernelInfo->kernelAllocation);
}
delete kernelInfo;
}
kernelInfoArray.clear();
}
void Program::updateNonUniformFlag() {
//Look for -cl-std=CL substring and extract value behind which can be 1.2 2.0 2.1 and convert to value
auto pos = options.find(clOptNameClVer);
if (pos == std::string::npos) {
programOptionVersion = 12u; //Default is 1.2
} else {
std::stringstream ss{options.c_str() + pos + clOptNameClVer.size()};
uint32_t majorV, minorV;
char dot;
ss >> majorV;
ss >> dot;
ss >> minorV;
programOptionVersion = majorV * 10u + minorV;
}
if (programOptionVersion >= 20u && options.find(clOptNameUniformWgs) == std::string::npos) {
allowNonUniform = true;
}
}
void Program::updateNonUniformFlag(const Program **inputPrograms, size_t numInputPrograms) {
bool allowNonUniform = true;
for (cl_uint i = 0; i < numInputPrograms; i++) {
allowNonUniform = allowNonUniform && inputPrograms[i]->getAllowNonUniform();
}
this->allowNonUniform = allowNonUniform;
}
} // namespace OCLRT