compute-runtime/shared/source/command_stream/command_stream_receiver.cpp

1182 lines
50 KiB
C++

/*
* Copyright (C) 2018-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/command_container/implicit_scaling.h"
#include "shared/source/command_stream/aub_subcapture_status.h"
#include "shared/source/command_stream/preemption.h"
#include "shared/source/command_stream/scratch_space_controller.h"
#include "shared/source/command_stream/submission_status.h"
#include "shared/source/command_stream/submissions_aggregator.h"
#include "shared/source/command_stream/tag_allocation_layout.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/direct_submission/direct_submission_controller.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/cache_settings_helper.h"
#include "shared/source/gmm_helper/page_table_mngr.h"
#include "shared/source/helpers/api_specific_config.h"
#include "shared/source/helpers/array_count.h"
#include "shared/source/helpers/compiler_product_helper.h"
#include "shared/source/helpers/flat_batch_buffer_helper.h"
#include "shared/source/helpers/flush_stamp.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/pause_on_gpu_properties.h"
#include "shared/source/helpers/ray_tracing_helper.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/memory_manager/allocation_properties.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/surface.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/os_interface/os_interface.h"
#include "shared/source/os_interface/os_thread.h"
#include "shared/source/os_interface/product_helper.h"
#include "shared/source/os_interface/sys_calls_common.h"
#include "shared/source/utilities/hw_timestamps.h"
#include "shared/source/utilities/perf_counter.h"
#include "shared/source/utilities/tag_allocator.h"
#include "shared/source/utilities/wait_util.h"
#include <iostream>
namespace AubMemDump {
#include "aub_services.h"
}
namespace NEO {
// Global table of CommandStreamReceiver factories for HW and tests
CommandStreamReceiverCreateFunc commandStreamReceiverFactory[2 * IGFX_MAX_CORE] = {};
CommandStreamReceiver::CommandStreamReceiver(ExecutionEnvironment &executionEnvironment,
uint32_t rootDeviceIndex,
const DeviceBitfield deviceBitfield)
: executionEnvironment(executionEnvironment), rootDeviceIndex(rootDeviceIndex), deviceBitfield(deviceBitfield) {
residencyAllocations.reserve(startingResidencyContainerSize);
latestSentStatelessMocsConfig = CacheSettings::unknownMocs;
submissionAggregator.reset(new SubmissionAggregator());
if (ApiSpecificConfig::getApiType() == ApiSpecificConfig::L0) {
this->dispatchMode = DispatchMode::immediateDispatch;
}
if (debugManager.flags.CsrDispatchMode.get()) {
this->dispatchMode = (DispatchMode)debugManager.flags.CsrDispatchMode.get();
}
flushStamp.reset(new FlushStampTracker(true));
for (int i = 0; i < IndirectHeap::Type::numTypes; ++i) {
indirectHeap[i] = nullptr;
}
internalAllocationStorage = std::make_unique<InternalAllocationStorage>(*this);
const auto &hwInfo = peekHwInfo();
uint32_t subDeviceCount = static_cast<uint32_t>(deviceBitfield.count());
auto &gfxCoreHelper = getGfxCoreHelper();
auto &rootDeviceEnvironment = peekRootDeviceEnvironment();
bool platformImplicitScaling = gfxCoreHelper.platformSupportsImplicitScaling(rootDeviceEnvironment);
if (NEO::ImplicitScalingHelper::isImplicitScalingEnabled(deviceBitfield, platformImplicitScaling) &&
subDeviceCount > 1 &&
debugManager.flags.EnableStaticPartitioning.get() != 0) {
this->activePartitions = subDeviceCount;
this->staticWorkPartitioningEnabled = true;
}
this->streamProperties.initSupport(rootDeviceEnvironment);
auto &productHelper = getProductHelper();
productHelper.fillFrontEndPropertiesSupportStructure(feSupportFlags, hwInfo);
productHelper.fillPipelineSelectPropertiesSupportStructure(pipelineSupportFlags, hwInfo);
productHelper.fillStateBaseAddressPropertiesSupportStructure(sbaSupportFlags);
this->doubleSbaWa = productHelper.isAdditionalStateBaseAddressWARequired(hwInfo);
this->l1CachePolicyData.init(productHelper);
registeredClients.reserve(16);
auto &compilerProductHelper = rootDeviceEnvironment.getHelper<CompilerProductHelper>();
this->heaplessModeEnabled = compilerProductHelper.isHeaplessModeEnabled();
this->evictionAllocations.reserve(2 * MemoryConstants::kiloByte);
}
CommandStreamReceiver::~CommandStreamReceiver() {
if (userPauseConfirmation) {
{
std::unique_lock<SpinLock> lock{debugPauseStateLock};
*debugPauseStateAddress = DebugPauseState::terminate;
}
userPauseConfirmation->join();
}
for (int i = 0; i < IndirectHeap::Type::numTypes; ++i) {
if (indirectHeap[i] != nullptr) {
auto allocation = indirectHeap[i]->getGraphicsAllocation();
if (allocation != nullptr) {
internalAllocationStorage->storeAllocation(std::unique_ptr<GraphicsAllocation>(allocation), REUSABLE_ALLOCATION);
}
delete indirectHeap[i];
}
}
cleanupResources();
internalAllocationStorage->cleanAllocationList(-1, REUSABLE_ALLOCATION);
internalAllocationStorage->cleanAllocationList(-1, TEMPORARY_ALLOCATION);
internalAllocationStorage->cleanAllocationList(-1, DEFERRED_DEALLOCATION);
getMemoryManager()->unregisterEngineForCsr(this);
}
SubmissionStatus CommandStreamReceiver::submitBatchBuffer(BatchBuffer &batchBuffer, ResidencyContainer &allocationsForResidency) {
this->latestSentTaskCount = taskCount + 1;
SubmissionStatus retVal = this->flush(batchBuffer, allocationsForResidency);
if (retVal != NEO::SubmissionStatus::success) {
return retVal;
}
if (!isUpdateTagFromWaitEnabled()) {
this->latestFlushedTaskCount = taskCount + 1;
}
taskCount++;
return retVal;
}
void CommandStreamReceiver::makeResident(MultiGraphicsAllocation &gfxAllocation) {
makeResident(*gfxAllocation.getGraphicsAllocation(rootDeviceIndex));
}
void CommandStreamReceiver::makeResident(GraphicsAllocation &gfxAllocation) {
auto submissionTaskCount = this->taskCount + 1;
gfxAllocation.updateTaskCount(submissionTaskCount, osContext->getContextId());
if (gfxAllocation.isResidencyTaskCountBelow(submissionTaskCount, osContext->getContextId())) {
auto pushAllocations = true;
if (debugManager.flags.MakeEachAllocationResident.get() != -1) {
pushAllocations = !debugManager.flags.MakeEachAllocationResident.get();
}
if (pushAllocations) {
this->getResidencyAllocations().push_back(&gfxAllocation);
}
if (this->dispatchMode == DispatchMode::batchedDispatch) {
checkForNewResources(submissionTaskCount, gfxAllocation.getTaskCount(osContext->getContextId()), gfxAllocation);
if (!gfxAllocation.isResident(osContext->getContextId())) {
this->totalMemoryUsed += gfxAllocation.getUnderlyingBufferSize();
}
}
}
gfxAllocation.updateResidencyTaskCount(submissionTaskCount, osContext->getContextId());
}
void CommandStreamReceiver::processEviction() {
this->getEvictionAllocations().clear();
}
void CommandStreamReceiver::makeNonResident(GraphicsAllocation &gfxAllocation) {
if (gfxAllocation.isResident(osContext->getContextId())) {
if (gfxAllocation.peekEvictable() && !gfxAllocation.isAlwaysResident(osContext->getContextId())) {
this->addToEvictionContainer(gfxAllocation);
} else {
gfxAllocation.setEvictable(true);
}
}
if (!gfxAllocation.isAlwaysResident(this->osContext->getContextId())) {
gfxAllocation.releaseResidencyInOsContext(this->osContext->getContextId());
}
}
void CommandStreamReceiver::makeSurfacePackNonResident(ResidencyContainer &allocationsForResidency, bool clearAllocations) {
for (auto &surface : allocationsForResidency) {
this->makeNonResident(*surface);
}
if (clearAllocations) {
allocationsForResidency.clear();
}
this->processEviction();
}
SubmissionStatus CommandStreamReceiver::processResidency(ResidencyContainer &allocationsForResidency, uint32_t handleId) {
return SubmissionStatus::success;
}
void CommandStreamReceiver::makeResidentHostPtrAllocation(GraphicsAllocation *gfxAllocation) {
makeResident(*gfxAllocation);
}
WaitStatus CommandStreamReceiver::waitForTaskCount(TaskCountType requiredTaskCount) {
auto address = getTagAddress();
if (!skipResourceCleanup() && address) {
this->downloadTagAllocation(requiredTaskCount);
return baseWaitFunction(address, WaitParams{false, false, false, 0}, requiredTaskCount);
}
return WaitStatus::ready;
}
WaitStatus CommandStreamReceiver::waitForTaskCountAndCleanAllocationList(TaskCountType requiredTaskCount, uint32_t allocationUsage) {
WaitStatus waitStatus{WaitStatus::ready};
auto &list = allocationUsage == TEMPORARY_ALLOCATION ? internalAllocationStorage->getTemporaryAllocations() : internalAllocationStorage->getAllocationsForReuse();
if (!list.peekIsEmpty()) {
waitStatus = this->CommandStreamReceiver::waitForTaskCount(requiredTaskCount);
}
internalAllocationStorage->cleanAllocationList(requiredTaskCount, allocationUsage);
if (allocationUsage == TEMPORARY_ALLOCATION) {
internalAllocationStorage->cleanAllocationList(requiredTaskCount, DEFERRED_DEALLOCATION);
}
return waitStatus;
}
WaitStatus CommandStreamReceiver::waitForTaskCountAndCleanTemporaryAllocationList(TaskCountType requiredTaskCount) {
return waitForTaskCountAndCleanAllocationList(requiredTaskCount, TEMPORARY_ALLOCATION);
}
void CommandStreamReceiver::ensureCommandBufferAllocation(LinearStream &commandStream, size_t minimumRequiredSize, size_t additionalAllocationSize) {
if (commandStream.getAvailableSpace() >= minimumRequiredSize) {
return;
}
auto alignment = MemoryConstants::pageSize64k;
if (debugManager.flags.ForceCommandBufferAlignment.get() != -1) {
alignment = debugManager.flags.ForceCommandBufferAlignment.get() * MemoryConstants::kiloByte;
}
const auto allocationSize = alignUp(minimumRequiredSize + additionalAllocationSize, alignment);
constexpr static auto allocationType = AllocationType::commandBuffer;
auto allocation = this->getInternalAllocationStorage()->obtainReusableAllocation(allocationSize, allocationType).release();
if (allocation == nullptr) {
const AllocationProperties commandStreamAllocationProperties{rootDeviceIndex, true, allocationSize, allocationType,
isMultiOsContextCapable(), false, osContext->getDeviceBitfield()};
allocation = this->getMemoryManager()->allocateGraphicsMemoryWithProperties(commandStreamAllocationProperties);
}
DEBUG_BREAK_IF(allocation == nullptr);
if (commandStream.getGraphicsAllocation() != nullptr) {
getInternalAllocationStorage()->storeAllocation(std::unique_ptr<GraphicsAllocation>(commandStream.getGraphicsAllocation()), REUSABLE_ALLOCATION);
}
commandStream.replaceBuffer(allocation->getUnderlyingBuffer(), allocationSize - additionalAllocationSize);
commandStream.replaceGraphicsAllocation(allocation);
}
void CommandStreamReceiver::preallocateAllocation(AllocationType type, size_t size) {
const AllocationProperties commandStreamAllocationProperties{rootDeviceIndex, true, size, type,
isMultiOsContextCapable(), false, deviceBitfield};
auto allocation = this->getMemoryManager()->allocateGraphicsMemoryWithProperties(commandStreamAllocationProperties);
if (allocation) {
getInternalAllocationStorage()->storeAllocation(std::unique_ptr<GraphicsAllocation>(allocation), REUSABLE_ALLOCATION);
this->makeResident(*allocation);
}
}
void CommandStreamReceiver::preallocateCommandBuffer() {
preallocateAllocation(AllocationType::commandBuffer, MemoryConstants::pageSize64k);
}
void CommandStreamReceiver::preallocateInternalHeap() {
preallocateAllocation(AllocationType::internalHeap, MemoryConstants::pageSize64k);
}
void CommandStreamReceiver::fillReusableAllocationsList() {
auto &gfxCoreHelper = getGfxCoreHelper();
auto amountToFill = gfxCoreHelper.getAmountOfAllocationsToFill();
for (auto i = 0u; i < amountToFill; i++) {
preallocateCommandBuffer();
}
auto internalHeapsToFill = getProductHelper().getInternalHeapsPreallocated();
for (auto i = 0u; i < internalHeapsToFill; i++) {
preallocateInternalHeap();
}
}
void CommandStreamReceiver::requestPreallocation() {
auto preallocationsPerQueue = getProductHelper().getCommandBuffersPreallocatedPerCommandQueue();
if (debugManager.flags.SetAmountOfReusableAllocationsPerCmdQueue.get() != -1) {
preallocationsPerQueue = debugManager.flags.SetAmountOfReusableAllocationsPerCmdQueue.get();
}
auto lock = obtainUniqueOwnership();
requestedPreallocationsAmount += preallocationsPerQueue;
const int64_t amountToPreallocate = static_cast<int64_t>(requestedPreallocationsAmount.load()) - preallocatedAmount;
DEBUG_BREAK_IF(amountToPreallocate > preallocationsPerQueue);
if (amountToPreallocate > 0) {
for (auto i = 0u; i < amountToPreallocate; i++) {
preallocateCommandBuffer();
}
preallocatedAmount += static_cast<uint32_t>(amountToPreallocate);
}
}
void CommandStreamReceiver::releasePreallocationRequest() {
auto preallocationsPerQueue = getProductHelper().getCommandBuffersPreallocatedPerCommandQueue();
if (debugManager.flags.SetAmountOfReusableAllocationsPerCmdQueue.get() != -1) {
preallocationsPerQueue = debugManager.flags.SetAmountOfReusableAllocationsPerCmdQueue.get();
}
DEBUG_BREAK_IF(preallocationsPerQueue > requestedPreallocationsAmount);
requestedPreallocationsAmount -= preallocationsPerQueue;
}
uint8_t CommandStreamReceiver::getUmdPowerHintValue() const {
return this->osContext ? this->osContext->getUmdPowerHintValue() : 0u;
}
bool CommandStreamReceiver::initializeResources(bool allocateInterrupt) {
if (!resourcesInitialized) {
auto lock = obtainUniqueOwnership();
if (!resourcesInitialized) {
if (!osContext->ensureContextInitialized(allocateInterrupt)) {
return false;
}
this->fillReusableAllocationsList();
this->resourcesInitialized = true;
}
}
return true;
}
MemoryManager *CommandStreamReceiver::getMemoryManager() const {
DEBUG_BREAK_IF(!executionEnvironment.memoryManager);
return executionEnvironment.memoryManager.get();
}
LinearStream &CommandStreamReceiver::getCS(size_t minRequiredSize) {
constexpr static auto additionalAllocationSize = MemoryConstants::cacheLineSize + CSRequirements::csOverfetchSize;
ensureCommandBufferAllocation(this->commandStream, minRequiredSize, additionalAllocationSize);
return commandStream;
}
OSInterface *CommandStreamReceiver::getOSInterface() const {
return executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->osInterface.get();
}
GmmHelper *CommandStreamReceiver::peekGmmHelper() const {
return executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->gmmHelper.get();
}
uint64_t CommandStreamReceiver::getWorkPartitionAllocationGpuAddress() const {
if (isStaticWorkPartitioningEnabled()) {
return getWorkPartitionAllocation()->getGpuAddress();
}
return 0;
}
bool CommandStreamReceiver::isRcs() const {
return this->osContext->getEngineType() == aub_stream::ENGINE_RCS;
}
bool CommandStreamReceiver::skipResourceCleanup() const {
return ((this->getOSInterface() && this->getOSInterface()->getDriverModel() && this->getOSInterface()->getDriverModel()->skipResourceCleanup()) || forceSkipResourceCleanupRequired);
}
bool CommandStreamReceiver::isGpuHangDetected() const {
if (debugManager.flags.DisableGpuHangDetection.get()) {
return false;
}
return this->osContext && this->getOSInterface() && this->getOSInterface()->getDriverModel() && this->getOSInterface()->getDriverModel()->isGpuHangDetected(*osContext);
}
void CommandStreamReceiver::cleanupResources() {
waitForTaskCountAndCleanAllocationList(this->latestFlushedTaskCount, TEMPORARY_ALLOCATION);
waitForTaskCountAndCleanAllocationList(this->latestFlushedTaskCount, REUSABLE_ALLOCATION);
if (debugSurface) {
getMemoryManager()->freeGraphicsMemory(debugSurface);
debugSurface = nullptr;
}
if (commandStream.getCpuBase()) {
getMemoryManager()->freeGraphicsMemory(commandStream.getGraphicsAllocation());
commandStream.replaceGraphicsAllocation(nullptr);
commandStream.replaceBuffer(nullptr, 0);
}
if (tagsMultiAllocation) {
// Null tag address to prevent waiting for tag update when freeing it
tagAllocation = nullptr;
tagAddress = nullptr;
DEBUG_BREAK_IF(tagAllocation != nullptr);
DEBUG_BREAK_IF(tagAddress != nullptr);
for (auto graphicsAllocation : tagsMultiAllocation->getGraphicsAllocations()) {
getMemoryManager()->freeGraphicsMemory(graphicsAllocation);
}
delete tagsMultiAllocation;
tagsMultiAllocation = nullptr;
}
if (globalFenceAllocation) {
getMemoryManager()->freeGraphicsMemory(globalFenceAllocation);
globalFenceAllocation = nullptr;
}
if (preemptionAllocation) {
getMemoryManager()->freeGraphicsMemory(preemptionAllocation);
preemptionAllocation = nullptr;
}
if (perDssBackedBuffer) {
getMemoryManager()->freeGraphicsMemory(perDssBackedBuffer);
perDssBackedBuffer = nullptr;
}
if (clearColorAllocation) {
getMemoryManager()->freeGraphicsMemory(clearColorAllocation);
clearColorAllocation = nullptr;
}
if (workPartitionAllocation) {
getMemoryManager()->freeGraphicsMemory(workPartitionAllocation);
workPartitionAllocation = nullptr;
}
if (globalStatelessHeapAllocation) {
getMemoryManager()->freeGraphicsMemory(globalStatelessHeapAllocation);
globalStatelessHeapAllocation = nullptr;
}
for (auto &alloc : ownedPrivateAllocations) {
getMemoryManager()->freeGraphicsMemory(alloc.second);
}
ownedPrivateAllocations.clear();
}
WaitStatus CommandStreamReceiver::waitForCompletionWithTimeout(const WaitParams &params, TaskCountType taskCountToWait) {
bool printWaitForCompletion = debugManager.flags.LogWaitingForCompletion.get();
if (printWaitForCompletion) {
printTagAddressContent(taskCountToWait, params.waitTimeout, true);
}
TaskCountType latestSentTaskCount = this->latestFlushedTaskCount;
if (latestSentTaskCount < taskCountToWait) {
if (!this->flushBatchedSubmissions()) {
const auto isGpuHang{isGpuHangDetected()};
return isGpuHang ? WaitStatus::gpuHang : WaitStatus::notReady;
}
}
auto retCode = baseWaitFunction(getTagAddress(), params, taskCountToWait);
if (printWaitForCompletion) {
printTagAddressContent(taskCountToWait, params.waitTimeout, false);
}
return retCode;
}
bool CommandStreamReceiver::checkGpuHangDetected(TimeType currentTime, TimeType &lastHangCheckTime) const {
std::chrono::microseconds elapsedTimeSinceGpuHangCheck = std::chrono::duration_cast<std::chrono::microseconds>(currentTime - lastHangCheckTime);
if (elapsedTimeSinceGpuHangCheck.count() >= gpuHangCheckPeriod.count()) {
lastHangCheckTime = currentTime;
if (isGpuHangDetected()) {
return true;
}
}
return false;
}
WaitStatus CommandStreamReceiver::baseWaitFunction(volatile TagAddressType *pollAddress, const WaitParams &params, TaskCountType taskCountToWait) {
std::chrono::high_resolution_clock::time_point waitStartTime, lastHangCheckTime, currentTime;
int64_t timeDiff = 0;
TaskCountType latestSentTaskCount = this->latestFlushedTaskCount;
if (latestSentTaskCount < taskCountToWait) {
if (this->flushTagUpdate() != NEO::SubmissionStatus::success) {
return WaitStatus::notReady;
}
}
volatile TagAddressType *partitionAddress = pollAddress;
waitStartTime = std::chrono::high_resolution_clock::now();
lastHangCheckTime = waitStartTime;
for (uint32_t i = 0; i < activePartitions; i++) {
while (*partitionAddress < taskCountToWait && timeDiff <= params.waitTimeout) {
this->downloadTagAllocation(taskCountToWait);
if (!params.indefinitelyPoll && WaitUtils::waitFunction(partitionAddress, taskCountToWait)) {
break;
}
currentTime = std::chrono::high_resolution_clock::now();
if (checkGpuHangDetected(currentTime, lastHangCheckTime)) {
return WaitStatus::gpuHang;
}
if (params.enableTimeout) {
timeDiff = std::chrono::duration_cast<std::chrono::microseconds>(currentTime - waitStartTime).count();
}
}
partitionAddress = ptrOffset(partitionAddress, this->immWritePostSyncWriteOffset);
}
partitionAddress = pollAddress;
for (uint32_t i = 0; i < activePartitions; i++) {
if (*partitionAddress < taskCountToWait) {
return WaitStatus::notReady;
}
partitionAddress = ptrOffset(partitionAddress, this->immWritePostSyncWriteOffset);
}
return WaitStatus::ready;
}
void CommandStreamReceiver::setTagAllocation(GraphicsAllocation *allocation) {
this->tagAllocation = allocation;
UNRECOVERABLE_IF(allocation == nullptr);
this->tagAddress = reinterpret_cast<TagAddressType *>(allocation->getUnderlyingBuffer());
this->debugPauseStateAddress = reinterpret_cast<DebugPauseState *>(
reinterpret_cast<uint8_t *>(allocation->getUnderlyingBuffer()) + TagAllocationLayout::debugPauseStateAddressOffset);
}
MultiGraphicsAllocation &CommandStreamReceiver::createTagsMultiAllocation() {
RootDeviceIndicesContainer rootDeviceIndices;
rootDeviceIndices.pushUnique(rootDeviceIndex);
auto maxRootDeviceIndex = static_cast<uint32_t>(this->executionEnvironment.rootDeviceEnvironments.size() - 1);
auto allocations = new MultiGraphicsAllocation(maxRootDeviceIndex);
AllocationProperties unifiedMemoryProperties{rootDeviceIndex, MemoryConstants::pageSize, AllocationType::tagBuffer, systemMemoryBitfield};
this->getMemoryManager()->createMultiGraphicsAllocationInSystemMemoryPool(rootDeviceIndices, unifiedMemoryProperties, *allocations);
return *allocations;
}
bool CommandStreamReceiver::ensureTagAllocationForRootDeviceIndex(uint32_t rootDeviceIndex) {
UNRECOVERABLE_IF(!tagsMultiAllocation);
if (rootDeviceIndex >= tagsMultiAllocation->getGraphicsAllocations().size()) {
return false;
}
if (tagsMultiAllocation->getGraphicsAllocation(rootDeviceIndex)) {
return true;
}
AllocationProperties allocationProperties{rootDeviceIndex, MemoryConstants::pageSize, AllocationType::tagBuffer, systemMemoryBitfield};
allocationProperties.flags.allocateMemory = false;
auto graphicsAllocation = this->getMemoryManager()->createGraphicsAllocationFromExistingStorage(allocationProperties, tagAllocation->getUnderlyingBuffer(), *tagsMultiAllocation);
if (!graphicsAllocation) {
return false;
}
tagsMultiAllocation->addAllocation(graphicsAllocation);
return true;
}
FlushStamp CommandStreamReceiver::obtainCurrentFlushStamp() const {
return flushStamp->peekStamp();
}
void CommandStreamReceiver::setRequiredScratchSizes(uint32_t newRequiredScratchSlot0Size, uint32_t newRequiredScratchSlot1Size) {
if (newRequiredScratchSlot0Size > requiredScratchSlot0Size) {
requiredScratchSlot0Size = newRequiredScratchSlot0Size;
}
if (newRequiredScratchSlot1Size > requiredScratchSlot1Size) {
requiredScratchSlot1Size = newRequiredScratchSlot1Size;
}
}
GraphicsAllocation *CommandStreamReceiver::getScratchAllocation() {
return scratchSpaceController->getScratchSpaceSlot0Allocation();
}
void CommandStreamReceiver::overwriteFlatBatchBufferHelper(FlatBatchBufferHelper *newHelper) {
flatBatchBufferHelper.reset(newHelper);
}
void CommandStreamReceiver::initProgrammingFlags() {
isPreambleSent = false;
gsbaFor32BitProgrammed = false;
bindingTableBaseAddressRequired = true;
mediaVfeStateDirty = true;
lastVmeSubslicesConfig = false;
stateComputeModeDirty = true;
lastSentL3Config = 0;
lastMediaSamplerConfig = -1;
lastPreemptionMode = PreemptionMode::Initial;
latestSentStatelessMocsConfig = CacheSettings::unknownMocs;
this->streamProperties.stateBaseAddress.statelessMocs = {};
}
void CommandStreamReceiver::programForAubSubCapture(bool wasActiveInPreviousEnqueue, bool isActive) {
if (!wasActiveInPreviousEnqueue && isActive) {
// force CSR reprogramming upon subcapture activation
this->initProgrammingFlags();
}
if (wasActiveInPreviousEnqueue && !isActive) {
// flush BB upon subcapture deactivation
this->flushBatchedSubmissions();
}
}
ResidencyContainer &CommandStreamReceiver::getResidencyAllocations() {
return this->residencyAllocations;
}
ResidencyContainer &CommandStreamReceiver::getEvictionAllocations() {
return this->evictionAllocations;
}
PrivateAllocsToReuseContainer &CommandStreamReceiver::getOwnedPrivateAllocations() {
return this->ownedPrivateAllocations;
}
AubSubCaptureStatus CommandStreamReceiver::checkAndActivateAubSubCapture(const std::string &kernelName) { return {false, false}; }
void CommandStreamReceiver::addAubComment(const char *comment) {}
bool CommandStreamReceiver::isTlbFlushRequiredForStateCacheFlush() {
return false;
}
void CommandStreamReceiver::downloadAllocation(GraphicsAllocation &gfxAllocation) {
if (this->downloadAllocationImpl) {
this->downloadAllocationImpl(gfxAllocation);
}
}
void CommandStreamReceiver::startControllingDirectSubmissions() {
auto controller = this->executionEnvironment.directSubmissionController.get();
if (controller) {
controller->setTimeoutParamsForPlatform(this->getProductHelper());
controller->startControlling();
}
}
bool CommandStreamReceiver::enqueueWaitForPagingFence(uint64_t pagingFenceValue) {
auto controller = this->executionEnvironment.directSubmissionController.get();
if (this->isAnyDirectSubmissionEnabled() && controller) {
controller->enqueueWaitForPagingFence(this, pagingFenceValue);
return true;
}
return false;
}
GraphicsAllocation *CommandStreamReceiver::allocateDebugSurface(size_t size) {
UNRECOVERABLE_IF(debugSurface != nullptr);
if (primaryCsr) {
return nullptr;
}
debugSurface = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, size, AllocationType::debugContextSaveArea, getOsContext().getDeviceBitfield()});
return debugSurface;
}
void *CommandStreamReceiver::getIndirectHeapCurrentPtr(IndirectHeapType heapType) const {
auto heap = indirectHeap[heapType];
if (heap) {
return heap->getSpace(0);
}
return nullptr;
}
IndirectHeap &CommandStreamReceiver::getIndirectHeap(IndirectHeap::Type heapType,
size_t minRequiredSize) {
DEBUG_BREAK_IF(static_cast<uint32_t>(heapType) >= arrayCount(indirectHeap));
auto &heap = indirectHeap[heapType];
GraphicsAllocation *heapMemory = nullptr;
if (heap)
heapMemory = heap->getGraphicsAllocation();
if (heap && heap->getAvailableSpace() < minRequiredSize && heapMemory) {
internalAllocationStorage->storeAllocation(std::unique_ptr<GraphicsAllocation>(heapMemory), REUSABLE_ALLOCATION);
heapMemory = nullptr;
this->heapStorageRequiresRecyclingTag = true;
if (this->peekRootDeviceEnvironment().getProductHelper().isDcFlushMitigated()) {
this->registerDcFlushForDcMitigation();
}
}
if (!heapMemory) {
allocateHeapMemory(heapType, minRequiredSize, heap);
}
return *heap;
}
void CommandStreamReceiver::allocateHeapMemory(IndirectHeap::Type heapType,
size_t minRequiredSize, IndirectHeap *&indirectHeap) {
size_t reservedSize = 0;
auto finalHeapSize = HeapSize::getDefaultHeapSize(HeapSize::defaultHeapSize);
if (IndirectHeap::Type::surfaceState == heapType) {
finalHeapSize = defaultSshSize;
}
bool requireInternalHeap = IndirectHeap::Type::indirectObject == heapType ? canUse4GbHeaps : false;
if (debugManager.flags.AddPatchInfoCommentsForAUBDump.get()) {
requireInternalHeap = false;
}
minRequiredSize += reservedSize;
finalHeapSize = alignUp(std::max(finalHeapSize, minRequiredSize), MemoryConstants::pageSize);
auto allocationType = AllocationType::linearStream;
if (requireInternalHeap) {
allocationType = AllocationType::internalHeap;
}
auto heapMemory = internalAllocationStorage->obtainReusableAllocation(finalHeapSize, allocationType).release();
if (!heapMemory) {
heapMemory = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, true, finalHeapSize, allocationType,
isMultiOsContextCapable(), false, osContext->getDeviceBitfield()});
} else {
finalHeapSize = std::max(heapMemory->getUnderlyingBufferSize(), finalHeapSize);
}
if (IndirectHeap::Type::surfaceState == heapType) {
DEBUG_BREAK_IF(minRequiredSize > defaultSshSize - MemoryConstants::pageSize);
finalHeapSize = defaultSshSize - MemoryConstants::pageSize;
}
if (indirectHeap) {
indirectHeap->replaceBuffer(heapMemory->getUnderlyingBuffer(), finalHeapSize);
indirectHeap->replaceGraphicsAllocation(heapMemory);
} else {
indirectHeap = new IndirectHeap(heapMemory, requireInternalHeap);
indirectHeap->overrideMaxSize(finalHeapSize);
}
scratchSpaceController->reserveHeap(heapType, indirectHeap);
}
void CommandStreamReceiver::releaseIndirectHeap(IndirectHeap::Type heapType) {
DEBUG_BREAK_IF(static_cast<uint32_t>(heapType) >= arrayCount(indirectHeap));
auto &heap = indirectHeap[heapType];
if (heap) {
auto heapMemory = heap->getGraphicsAllocation();
if (heapMemory != nullptr)
internalAllocationStorage->storeAllocation(std::unique_ptr<GraphicsAllocation>(heapMemory), REUSABLE_ALLOCATION);
heap->replaceBuffer(nullptr, 0);
heap->replaceGraphicsAllocation(nullptr);
}
}
void *CommandStreamReceiver::asyncDebugBreakConfirmation(void *arg) {
auto self = reinterpret_cast<CommandStreamReceiver *>(arg);
do {
auto debugPauseStateValue = DebugPauseState::waitingForUserStartConfirmation;
if (debugManager.flags.PauseOnGpuMode.get() != PauseOnGpuProperties::PauseMode::AfterWorkload) {
do {
{
std::unique_lock<SpinLock> lock{self->debugPauseStateLock};
debugPauseStateValue = *self->debugPauseStateAddress;
}
if (debugPauseStateValue == DebugPauseState::terminate) {
return nullptr;
}
std::this_thread::yield();
} while (debugPauseStateValue != DebugPauseState::waitingForUserStartConfirmation);
std::cout << "Debug break: Press enter to start workload" << std::endl;
self->debugConfirmationFunction();
debugPauseStateValue = DebugPauseState::hasUserStartConfirmation;
{
std::unique_lock<SpinLock> lock{self->debugPauseStateLock};
*self->debugPauseStateAddress = debugPauseStateValue;
}
}
if (debugManager.flags.PauseOnGpuMode.get() != PauseOnGpuProperties::PauseMode::BeforeWorkload) {
do {
{
std::unique_lock<SpinLock> lock{self->debugPauseStateLock};
debugPauseStateValue = *self->debugPauseStateAddress;
}
if (debugPauseStateValue == DebugPauseState::terminate) {
return nullptr;
}
std::this_thread::yield();
} while (debugPauseStateValue != DebugPauseState::waitingForUserEndConfirmation);
std::cout << "Debug break: Workload ended, press enter to continue" << std::endl;
self->debugConfirmationFunction();
{
std::unique_lock<SpinLock> lock{self->debugPauseStateLock};
*self->debugPauseStateAddress = DebugPauseState::hasUserEndConfirmation;
}
}
} while (debugManager.flags.PauseOnEnqueue.get() == PauseOnGpuProperties::DebugFlagValues::OnEachEnqueue || debugManager.flags.PauseOnBlitCopy.get() == PauseOnGpuProperties::DebugFlagValues::OnEachEnqueue);
return nullptr;
}
bool CommandStreamReceiver::initializeTagAllocation() {
this->tagsMultiAllocation = &this->createTagsMultiAllocation();
auto tagAllocation = tagsMultiAllocation->getGraphicsAllocation(rootDeviceIndex);
if (!tagAllocation) {
return false;
}
this->setTagAllocation(tagAllocation);
auto initValue = debugManager.flags.EnableNullHardware.get() ? static_cast<uint32_t>(-1) : initialHardwareTag;
auto tagAddress = this->tagAddress;
auto completionFence = reinterpret_cast<TaskCountType *>(getCompletionAddress());
UNRECOVERABLE_IF(!completionFence);
uint32_t subDevices = static_cast<uint32_t>(this->deviceBitfield.count());
for (uint32_t i = 0; i < subDevices; i++) {
*tagAddress = initValue;
tagAddress = ptrOffset(tagAddress, this->immWritePostSyncWriteOffset);
*completionFence = 0;
completionFence = ptrOffset(completionFence, this->immWritePostSyncWriteOffset);
}
*this->debugPauseStateAddress = debugManager.flags.EnableNullHardware.get() ? DebugPauseState::disabled : DebugPauseState::waitingForFirstSemaphore;
PRINT_DEBUG_STRING(debugManager.flags.PrintTagAllocationAddress.get(), stdout,
"\nCreated tag allocation %p for engine %u\n",
this->tagAddress, static_cast<uint32_t>(osContext->getEngineType()));
if (debugManager.flags.PauseOnEnqueue.get() != -1 || debugManager.flags.PauseOnBlitCopy.get() != -1) {
userPauseConfirmation = Thread::createFunc(CommandStreamReceiver::asyncDebugBreakConfirmation, reinterpret_cast<void *>(this));
}
this->barrierCountTagAddress = ptrOffset(this->tagAddress, TagAllocationLayout::barrierCountOffset);
return true;
}
bool CommandStreamReceiver::createWorkPartitionAllocation(const Device &device) {
if (!staticWorkPartitioningEnabled) {
return false;
}
UNRECOVERABLE_IF(device.getNumGenericSubDevices() < 2);
AllocationProperties properties{this->rootDeviceIndex, true, 4096u, AllocationType::workPartitionSurface, true, false, deviceBitfield};
this->workPartitionAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties(properties);
if (this->workPartitionAllocation == nullptr) {
return false;
}
uint32_t logicalId = 0;
for (uint32_t deviceIndex = 0; deviceIndex < deviceBitfield.size(); deviceIndex++) {
if (!deviceBitfield.test(deviceIndex)) {
continue;
}
const uint32_t copySrc[2] = {logicalId++, deviceIndex};
DeviceBitfield copyBitfield{};
copyBitfield.set(deviceIndex);
auto copySuccess = MemoryTransferHelper::transferMemoryToAllocationBanks(device, workPartitionAllocation, 0, copySrc, sizeof(copySrc), copyBitfield);
if (!copySuccess) {
return false;
}
}
return true;
}
bool CommandStreamReceiver::createGlobalFenceAllocation() {
auto &gfxCoreHelper = getGfxCoreHelper();
auto &hwInfo = peekHwInfo();
if (!gfxCoreHelper.isFenceAllocationRequired(hwInfo)) {
return true;
}
DEBUG_BREAK_IF(this->globalFenceAllocation != nullptr);
this->globalFenceAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, MemoryConstants::pageSize, AllocationType::globalFence, osContext->getDeviceBitfield()});
return this->globalFenceAllocation != nullptr;
}
bool CommandStreamReceiver::createPreemptionAllocation() {
if (EngineHelpers::isBcs(osContext->getEngineType())) {
return true;
}
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto &gfxCoreHelper = getGfxCoreHelper();
size_t preemptionSurfaceSize = hwInfo->capabilityTable.requiredPreemptionSurfaceSize;
if (debugManager.flags.OverrideCsrAllocationSize.get() > 0) {
preemptionSurfaceSize = debugManager.flags.OverrideCsrAllocationSize.get();
}
AllocationProperties properties{rootDeviceIndex, true, preemptionSurfaceSize, AllocationType::preemption, isMultiOsContextCapable(), false, deviceBitfield};
properties.flags.uncacheable = hwInfo->workaroundTable.flags.waCSRUncachable;
properties.alignment = gfxCoreHelper.getPreemptionAllocationAlignment();
this->preemptionAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties(properties);
return this->preemptionAllocation != nullptr;
}
std::unique_lock<CommandStreamReceiver::MutexType> CommandStreamReceiver::obtainUniqueOwnership() {
return std::unique_lock<CommandStreamReceiver::MutexType>(this->ownershipMutex);
}
std::unique_lock<CommandStreamReceiver::MutexType> CommandStreamReceiver::obtainHostPtrSurfaceCreationLock() {
return std::unique_lock<CommandStreamReceiver::MutexType>(this->hostPtrSurfaceCreationMutex);
}
AllocationsList &CommandStreamReceiver::getTemporaryAllocations() { return internalAllocationStorage->getTemporaryAllocations(); }
AllocationsList &CommandStreamReceiver::getAllocationsForReuse() { return internalAllocationStorage->getAllocationsForReuse(); }
AllocationsList &CommandStreamReceiver::getDeferredAllocations() { return internalAllocationStorage->getDeferredAllocations(); }
bool CommandStreamReceiver::createAllocationForHostSurface(HostPtrSurface &surface, bool requiresL3Flush) {
std::unique_lock<decltype(hostPtrSurfaceCreationMutex)> lock = this->obtainHostPtrSurfaceCreationLock();
auto allocation = internalAllocationStorage->obtainTemporaryAllocationWithPtr(surface.getSurfaceSize(), surface.getMemoryPointer(), AllocationType::externalHostPtr);
if (allocation == nullptr) {
auto memoryManager = getMemoryManager();
AllocationProperties properties{rootDeviceIndex,
false, // allocateMemory
surface.getSurfaceSize(), AllocationType::externalHostPtr,
false, // isMultiStorageAllocation
osContext->getDeviceBitfield()};
properties.flags.flushL3RequiredForRead = properties.flags.flushL3RequiredForWrite = requiresL3Flush;
allocation.reset(memoryManager->allocateGraphicsMemoryWithProperties(properties, surface.getMemoryPointer()));
if (allocation == nullptr && surface.peekIsPtrCopyAllowed()) {
// Try with no host pointer allocation and copy
allocation.reset(memoryManager->allocateInternalGraphicsMemoryWithHostCopy(rootDeviceIndex,
internalAllocationStorage->getDeviceBitfield(),
surface.getMemoryPointer(),
surface.getSurfaceSize()));
}
}
if (allocation == nullptr) {
return false;
}
allocation->hostPtrTaskCountAssignment++;
allocation->updateTaskCount(0u, osContext->getContextId());
surface.setAllocation(allocation.get());
internalAllocationStorage->storeAllocation(std::move(allocation), TEMPORARY_ALLOCATION);
return true;
}
TagAllocatorBase *CommandStreamReceiver::getEventTsAllocator() {
if (profilingTimeStampAllocator.get() == nullptr) {
RootDeviceIndicesContainer rootDeviceIndices = {rootDeviceIndex};
profilingTimeStampAllocator = std::make_unique<TagAllocator<HwTimeStamps>>(rootDeviceIndices, getMemoryManager(), getPreferredTagPoolSize(), MemoryConstants::cacheLineSize,
sizeof(HwTimeStamps), false, true, osContext->getDeviceBitfield());
}
return profilingTimeStampAllocator.get();
}
TagAllocatorBase *CommandStreamReceiver::getEventPerfCountAllocator(const uint32_t tagSize) {
if (perfCounterAllocator.get() == nullptr) {
RootDeviceIndicesContainer rootDeviceIndices = {rootDeviceIndex};
perfCounterAllocator = std::make_unique<TagAllocator<HwPerfCounter>>(
rootDeviceIndices, getMemoryManager(), getPreferredTagPoolSize(), MemoryConstants::cacheLineSize, tagSize, false, true, osContext->getDeviceBitfield());
}
return perfCounterAllocator.get();
}
size_t CommandStreamReceiver::getPreferredTagPoolSize() const {
if (debugManager.flags.DisableTimestampPacketOptimizations.get()) {
return 1;
}
return 2048;
}
bool CommandStreamReceiver::expectMemory(const void *gfxAddress, const void *srcAddress,
size_t length, uint32_t compareOperation) {
auto isMemoryEqual = (memcmp(gfxAddress, srcAddress, length) == 0);
auto isEqualMemoryExpected = (compareOperation == AubMemDump::CmdServicesMemTraceMemoryCompare::CompareOperationValues::CompareEqual);
return (isMemoryEqual == isEqualMemoryExpected);
}
bool CommandStreamReceiver::needsPageTableManager() const {
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto &productHelper = getProductHelper();
if (pageTableManager.get() != nullptr) {
return false;
}
return productHelper.isPageTableManagerSupported(*hwInfo);
}
void CommandStreamReceiver::printDeviceIndex() {
if (debugManager.flags.PrintDeviceAndEngineIdOnSubmission.get()) {
printf("%u: Submission to RootDevice Index: %u, Sub-Devices Mask: %lu, EngineId: %u (%s, %s)\n",
SysCalls::getProcessId(),
this->getRootDeviceIndex(),
this->osContext->getDeviceBitfield().to_ulong(),
this->osContext->getEngineType(),
EngineHelpers::engineTypeToString(this->osContext->getEngineType()).c_str(),
EngineHelpers::engineUsageToString(this->osContext->getEngineUsage()).c_str());
}
}
void CommandStreamReceiver::checkForNewResources(TaskCountType submittedTaskCount, TaskCountType allocationTaskCount, GraphicsAllocation &gfxAllocation) {
if (useNewResourceImplicitFlush) {
if (allocationTaskCount == GraphicsAllocation::objectNotUsed && !GraphicsAllocation::isIsaAllocationType(gfxAllocation.getAllocationType())) {
newResources = true;
if (debugManager.flags.ProvideVerboseImplicitFlush.get()) {
printf("New resource detected of type %llu\n", static_cast<unsigned long long>(gfxAllocation.getAllocationType()));
}
}
}
}
bool CommandStreamReceiver::checkImplicitFlushForGpuIdle() {
if (useGpuIdleImplicitFlush) {
if (this->taskCount == *getTagAddress()) {
return true;
}
}
return false;
}
void CommandStreamReceiver::downloadTagAllocation(TaskCountType taskCountToWait) {
if (this->getTagAllocation()) {
if (taskCountToWait && taskCountToWait <= this->peekLatestFlushedTaskCount()) {
this->downloadAllocation(*this->getTagAllocation());
}
}
}
bool CommandStreamReceiver::testTaskCountReady(volatile TagAddressType *pollAddress, TaskCountType taskCountToWait) {
this->downloadTagAllocation(taskCountToWait);
for (uint32_t i = 0; i < activePartitions; i++) {
if (!WaitUtils::waitFunction(pollAddress, taskCountToWait)) {
return false;
}
pollAddress = ptrOffset(pollAddress, this->immWritePostSyncWriteOffset);
}
downloadAllocations(true);
return true;
}
const HardwareInfo &CommandStreamReceiver::peekHwInfo() const {
return *peekRootDeviceEnvironment().getHardwareInfo();
}
const RootDeviceEnvironment &CommandStreamReceiver::peekRootDeviceEnvironment() const {
return *executionEnvironment.rootDeviceEnvironments[rootDeviceIndex];
}
const GfxCoreHelper &CommandStreamReceiver::getGfxCoreHelper() const {
return peekRootDeviceEnvironment().getHelper<GfxCoreHelper>();
}
const ProductHelper &CommandStreamReceiver::getProductHelper() const {
return peekRootDeviceEnvironment().getHelper<ProductHelper>();
}
const ReleaseHelper *CommandStreamReceiver::getReleaseHelper() const {
return peekRootDeviceEnvironment().getReleaseHelper();
}
TaskCountType CommandStreamReceiver::getCompletionValue(const GraphicsAllocation &gfxAllocation) {
if (completionFenceValuePointer) {
return *completionFenceValuePointer;
}
auto osContextId = osContext->getContextId();
return gfxAllocation.getTaskCount(osContextId);
}
bool CommandStreamReceiver::createPerDssBackedBuffer(Device &device) {
UNRECOVERABLE_IF(perDssBackedBuffer != nullptr);
auto size = RayTracingHelper::getTotalMemoryBackedFifoSize(device);
perDssBackedBuffer = getMemoryManager()->allocateGraphicsMemoryWithProperties({rootDeviceIndex, size, AllocationType::buffer, device.getDeviceBitfield()});
return perDssBackedBuffer != nullptr;
}
void CommandStreamReceiver::printTagAddressContent(TaskCountType taskCountToWait, int64_t waitTimeout, bool start) {
auto postSyncAddress = getTagAddress();
if (start) {
PRINT_DEBUG_STRING(true, stdout,
"\nWaiting for task count %llu at location %p with timeout %llx. Current value:",
taskCountToWait, postSyncAddress, waitTimeout);
} else {
PRINT_DEBUG_STRING(true, stdout,
"%s", "\nWaiting completed. Current value:");
}
for (uint32_t i = 0; i < activePartitions; i++) {
PRINT_DEBUG_STRING(true, stdout, " %u", *postSyncAddress);
postSyncAddress = ptrOffset(postSyncAddress, this->immWritePostSyncWriteOffset);
}
PRINT_DEBUG_STRING(true, stdout, "%s", "\n");
}
bool CommandStreamReceiver::isTbxMode() const {
return (getType() == NEO::CommandStreamReceiverType::tbx || getType() == NEO::CommandStreamReceiverType::tbxWithAub);
}
TaskCountType CompletionStamp::getTaskCountFromSubmissionStatusError(SubmissionStatus status) {
switch (status) {
case SubmissionStatus::outOfHostMemory:
return CompletionStamp::outOfHostMemory;
case SubmissionStatus::outOfMemory:
return CompletionStamp::outOfDeviceMemory;
case SubmissionStatus::failed:
return CompletionStamp::failed;
case SubmissionStatus::unsupported:
return CompletionStamp::unsupported;
default:
return 0;
}
}
uint64_t CommandStreamReceiver::getBarrierCountGpuAddress() const { return ptrOffset(this->tagAllocation->getGpuAddress(), TagAllocationLayout::barrierCountOffset); }
uint64_t CommandStreamReceiver::getDebugPauseStateGPUAddress() const { return tagAllocation->getGpuAddress() + TagAllocationLayout::debugPauseStateAddressOffset; }
uint64_t CommandStreamReceiver::getCompletionAddress() const {
uint64_t completionFenceAddress = castToUint64(const_cast<TagAddressType *>(tagAddress));
if (completionFenceAddress == 0) {
return 0;
}
completionFenceAddress += TagAllocationLayout::completionFenceOffset;
return completionFenceAddress;
}
void CommandStreamReceiver::createGlobalStatelessHeap() {
if (this->globalStatelessHeapAllocation == nullptr) {
auto lock = obtainUniqueOwnership();
if (this->globalStatelessHeapAllocation == nullptr) {
constexpr size_t heapSize = 16 * MemoryConstants::kiloByte;
constexpr AllocationType allocationType = AllocationType::linearStream;
AllocationProperties properties{rootDeviceIndex, true, heapSize, allocationType,
isMultiOsContextCapable(), false, osContext->getDeviceBitfield()};
this->globalStatelessHeapAllocation = getMemoryManager()->allocateGraphicsMemoryWithProperties(properties);
this->globalStatelessHeap = std::make_unique<IndirectHeap>(this->globalStatelessHeapAllocation);
}
}
}
bool CommandStreamReceiver::isRayTracingStateProgramingNeeded(Device &device) const {
return device.getRTMemoryBackedBuffer() && getBtdCommandDirty();
}
void CommandStreamReceiver::registerClient(void *client) {
std::unique_lock<MutexType> lock(registeredClientsMutex);
auto element = std::find(registeredClients.begin(), registeredClients.end(), client);
if (element == registeredClients.end()) {
registeredClients.push_back(client);
numClients++;
}
}
void CommandStreamReceiver::unregisterClient(void *client) {
std::unique_lock<MutexType> lock(registeredClientsMutex);
auto element = std::find(registeredClients.begin(), registeredClients.end(), client);
if (element != registeredClients.end()) {
registeredClients.erase(element);
numClients--;
}
}
void CommandStreamReceiver::ensurePrimaryCsrInitialized(Device &device) {
auto csrToInitialize = primaryCsr ? primaryCsr : this;
csrToInitialize->initializeDeviceWithFirstSubmission(device);
}
void CommandStreamReceiver::addToEvictionContainer(GraphicsAllocation &gfxAllocation) {
this->getEvictionAllocations().push_back(&gfxAllocation);
}
std::function<void()> CommandStreamReceiver::debugConfirmationFunction = []() { std::cin.get(); };
} // namespace NEO