compute-runtime/level_zero/tools/source/sysman/linux/os_sysman_imp.cpp

424 lines
16 KiB
C++

/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"
#include "shared/source/os_interface/device_factory.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/tools/source/sysman/linux/fs_access.h"
#include "sysman/linux/firmware_util/firmware_util.h"
#include <linux/pci_regs.h>
namespace L0 {
const std::string LinuxSysmanImp::deviceDir("device");
ze_result_t LinuxSysmanImp::init() {
pFsAccess = FsAccess::create();
DEBUG_BREAK_IF(nullptr == pFsAccess);
if (pProcfsAccess == nullptr) {
pProcfsAccess = ProcfsAccess::create();
}
DEBUG_BREAK_IF(nullptr == pProcfsAccess);
auto result = initLocalDeviceAndDrmHandles();
if (ZE_RESULT_SUCCESS != result) {
return result;
}
int myDeviceFd = pDrm->getFileDescriptor();
std::string myDeviceName;
result = pProcfsAccess->getFileName(pProcfsAccess->myProcessId(), myDeviceFd, myDeviceName);
if (ZE_RESULT_SUCCESS != result) {
return result;
}
if (pSysfsAccess == nullptr) {
pSysfsAccess = SysfsAccess::create(myDeviceName);
}
DEBUG_BREAK_IF(nullptr == pSysfsAccess);
pPmuInterface = PmuInterface::create(this);
DEBUG_BREAK_IF(nullptr == pPmuInterface);
return createPmtHandles();
}
void LinuxSysmanImp::createFwUtilInterface() {
std::string realRootPath;
auto result = pSysfsAccess->getRealPath("device", realRootPath);
if (ZE_RESULT_SUCCESS != result) {
return;
}
auto rootPciPathOfGpuDevice = getPciRootPortDirectoryPath(realRootPath);
auto loc = realRootPath.find_last_of('/');
pFwUtilInterface = FirmwareUtil::create(realRootPath.substr(loc + 1, std::string::npos));
}
ze_result_t LinuxSysmanImp::createPmtHandles() {
std::string realRootPath;
auto result = pSysfsAccess->getRealPath("device", realRootPath);
if (ZE_RESULT_SUCCESS != result) {
return result;
}
auto rootPciPathOfGpuDevice = getPciRootPortDirectoryPath(realRootPath);
PlatformMonitoringTech::create(pParentSysmanDeviceImp->deviceHandles, pFsAccess, rootPciPathOfGpuDevice, mapOfSubDeviceIdToPmtObject);
return result;
}
PmuInterface *LinuxSysmanImp::getPmuInterface() {
return pPmuInterface;
}
FirmwareUtil *LinuxSysmanImp::getFwUtilInterface() {
if (pFwUtilInterface == nullptr) {
createFwUtilInterface();
}
return pFwUtilInterface;
}
PRODUCT_FAMILY LinuxSysmanImp::getProductFamily() {
return pDevice->getNEODevice()->getHardwareInfo().platform.eProductFamily;
}
FsAccess &LinuxSysmanImp::getFsAccess() {
UNRECOVERABLE_IF(nullptr == pFsAccess);
return *pFsAccess;
}
ProcfsAccess &LinuxSysmanImp::getProcfsAccess() {
UNRECOVERABLE_IF(nullptr == pProcfsAccess);
return *pProcfsAccess;
}
SysfsAccess &LinuxSysmanImp::getSysfsAccess() {
UNRECOVERABLE_IF(nullptr == pSysfsAccess);
return *pSysfsAccess;
}
ze_result_t LinuxSysmanImp::initLocalDeviceAndDrmHandles() {
pDevice = Device::fromHandle(pParentSysmanDeviceImp->hCoreDevice);
DEBUG_BREAK_IF(nullptr == pDevice);
NEO::OSInterface &OsInterface = pDevice->getOsInterface();
if (OsInterface.getDriverModel()->getDriverModelType() != NEO::DriverModelType::DRM) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
pDrm = OsInterface.getDriverModel()->as<NEO::Drm>();
return ZE_RESULT_SUCCESS;
}
NEO::Drm &LinuxSysmanImp::getDrm() {
if (pDrm == nullptr) {
initLocalDeviceAndDrmHandles();
}
UNRECOVERABLE_IF(nullptr == pDrm);
return *pDrm;
}
void LinuxSysmanImp::releaseLocalDrmHandle() {
pDrm = nullptr;
}
Device *LinuxSysmanImp::getDeviceHandle() {
return pDevice;
}
SysmanDeviceImp *LinuxSysmanImp::getSysmanDeviceImp() {
return pParentSysmanDeviceImp;
}
std::string LinuxSysmanImp::getPciRootPortDirectoryPath(std::string realPciPath) {
size_t loc;
// we need to change the absolute path to two levels up to get
// the Discrete card's root port.
// the root port is always at a fixed distance as defined in HW
uint8_t nLevel = 2;
while (nLevel > 0) {
loc = realPciPath.find_last_of('/');
if (loc == std::string::npos) {
break;
}
realPciPath = realPciPath.substr(0, loc);
nLevel--;
}
return realPciPath;
}
static std::string modifyPathOnLevel(std::string path, uint8_t level) {
size_t loc = 0;
size_t count = 0;
std::string modifiedPath(path);
uint8_t nLevel = level;
do {
loc = path.find_first_of('/');
count = count + loc;
if (loc == std::string::npos) {
break;
}
path = path.substr(loc + 1, path.size());
nLevel--;
} while (nLevel > 0);
if (nLevel == 0) {
modifiedPath = modifiedPath.substr(0, (count + level - 1)); // need to adjust for last '/' that the code encounters
}
return modifiedPath;
}
std::string LinuxSysmanImp::getPciRootPortDirectoryPathForReset(std::string realPciPath) {
// the rootport is always the first pci folder after the pcie slot.
// /sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
// '/sys/devices/pci0000:89/0000:89:02.0/' will always be the same distance.
return modifyPathOnLevel(realPciPath, 5);
}
std::string LinuxSysmanImp::getPciCardBusDirectoryPath(std::string realPciPath) {
// the cardbus is always the second pci folder after the pcie slot.
// /sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
// '/sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/' will always be the same distance.
return modifyPathOnLevel(realPciPath, 6);
}
PlatformMonitoringTech *LinuxSysmanImp::getPlatformMonitoringTechAccess(uint32_t subDeviceId) {
auto subDeviceIdToPmtEntry = mapOfSubDeviceIdToPmtObject.find(subDeviceId);
if (subDeviceIdToPmtEntry == mapOfSubDeviceIdToPmtObject.end()) {
return nullptr;
}
return subDeviceIdToPmtEntry->second;
}
LinuxSysmanImp::LinuxSysmanImp(SysmanDeviceImp *pParentSysmanDeviceImp) {
this->pParentSysmanDeviceImp = pParentSysmanDeviceImp;
}
void LinuxSysmanImp::releasePmtObject() {
for (auto &subDeviceIdToPmtEntry : mapOfSubDeviceIdToPmtObject) {
if (subDeviceIdToPmtEntry.second) {
delete subDeviceIdToPmtEntry.second;
subDeviceIdToPmtEntry.second = nullptr;
}
}
mapOfSubDeviceIdToPmtObject.clear();
}
void LinuxSysmanImp::releaseFwUtilInterface() {
if (nullptr != pFwUtilInterface) {
delete pFwUtilInterface;
pFwUtilInterface = nullptr;
}
}
LinuxSysmanImp::~LinuxSysmanImp() {
if (nullptr != pSysfsAccess) {
delete pSysfsAccess;
pSysfsAccess = nullptr;
}
if (nullptr != pProcfsAccess) {
delete pProcfsAccess;
pProcfsAccess = nullptr;
}
if (nullptr != pFsAccess) {
delete pFsAccess;
pFsAccess = nullptr;
}
if (nullptr != pPmuInterface) {
delete pPmuInterface;
pPmuInterface = nullptr;
}
releaseFwUtilInterface();
releasePmtObject();
}
void LinuxSysmanImp::getPidFdsForOpenDevice(ProcfsAccess *pProcfsAccess, SysfsAccess *pSysfsAccess, const ::pid_t pid, std::vector<int> &deviceFds) {
// Return a list of all the file descriptors of this process that point to this device
std::vector<int> fds;
deviceFds.clear();
if (ZE_RESULT_SUCCESS != pProcfsAccess->getFileDescriptors(pid, fds)) {
// Process exited. Not an error. Just ignore.
return;
}
for (auto &&fd : fds) {
std::string file;
if (pProcfsAccess->getFileName(pid, fd, file) != ZE_RESULT_SUCCESS) {
// Process closed this file. Not an error. Just ignore.
continue;
}
if (pSysfsAccess->isMyDeviceFile(file)) {
deviceFds.push_back(fd);
}
}
}
void LinuxSysmanImp::releaseSysmanDeviceResources() {
getSysmanDeviceImp()->pEngineHandleContext->releaseEngines();
getSysmanDeviceImp()->pRasHandleContext->releaseRasHandles();
if (!diagnosticsReset) {
getSysmanDeviceImp()->pDiagnosticsHandleContext->releaseDiagnosticsHandles();
}
getSysmanDeviceImp()->pFirmwareHandleContext->releaseFwHandles();
releasePmtObject();
if (!diagnosticsReset) {
releaseFwUtilInterface();
}
releaseLocalDrmHandle();
}
void LinuxSysmanImp::releaseDeviceResources() {
releaseSysmanDeviceResources();
auto device = static_cast<DeviceImp *>(getDeviceHandle());
executionEnvironment = device->getNEODevice()->getExecutionEnvironment();
device->releaseResources();
executionEnvironment->memoryManager->releaseDeviceSpecificMemResources(rootDeviceIndex);
executionEnvironment->releaseRootDeviceEnvironmentResources(executionEnvironment->rootDeviceEnvironments[rootDeviceIndex].get());
executionEnvironment->rootDeviceEnvironments[rootDeviceIndex].reset();
}
void LinuxSysmanImp::reInitSysmanDeviceResources() {
getSysmanDeviceImp()->updateSubDeviceHandlesLocally();
createPmtHandles();
createFwUtilInterface();
getSysmanDeviceImp()->pRasHandleContext->init(getSysmanDeviceImp()->deviceHandles);
getSysmanDeviceImp()->pEngineHandleContext->init();
if (!diagnosticsReset) {
getSysmanDeviceImp()->pDiagnosticsHandleContext->init(getSysmanDeviceImp()->deviceHandles);
}
getSysmanDeviceImp()->pFirmwareHandleContext->init();
}
ze_result_t LinuxSysmanImp::initDevice() {
ze_result_t result = ZE_RESULT_SUCCESS;
auto device = static_cast<DeviceImp *>(getDeviceHandle());
auto neoDevice = NEO::DeviceFactory::createDevice(*executionEnvironment, devicePciBdf, rootDeviceIndex);
if (neoDevice == nullptr) {
return ZE_RESULT_ERROR_DEVICE_LOST;
}
static_cast<L0::DriverHandleImp *>(device->getDriverHandle())->updateRootDeviceBitFields(neoDevice);
static_cast<L0::DriverHandleImp *>(device->getDriverHandle())->enableRootDeviceDebugger(neoDevice);
Device::deviceReinit(device->getDriverHandle(), device, neoDevice, &result);
reInitSysmanDeviceResources();
return ZE_RESULT_SUCCESS;
}
// A 'warm reset' is a conventional reset that is triggered across a PCI express link.
// A warm reset is triggered either when a link is forced into electrical idle or
// by sending TS1 and TS2 ordered sets with the hot reset bit set.
// Software can initiate a warm reset by setting and then clearing the secondary bus reset bit
// in the bridge control register in the PCI configuration space of the bridge port upstream of the device.
ze_result_t LinuxSysmanImp::osWarmReset() {
std::string rootPortPath;
std::string realRootPath;
ze_result_t result = pSysfsAccess->getRealPath(deviceDir, realRootPath);
if (ZE_RESULT_SUCCESS != result) {
return result;
}
auto device = static_cast<DeviceImp *>(pDevice);
executionEnvironment = device->getNEODevice()->getExecutionEnvironment();
devicePciBdf = device->getNEODevice()->getRootDeviceEnvironment().osInterface->getDriverModel()->as<NEO::Drm>()->getPciPath();
rootDeviceIndex = device->getNEODevice()->getRootDeviceIndex();
ExecutionEnvironmentRefCountRestore restorer(executionEnvironment);
releaseDeviceResources();
rootPortPath = getPciRootPortDirectoryPathForReset(realRootPath);
int fd, ret = 0;
unsigned int offset = PCI_BRIDGE_CONTROL; // Bridge control offset in Header of PCI config space
unsigned int value = 0x00;
unsigned int resetValue = 0x00;
std::string configFilePath = rootPortPath + '/' + "config";
fd = this->openFunction(configFilePath.c_str(), O_RDWR);
if (fd < 0) {
return ZE_RESULT_ERROR_UNKNOWN;
}
this->preadFunction(fd, &value, 0x01, offset);
resetValue = value | PCI_BRIDGE_CTL_BUS_RESET;
this->pwriteFunction(fd, &resetValue, 0x01, offset);
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // Sleep for 100 milliseconds just to make sure the change is propagated.
this->pwriteFunction(fd, &value, 0x01, offset);
std::this_thread::sleep_for(std::chrono::milliseconds(500)); // Sleep for 500 milliseconds
ret = this->closeFunction(fd);
if (ret < 0) {
return ZE_RESULT_ERROR_UNKNOWN;
}
std::string cardBusPath;
cardBusPath = getPciCardBusDirectoryPath(realRootPath);
// write 1 to remove
result = pFsAccess->write(cardBusPath + '/' + "remove", "1");
if (ZE_RESULT_SUCCESS != result) {
return result;
}
result = pFsAccess->write(realRootPath + '/' + "rescan", "1");
if (ZE_RESULT_SUCCESS != result) {
return result;
}
return initDevice();
}
std::string LinuxSysmanImp::getAddressFromPath(std::string &rootPortPath) {
size_t loc;
loc = rootPortPath.find_last_of('/'); // we get the pci address of the root port from rootPortPath
return rootPortPath.substr(loc + 1, std::string::npos);
}
ze_result_t LinuxSysmanImp::osColdReset() {
const std::string slotPath("/sys/bus/pci/slots/"); // holds the directories matching to the number of slots in the PC
std::string cardBusPath; // will hold the PCIe Root port directory path (the address of the PCIe slot).
std::string realRootPath; // will hold the absolute real path (not symlink) to the selected Device
ze_result_t result = pSysfsAccess->getRealPath(deviceDir, realRootPath); // e.g realRootPath=/sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
if (ZE_RESULT_SUCCESS != result) {
return result;
}
auto device = static_cast<DeviceImp *>(pDevice);
executionEnvironment = device->getNEODevice()->getExecutionEnvironment();
devicePciBdf = device->getNEODevice()->getRootDeviceEnvironment().osInterface->getDriverModel()->as<NEO::Drm>()->getPciPath();
rootDeviceIndex = device->getNEODevice()->getRootDeviceIndex();
ExecutionEnvironmentRefCountRestore restorer(executionEnvironment);
releaseDeviceResources();
cardBusPath = getPciCardBusDirectoryPath(realRootPath); // e.g cardBusPath=/sys/devices/pci0000:89/0000:89:02.0/
std::string rootAddress = getAddressFromPath(cardBusPath); // e.g rootAddress = 0000:8a:00.0
std::vector<std::string> dir;
result = pFsAccess->listDirectory(slotPath, dir); // get list of slot directories from /sys/bus/pci/slots/
if (ZE_RESULT_SUCCESS != result) {
return result;
}
for (auto &slot : dir) {
std::string slotAddress;
result = pFsAccess->read((slotPath + slot + "/address"), slotAddress); // extract slot address from the slot directory /sys/bus/pci/slots/<slot num>/address
if (ZE_RESULT_SUCCESS != result) {
return result;
}
if (slotAddress.compare(rootAddress) == 0) { // compare slot address to root port address
result = pFsAccess->write((slotPath + slot + "/power"), "0"); // turn off power
if (ZE_RESULT_SUCCESS != result) {
return result;
}
std::this_thread::sleep_for(std::chrono::milliseconds(100)); // Sleep for 100 milliseconds just to make sure, 1 ms is defined as part of spec
result = pFsAccess->write((slotPath + slot + "/power"), "1"); // turn on power
if (ZE_RESULT_SUCCESS != result) {
return result;
}
return initDevice();
}
}
return ZE_RESULT_ERROR_DEVICE_LOST; // incase the reset fails inform upper layers.
}
OsSysman *OsSysman::create(SysmanDeviceImp *pParentSysmanDeviceImp) {
LinuxSysmanImp *pLinuxSysmanImp = new LinuxSysmanImp(pParentSysmanDeviceImp);
return static_cast<OsSysman *>(pLinuxSysmanImp);
}
} // namespace L0