compute-runtime/runtime/memory_manager/os_agnostic_memory_manager.cpp

342 lines
16 KiB
C++

/*
* Copyright (C) 2017-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "runtime/memory_manager/os_agnostic_memory_manager.h"
#include "core/helpers/basic_math.h"
#include "core/helpers/ptr_math.h"
#include "runtime/aub/aub_center.h"
#include "runtime/execution_environment/execution_environment.h"
#include "runtime/gmm_helper/gmm.h"
#include "runtime/gmm_helper/gmm_helper.h"
#include "runtime/gmm_helper/resource_info.h"
#include "runtime/helpers/aligned_memory.h"
#include "runtime/helpers/options.h"
#include "runtime/helpers/surface_formats.h"
#include "runtime/memory_manager/host_ptr_manager.h"
#include "runtime/os_interface/os_memory.h"
#include <cassert>
namespace NEO {
OsAgnosticMemoryManager::OsAgnosticMemoryManager(bool aubUsage, ExecutionEnvironment &executionEnvironment) : MemoryManager(executionEnvironment) {
auto gpuAddressSpace = executionEnvironment.getHardwareInfo()->capabilityTable.gpuAddressSpace;
// 4 x sizeof(Heap32) + 2 x sizeof(Standard/Standard64k)
size_t reservedCpuAddressRangeSize = is64bit ? (4 * 4 + 2 * (aubUsage ? 32 : 4)) * GB : 0;
gfxPartition.init(gpuAddressSpace, reservedCpuAddressRangeSize);
}
OsAgnosticMemoryManager::~OsAgnosticMemoryManager() {
applyCommonCleanup();
}
struct OsHandle {
};
GraphicsAllocation *OsAgnosticMemoryManager::allocateGraphicsMemoryWithAlignment(const AllocationData &allocationData) {
auto sizeAligned = alignUp(allocationData.size, MemoryConstants::pageSize);
MemoryAllocation *memoryAllocation = nullptr;
if (fakeBigAllocations && allocationData.size > bigAllocation) {
memoryAllocation = createMemoryAllocation(
allocationData.type, nullptr, (void *)dummyAddress, static_cast<uint64_t>(dummyAddress), allocationData.size, counter,
MemoryPool::System4KBPages, allocationData.flags.multiOsContextCapable, allocationData.flags.uncacheable,
allocationData.flags.flushL3, false);
counter++;
return memoryAllocation;
}
auto ptr = allocateSystemMemory(sizeAligned, allocationData.alignment ? alignUp(allocationData.alignment, MemoryConstants::pageSize) : MemoryConstants::pageSize);
if (ptr != nullptr) {
memoryAllocation = createMemoryAllocation(allocationData.type, ptr, ptr, reinterpret_cast<uint64_t>(ptr), allocationData.size,
counter, MemoryPool::System4KBPages, allocationData.flags.multiOsContextCapable,
allocationData.flags.uncacheable, allocationData.flags.flushL3, false);
if (allocationData.type == GraphicsAllocation::AllocationType::SVM_CPU) {
//add 2MB padding in case mapPtr is not 2MB aligned
size_t reserveSize = sizeAligned + allocationData.alignment;
void *gpuPtr = reserveCpuAddressRange(reserveSize);
if (!gpuPtr) {
delete memoryAllocation;
alignedFreeWrapper(ptr);
return nullptr;
}
memoryAllocation->setReservedAddressRange(gpuPtr, reserveSize);
gpuPtr = alignUp(gpuPtr, allocationData.alignment);
memoryAllocation->setCpuPtrAndGpuAddress(ptr, reinterpret_cast<uint64_t>(gpuPtr));
}
}
counter++;
return memoryAllocation;
}
GraphicsAllocation *OsAgnosticMemoryManager::allocateGraphicsMemoryForNonSvmHostPtr(const AllocationData &allocationData) {
auto alignedPtr = alignDown(allocationData.hostPtr, MemoryConstants::pageSize);
auto offsetInPage = ptrDiff(allocationData.hostPtr, alignedPtr);
auto memoryAllocation = createMemoryAllocation(allocationData.type, nullptr, const_cast<void *>(allocationData.hostPtr),
reinterpret_cast<uint64_t>(alignedPtr), allocationData.size, counter,
MemoryPool::System4KBPages, false, false, allocationData.flags.flushL3, false);
memoryAllocation->setAllocationOffset(offsetInPage);
counter++;
return memoryAllocation;
}
GraphicsAllocation *OsAgnosticMemoryManager::allocateGraphicsMemory64kb(const AllocationData &allocationData) {
AllocationData allocationData64kb = allocationData;
allocationData64kb.size = alignUp(allocationData.size, MemoryConstants::pageSize64k);
allocationData64kb.alignment = MemoryConstants::pageSize64k;
auto memoryAllocation = allocateGraphicsMemoryWithAlignment(allocationData64kb);
if (memoryAllocation) {
static_cast<MemoryAllocation *>(memoryAllocation)->overrideMemoryPool(MemoryPool::System64KBPages);
}
return memoryAllocation;
}
GraphicsAllocation *OsAgnosticMemoryManager::allocate32BitGraphicsMemoryImpl(const AllocationData &allocationData) {
auto heap = useInternal32BitAllocator(allocationData.type) ? internalHeapIndex : HeapIndex::HEAP_EXTERNAL;
if (allocationData.hostPtr) {
auto allocationSize = alignSizeWholePage(allocationData.hostPtr, allocationData.size);
auto gpuVirtualAddress = gfxPartition.heapAllocate(heap, allocationSize);
if (!gpuVirtualAddress) {
return nullptr;
}
uint64_t offset = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(allocationData.hostPtr) & MemoryConstants::pageMask);
MemoryAllocation *memAlloc = new MemoryAllocation(
allocationData.type, nullptr, const_cast<void *>(allocationData.hostPtr), GmmHelper::canonize(gpuVirtualAddress + offset),
allocationData.size, counter, MemoryPool::System4KBPagesWith32BitGpuAddressing, false, false, false);
memAlloc->set32BitAllocation(true);
memAlloc->setGpuBaseAddress(GmmHelper::canonize(gfxPartition.getHeapBase(heap)));
memAlloc->sizeToFree = allocationSize;
counter++;
return memAlloc;
}
auto allocationSize = alignUp(allocationData.size, MemoryConstants::pageSize);
void *ptrAlloc = nullptr;
auto gpuAddress = gfxPartition.heapAllocate(heap, allocationSize);
if (allocationData.size < 0xfffff000) {
if (fakeBigAllocations) {
ptrAlloc = reinterpret_cast<void *>(dummyAddress);
} else {
ptrAlloc = alignedMallocWrapper(allocationSize, MemoryConstants::allocationAlignment);
}
}
MemoryAllocation *memoryAllocation = nullptr;
if (ptrAlloc != nullptr) {
memoryAllocation = new MemoryAllocation(allocationData.type, ptrAlloc, ptrAlloc, GmmHelper::canonize(gpuAddress),
allocationData.size, counter, MemoryPool::System4KBPagesWith32BitGpuAddressing, false,
false, false);
memoryAllocation->set32BitAllocation(true);
memoryAllocation->setGpuBaseAddress(GmmHelper::canonize(gfxPartition.getHeapBase(heap)));
memoryAllocation->sizeToFree = allocationSize;
}
counter++;
return memoryAllocation;
}
GraphicsAllocation *OsAgnosticMemoryManager::createGraphicsAllocationFromSharedHandle(osHandle handle, const AllocationProperties &properties, bool requireSpecificBitness) {
auto graphicsAllocation = createMemoryAllocation(properties.allocationType, nullptr, reinterpret_cast<void *>(1), 1,
4096u, static_cast<uint64_t>(handle), MemoryPool::SystemCpuInaccessible, false,
false, false, requireSpecificBitness);
graphicsAllocation->setSharedHandle(handle);
graphicsAllocation->set32BitAllocation(requireSpecificBitness);
if (properties.imgInfo) {
Gmm *gmm = new Gmm(*properties.imgInfo, createStorageInfoFromProperties(properties));
graphicsAllocation->setDefaultGmm(gmm);
}
return graphicsAllocation;
}
void OsAgnosticMemoryManager::addAllocationToHostPtrManager(GraphicsAllocation *gfxAllocation) {
FragmentStorage fragment = {};
fragment.driverAllocation = true;
fragment.fragmentCpuPointer = gfxAllocation->getUnderlyingBuffer();
fragment.fragmentSize = alignUp(gfxAllocation->getUnderlyingBufferSize(), MemoryConstants::pageSize);
fragment.osInternalStorage = new OsHandle();
fragment.residency = new ResidencyData();
hostPtrManager->storeFragment(fragment);
}
void OsAgnosticMemoryManager::removeAllocationFromHostPtrManager(GraphicsAllocation *gfxAllocation) {
auto buffer = gfxAllocation->getUnderlyingBuffer();
auto fragment = hostPtrManager->getFragment(buffer);
if (fragment && fragment->driverAllocation) {
OsHandle *osStorageToRelease = fragment->osInternalStorage;
ResidencyData *residencyDataToRelease = fragment->residency;
if (hostPtrManager->releaseHostPtr(buffer)) {
delete osStorageToRelease;
delete residencyDataToRelease;
}
}
}
void OsAgnosticMemoryManager::freeGraphicsMemoryImpl(GraphicsAllocation *gfxAllocation) {
for (auto handleId = 0u; handleId < maxHandleCount; handleId++) {
delete gfxAllocation->getGmm(handleId);
}
if ((uintptr_t)gfxAllocation->getUnderlyingBuffer() == dummyAddress) {
delete gfxAllocation;
return;
}
if (gfxAllocation->fragmentsStorage.fragmentCount) {
cleanGraphicsMemoryCreatedFromHostPtr(gfxAllocation);
delete gfxAllocation;
return;
}
auto memoryAllocation = static_cast<MemoryAllocation *>(gfxAllocation);
auto sizeToFree = memoryAllocation->sizeToFree;
if (sizeToFree) {
auto gpuAddressToFree = GmmHelper::decanonize(memoryAllocation->getGpuAddress()) & ~MemoryConstants::pageMask;
gfxPartition.freeGpuAddressRange(gpuAddressToFree, sizeToFree);
}
alignedFreeWrapper(gfxAllocation->getDriverAllocatedCpuPtr());
if (gfxAllocation->getReservedAddressPtr()) {
releaseReservedCpuAddressRange(gfxAllocation->getReservedAddressPtr(), gfxAllocation->getReservedAddressSize());
}
auto aubCenter = executionEnvironment.aubCenter.get();
if (aubCenter && aubCenter->getAubManager() && DebugManager.flags.EnableFreeMemory.get()) {
aubCenter->getAubManager()->freeMemory(gfxAllocation->getGpuAddress(), gfxAllocation->getUnderlyingBufferSize());
}
delete gfxAllocation;
}
uint64_t OsAgnosticMemoryManager::getSystemSharedMemory() {
return 16 * GB;
}
uint64_t OsAgnosticMemoryManager::getMaxApplicationAddress() {
return is64bit ? MemoryConstants::max64BitAppAddress : MemoryConstants::max32BitAppAddress;
}
uint64_t OsAgnosticMemoryManager::getInternalHeapBaseAddress() {
return gfxPartition.getHeapBase(internalHeapIndex);
}
uint64_t OsAgnosticMemoryManager::getExternalHeapBaseAddress() {
return gfxPartition.getHeapBase(HeapIndex::HEAP_EXTERNAL);
}
void OsAgnosticMemoryManager::setForce32BitAllocations(bool newValue) {
force32bitAllocations = newValue;
}
GraphicsAllocation *OsAgnosticMemoryManager::createGraphicsAllocation(OsHandleStorage &handleStorage, const AllocationData &allocationData) {
auto allocation = createMemoryAllocation(allocationData.type, nullptr, const_cast<void *>(allocationData.hostPtr),
reinterpret_cast<uint64_t>(allocationData.hostPtr), allocationData.size, counter++,
MemoryPool::System4KBPages, false, false, false, false);
allocation->fragmentsStorage = handleStorage;
return allocation;
}
void OsAgnosticMemoryManager::turnOnFakingBigAllocations() {
this->fakeBigAllocations = true;
}
MemoryManager::AllocationStatus OsAgnosticMemoryManager::populateOsHandles(OsHandleStorage &handleStorage) {
for (unsigned int i = 0; i < maxFragmentsCount; i++) {
if (!handleStorage.fragmentStorageData[i].osHandleStorage && handleStorage.fragmentStorageData[i].cpuPtr) {
handleStorage.fragmentStorageData[i].osHandleStorage = new OsHandle();
handleStorage.fragmentStorageData[i].residency = new ResidencyData();
FragmentStorage newFragment = {};
newFragment.fragmentCpuPointer = const_cast<void *>(handleStorage.fragmentStorageData[i].cpuPtr);
newFragment.fragmentSize = handleStorage.fragmentStorageData[i].fragmentSize;
newFragment.osInternalStorage = handleStorage.fragmentStorageData[i].osHandleStorage;
newFragment.residency = handleStorage.fragmentStorageData[i].residency;
hostPtrManager->storeFragment(newFragment);
}
}
return AllocationStatus::Success;
}
void OsAgnosticMemoryManager::cleanOsHandles(OsHandleStorage &handleStorage) {
for (unsigned int i = 0; i < maxFragmentsCount; i++) {
if (handleStorage.fragmentStorageData[i].freeTheFragment) {
auto aubCenter = executionEnvironment.aubCenter.get();
if (aubCenter && aubCenter->getAubManager() && DebugManager.flags.EnableFreeMemory.get()) {
aubCenter->getAubManager()->freeMemory((uint64_t)handleStorage.fragmentStorageData[i].cpuPtr, handleStorage.fragmentStorageData[i].fragmentSize);
}
delete handleStorage.fragmentStorageData[i].osHandleStorage;
delete handleStorage.fragmentStorageData[i].residency;
}
}
}
GraphicsAllocation *OsAgnosticMemoryManager::allocateGraphicsMemoryForImageImpl(const AllocationData &allocationData, std::unique_ptr<Gmm> gmm) {
GraphicsAllocation *alloc = nullptr;
if (!GmmHelper::allowTiling(*allocationData.imgInfo->imgDesc) && allocationData.imgInfo->mipCount == 0) {
alloc = allocateGraphicsMemoryWithAlignment(allocationData);
alloc->setDefaultGmm(gmm.release());
return alloc;
}
auto ptr = allocateSystemMemory(alignUp(allocationData.imgInfo->size, MemoryConstants::pageSize), MemoryConstants::pageSize);
if (ptr != nullptr) {
alloc = createMemoryAllocation(allocationData.type, ptr, ptr, reinterpret_cast<uint64_t>(ptr), allocationData.imgInfo->size,
counter, MemoryPool::SystemCpuInaccessible, false, allocationData.flags.uncacheable, allocationData.flags.flushL3, false);
counter++;
}
if (alloc) {
alloc->setDefaultGmm(gmm.release());
}
return alloc;
}
void *OsAgnosticMemoryManager::reserveCpuAddressRange(size_t size) {
void *reservePtr = allocateSystemMemory(size, MemoryConstants::preferredAlignment);
return reservePtr;
}
void OsAgnosticMemoryManager::releaseReservedCpuAddressRange(void *reserved, size_t size) {
alignedFreeWrapper(reserved);
}
MemoryAllocation *OsAgnosticMemoryManager::createMemoryAllocation(GraphicsAllocation::AllocationType allocationType, void *driverAllocatedCpuPointer,
void *pMem, uint64_t gpuAddress, size_t memSize, uint64_t count,
MemoryPool::Type pool, bool multiOsContextCapable, bool uncacheable,
bool flushL3Required, bool requireSpecificBitness) {
if (!isLimitedRange()) {
return new MemoryAllocation(allocationType, driverAllocatedCpuPointer, pMem, gpuAddress, memSize,
count, pool, multiOsContextCapable, uncacheable, flushL3Required);
}
size_t alignedSize = alignSizeWholePage(pMem, memSize);
auto heap = (force32bitAllocations || requireSpecificBitness) ? HeapIndex::HEAP_EXTERNAL : HeapIndex::HEAP_STANDARD;
uint64_t limitedGpuAddress = gfxPartition.heapAllocate(heap, alignedSize);
auto memoryAllocation = new MemoryAllocation(allocationType, driverAllocatedCpuPointer, pMem, limitedGpuAddress, memSize,
count, pool, multiOsContextCapable, uncacheable, flushL3Required);
memoryAllocation->setGpuBaseAddress(GmmHelper::canonize(gfxPartition.getHeapBase(heap)));
memoryAllocation->sizeToFree = alignedSize;
return memoryAllocation;
}
} // namespace NEO