compute-runtime/level_zero/tools/source/metrics/metric_ip_sampling_streamer...

426 lines
18 KiB
C++

/*
* Copyright (C) 2022-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/metrics/metric_ip_sampling_streamer.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/gfx_core_helpers/l0_gfx_core_helper.h"
#include "level_zero/tools/source/metrics/metric.h"
#include "level_zero/tools/source/metrics/metric_ip_sampling_source.h"
#include "level_zero/tools/source/metrics/os_interface_metric.h"
#include <level_zero/zet_api.h>
#include <set>
#include <string.h>
namespace L0 {
ze_result_t IpSamplingMetricGroupImp::streamerOpen(
zet_context_handle_t hContext,
zet_device_handle_t hDevice,
zet_metric_streamer_desc_t *desc,
ze_event_handle_t hNotificationEvent,
zet_metric_streamer_handle_t *phMetricStreamer) {
auto device = Device::fromHandle(hDevice);
// Check whether metric group is activated.
IpSamplingMetricSourceImp &source = device->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
if (!source.isMetricGroupActivated(this->toHandle())) {
return ZE_RESULT_NOT_READY;
}
// Check whether metric streamer is already open.
if (source.pActiveStreamer != nullptr) {
return ZE_RESULT_ERROR_HANDLE_OBJECT_IN_USE;
}
auto pStreamerImp = new IpSamplingMetricStreamerImp(source);
UNRECOVERABLE_IF(pStreamerImp == nullptr);
const ze_result_t result = source.getMetricOsInterface()->startMeasurement(desc->notifyEveryNReports, desc->samplingPeriod);
if (result == ZE_RESULT_SUCCESS) {
source.pActiveStreamer = pStreamerImp;
pStreamerImp->attachEvent(hNotificationEvent);
} else {
delete pStreamerImp;
pStreamerImp = nullptr;
return result;
}
*phMetricStreamer = pStreamerImp->toHandle();
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricStreamerImp::readData(uint32_t maxReportCount, size_t *pRawDataSize, uint8_t *pRawData) {
// Return required size if requested.
if (*pRawDataSize == 0) {
*pRawDataSize = ipSamplingSource.getMetricOsInterface()->getRequiredBufferSize(maxReportCount);
return ZE_RESULT_SUCCESS;
}
// If there is a difference in pRawDataSize and maxReportCount, use the minimum value for reading.
if (maxReportCount != UINT32_MAX) {
size_t maxSizeRequired = ipSamplingSource.getMetricOsInterface()->getRequiredBufferSize(maxReportCount);
*pRawDataSize = std::min(maxSizeRequired, *pRawDataSize);
}
return ipSamplingSource.getMetricOsInterface()->readData(pRawData, pRawDataSize);
}
ze_result_t IpSamplingMetricStreamerImp::close() {
const ze_result_t result = ipSamplingSource.getMetricOsInterface()->stopMeasurement();
detachEvent();
ipSamplingSource.pActiveStreamer = nullptr;
delete this;
return result;
}
Event::State IpSamplingMetricStreamerImp::getNotificationState() {
return ipSamplingSource.getMetricOsInterface()->isNReportsAvailable()
? Event::State::STATE_SIGNALED
: Event::State::STATE_INITIAL;
}
uint32_t IpSamplingMetricStreamerImp::getMaxSupportedReportCount() {
const auto unitReportSize = ipSamplingSource.getMetricOsInterface()->getUnitReportSize();
UNRECOVERABLE_IF(unitReportSize == 0);
return ipSamplingSource.getMetricOsInterface()->getRequiredBufferSize(UINT32_MAX) / unitReportSize;
}
ze_result_t IpSamplingMetricCalcOpImp::create(IpSamplingMetricSourceImp &metricSource,
zet_intel_metric_calculate_exp_desc_t *pCalculateDesc,
bool isMultiDevice,
zet_intel_metric_calculate_operation_exp_handle_t *phCalculateOperation) {
// There is only one valid metric group in IP sampling and time filtering is not supported
// So only metrics handles are used to filter the metrics
// avoid duplicates
std::set<zet_metric_handle_t> uniqueMetricHandles(pCalculateDesc->phMetrics, pCalculateDesc->phMetrics + pCalculateDesc->metricCount);
// The order of metrics in the report should be the same as the one in the HW report to optimize calculation
uint32_t metricGroupCount = 1;
zet_metric_group_handle_t hMetricGroup = {};
metricSource.metricGroupGet(&metricGroupCount, &hMetricGroup);
uint32_t metricCount = 0;
MetricGroup::fromHandle(hMetricGroup)->metricGet(&metricCount, nullptr);
std::vector<zet_metric_handle_t> hMetrics(metricCount);
MetricGroup::fromHandle(hMetricGroup)->metricGet(&metricCount, hMetrics.data());
std::vector<MetricImp *> inputMetricsInReport = {};
std::vector<uint32_t> includedMetricIndexes = {};
for (uint32_t i = 0; i < metricCount; i++) {
auto metric = static_cast<MetricImp *>(Metric::fromHandle(hMetrics[i]));
if (pCalculateDesc->metricGroupCount > 0) {
inputMetricsInReport.push_back(metric);
includedMetricIndexes.push_back(i);
} else {
if (uniqueMetricHandles.find(hMetrics[i]) != uniqueMetricHandles.end()) {
inputMetricsInReport.push_back(metric);
includedMetricIndexes.push_back(i);
}
}
}
auto calcOp = new IpSamplingMetricCalcOpImp(static_cast<uint32_t>(hMetrics.size()),
inputMetricsInReport, includedMetricIndexes, isMultiDevice);
*phCalculateOperation = calcOp->toHandle();
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::destroy() {
delete this;
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::getReportFormat(uint32_t *pCount, zet_metric_handle_t *phMetrics) {
if (*pCount == 0) {
*pCount = metricsInReportCount;
return ZE_RESULT_SUCCESS;
} else if (*pCount < metricsInReportCount) {
METRICS_LOG_ERR("%s", "Metric can't be smaller than report size");
*pCount = 0;
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
*pCount = metricsInReportCount;
for (uint32_t index = 0; index < metricsInReportCount; index++) {
phMetrics[index] = metricsInReport[index]->toHandle();
}
return ZE_RESULT_SUCCESS;
}
void IpSamplingMetricCalcOpImp::fillStallDataMap(const size_t rawDataSize, const uint8_t *pRawData, size_t *processedSize,
L0::L0GfxCoreHelper &l0GfxCoreHelper,
std::map<uint64_t, void *> &stallReportDataMap,
bool *dataOVerflow,
bool allowInterrupt,
uint32_t requestedReportCount) {
const uint32_t rawReportSize = IpSamplingMetricGroupBase::rawReportSize;
*processedSize = 0;
uint32_t processedReportCount = 0;
const uint8_t *dataToProcess = pRawData;
do {
*dataOVerflow |= l0GfxCoreHelper.stallIpDataMapUpdate(stallReportDataMap, dataToProcess);
*processedSize += rawReportSize;
dataToProcess += rawReportSize;
// Number of reports is defined by the number of IPs in the raw data.
processedReportCount = static_cast<uint32_t>(stallReportDataMap.size());
} while ((*processedSize < rawDataSize) &&
(!allowInterrupt || (processedReportCount < requestedReportCount)));
return;
}
ze_result_t IpSamplingMetricCalcOpImp::metricCalculateValuesSingle(const size_t rawDataSize, size_t *pOffset, const uint8_t *pRawData,
uint32_t *pTotalMetricReportCount,
L0::L0GfxCoreHelper &l0GfxCoreHelper,
IpSamplingMetricGroupBase *metricGroupBase,
bool getSize,
bool &dataOverflow,
std::map<uint64_t, void *> &stallReportDataMap) {
ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;
uint32_t resultCount = 0;
*pOffset = 0;
status = static_cast<IpSamplingMetricGroupImp *>(metricGroupBase)->getCalculatedMetricCount(pRawData, rawDataSize, resultCount);
if (status != ZE_RESULT_SUCCESS) {
*pTotalMetricReportCount = 0;
return status;
}
uint32_t rawDataReportCount = resultCount / cachedMetricsCount;
if (getSize) {
*pTotalMetricReportCount = rawDataReportCount;
return ZE_RESULT_SUCCESS;
}
// Only allow interrupting when requesting less reports than available since it affects the bytes
// processed: report count can be reached before processing all data.
bool allowInterrupt = false;
if (*pTotalMetricReportCount < rawDataReportCount) {
allowInterrupt = true;
}
fillStallDataMap(rawDataSize, pRawData, pOffset, l0GfxCoreHelper, stallReportDataMap,
&dataOverflow, allowInterrupt, *pTotalMetricReportCount);
*pTotalMetricReportCount = static_cast<uint32_t>(stallReportDataMap.size());
return status;
}
ze_result_t IpSamplingMetricCalcOpImp::metricCalculateValuesMulti(const size_t rawDataSize, size_t *pOffset, const uint8_t *pRawData,
uint32_t *pTotalMetricReportCount,
L0::L0GfxCoreHelper &l0GfxCoreHelper,
IpSamplingMetricGroupBase *metricGroupBase,
bool getSize,
uint32_t numSubDevices,
bool &dataOverflow,
std::map<uint64_t, void *> &stallReportDataMap) {
ze_result_t status = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
return status;
}
ze_result_t IpSamplingMetricCalcOpImp::metricCalculateValues(const size_t rawDataSize, size_t *pOffset, const uint8_t *pRawData,
uint32_t *pTotalMetricReportCount,
zet_intel_metric_result_exp_t *pMetricResults) {
ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;
bool dataOverflow = false;
uint32_t metricGroupCount = 1;
zet_metric_group_handle_t hMetricGroup = {};
metricsInReport[0]->getMetricSource().metricGroupGet(&metricGroupCount, &hMetricGroup);
bool isMultiDeviceData = IpSamplingMetricGroupBase::isMultiDeviceCaptureData(rawDataSize, pRawData);
IpSamplingMetricGroupBase *metricGroupBase = static_cast<IpSamplingMetricGroupBase *>(MetricGroup::fromHandle(hMetricGroup));
DeviceImp *deviceImp = static_cast<DeviceImp *>(&metricGroupBase->getMetricSource().getMetricDeviceContext().getDevice());
L0::L0GfxCoreHelper &l0GfxCoreHelper = deviceImp->getNEODevice()->getRootDeviceEnvironment().getHelper<L0GfxCoreHelper>();
pRawData += *pOffset; // Input Offset
bool getSize = (*pTotalMetricReportCount == 0);
std::map<uint64_t, void *> stallReportDataMap;
if (!isMultiDevice) {
if (isMultiDeviceData) {
METRICS_LOG_ERR("%s", "Cannot use root device raw data in a sub-device calculate operation handle");
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
status = metricCalculateValuesSingle(rawDataSize, pOffset, pRawData, pTotalMetricReportCount,
l0GfxCoreHelper, metricGroupBase, getSize, dataOverflow, stallReportDataMap);
} else {
if (!isMultiDeviceData) {
METRICS_LOG_ERR("%s", "Cannot use sub-device raw data in a root device calculate operation handle");
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
status = metricCalculateValuesMulti(rawDataSize, pOffset, pRawData, pTotalMetricReportCount,
l0GfxCoreHelper, metricGroupBase, getSize, deviceImp->numSubDevices,
dataOverflow, stallReportDataMap);
}
if ((status != ZE_RESULT_SUCCESS) || (getSize)) {
return status;
}
std::vector<zet_typed_value_t> ipDataValues;
uint32_t i = 0;
for (auto it = stallReportDataMap.begin(); it != stallReportDataMap.end(); ++it) {
l0GfxCoreHelper.stallSumIpDataToTypedValues(it->first, it->second, ipDataValues);
for (uint32_t j = 0; j < includedMetricIndexes.size(); j++) {
(pMetricResults + i)->value = ipDataValues[includedMetricIndexes[j]].value;
(pMetricResults + i)->resultStatus = ZET_INTEL_METRIC_CALCULATE_EXP_RESULT_VALID;
i++;
}
ipDataValues.clear();
}
l0GfxCoreHelper.stallIpDataMapDelete(stallReportDataMap);
stallReportDataMap.clear();
return dataOverflow ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}
ze_result_t MultiDeviceIpSamplingMetricGroupImp::streamerOpen(
zet_context_handle_t hContext,
zet_device_handle_t hDevice,
zet_metric_streamer_desc_t *desc,
ze_event_handle_t hNotificationEvent,
zet_metric_streamer_handle_t *phMetricStreamer) {
ze_result_t result = ZE_RESULT_SUCCESS;
std::vector<IpSamplingMetricStreamerImp *> subDeviceStreamers = {};
subDeviceStreamers.reserve(subDeviceMetricGroup.size());
// Open SubDevice Streamers
for (auto &metricGroup : subDeviceMetricGroup) {
zet_metric_streamer_handle_t subDeviceMetricStreamer = {};
zet_device_handle_t hSubDevice = metricGroup->getMetricSource().getMetricDeviceContext().getDevice().toHandle();
result = metricGroup->streamerOpen(hContext, hSubDevice, desc, nullptr, &subDeviceMetricStreamer);
if (result != ZE_RESULT_SUCCESS) {
closeSubDeviceStreamers(subDeviceStreamers);
return result;
}
subDeviceStreamers.push_back(static_cast<IpSamplingMetricStreamerImp *>(MetricStreamer::fromHandle(subDeviceMetricStreamer)));
}
auto pStreamerImp = new MultiDeviceIpSamplingMetricStreamerImp(subDeviceStreamers);
UNRECOVERABLE_IF(pStreamerImp == nullptr);
pStreamerImp->attachEvent(hNotificationEvent);
*phMetricStreamer = pStreamerImp->toHandle();
return result;
}
ze_result_t MultiDeviceIpSamplingMetricStreamerImp::readData(uint32_t maxReportCount, size_t *pRawDataSize, uint8_t *pRawData) {
const int32_t totalHeaderSize = static_cast<int32_t>(sizeof(IpSamplingMetricDataHeader) * subDeviceStreamers.size());
// Find single report size
size_t singleReportSize = 0;
subDeviceStreamers[0]->readData(1, &singleReportSize, nullptr);
// Trim report count to the maximum possible report count
const uint32_t maxSupportedReportCount = subDeviceStreamers[0]->getMaxSupportedReportCount() *
static_cast<uint32_t>(subDeviceStreamers.size());
maxReportCount = std::min(maxSupportedReportCount, maxReportCount);
if (*pRawDataSize == 0) {
*pRawDataSize = singleReportSize * maxReportCount;
*pRawDataSize += totalHeaderSize;
return ZE_RESULT_SUCCESS;
}
// Remove header size from actual data size
size_t calcRawDataSize = std::max<int32_t>(0, static_cast<int32_t>(*pRawDataSize - totalHeaderSize));
// Recalculate maximum possible report count for the raw data size
calcRawDataSize = std::min(calcRawDataSize, singleReportSize * maxReportCount);
maxReportCount = static_cast<uint32_t>(calcRawDataSize / singleReportSize);
uint8_t *pCurrRawData = pRawData;
size_t currRawDataSize = calcRawDataSize;
ze_result_t result = ZE_RESULT_SUCCESS;
for (uint32_t index = 0; index < subDeviceStreamers.size(); index++) {
auto &streamer = subDeviceStreamers[index];
// Get header address
auto header = reinterpret_cast<IpSamplingMetricDataHeader *>(pCurrRawData);
pCurrRawData += sizeof(IpSamplingMetricDataHeader);
result = streamer->readData(maxReportCount, &currRawDataSize, pCurrRawData);
if (result != ZE_RESULT_SUCCESS) {
*pRawDataSize = 0;
return result;
}
// Update to header
memset(header, 0, sizeof(IpSamplingMetricDataHeader));
header->magic = IpSamplingMetricDataHeader::magicValue;
header->rawDataSize = static_cast<uint32_t>(currRawDataSize);
header->setIndex = index;
calcRawDataSize -= currRawDataSize;
pCurrRawData += currRawDataSize;
// Check whether memory available for next read
if (calcRawDataSize < singleReportSize) {
break;
}
maxReportCount -= static_cast<uint32_t>(currRawDataSize / singleReportSize);
currRawDataSize = calcRawDataSize;
}
*pRawDataSize = pCurrRawData - pRawData;
return result;
}
ze_result_t MultiDeviceIpSamplingMetricStreamerImp::close() {
ze_result_t result = ZE_RESULT_SUCCESS;
for (auto &streamer : subDeviceStreamers) {
result = streamer->close();
if (result != ZE_RESULT_SUCCESS) {
break;
}
}
subDeviceStreamers.clear();
detachEvent();
delete this;
return result;
}
Event::State MultiDeviceIpSamplingMetricStreamerImp::getNotificationState() {
Event::State state = Event::State::STATE_INITIAL;
for (auto &streamer : subDeviceStreamers) {
state = streamer->getNotificationState();
if (state == Event::State::STATE_SIGNALED) {
break;
}
}
return state;
}
} // namespace L0