Files
compute-runtime/unit_tests/kernel/kernel_image_arg_tests.cpp
Hoppe, Mateusz 64277ee849 TBX CommandStreamReceiver fix for makeCoherent
- makeCoherent should be called after TBX finished processing
 - this is when tagAddress is updated with taskCount
makeCoherent is called from makeNonResident which is invoked just
after flush and may happen before TBX server finished processing
leading to invalid data to be read back to CPU accessible memory

- this fix adds waiting for taskCount to blocking calls for TBX CSR
before calling makeNonResident on surfaces to guarantee correct data
from TBX server is ready.

Change-Id: I498a5454e0826eec2a5413a08880af40268550e1
2018-07-04 12:04:32 +02:00

279 lines
11 KiB
C++

/*
* Copyright (c) 2017 - 2018, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "runtime/helpers/ptr_math.h"
#include "runtime/kernel/kernel.h"
#include "unit_tests/fixtures/kernel_arg_fixture.h"
#include "unit_tests/gen_common/test.h"
#include "unit_tests/mocks/mock_context.h"
#include "unit_tests/mocks/mock_csr.h"
#include "unit_tests/mocks/mock_graphics_allocation.h"
#include "unit_tests/mocks/mock_image.h"
#include "unit_tests/mocks/mock_kernel.h"
#include "unit_tests/mocks/mock_program.h"
#include "gtest/gtest.h"
using namespace OCLRT;
TEST_F(KernelImageArgTest, GIVENkernelWithImageArgsWHENcheckDifferentScenariosTHENproperBehaviour) {
size_t imageWidth = image->getImageDesc().image_width;
size_t imageHeight = image->getImageDesc().image_height;
size_t imageDepth = image->getImageDesc().image_depth;
uint32_t objectId = pKernelInfo->kernelArgInfo[4].offsetHeap;
cl_mem memObj = image.get();
pKernel->setArg(0, sizeof(memObj), &memObj);
pKernel->setArg(1, sizeof(memObj), &memObj);
pKernel->setArg(3, sizeof(memObj), &memObj);
pKernel->setArg(4, sizeof(memObj), &memObj);
auto crossThreadData = reinterpret_cast<uint32_t *>(pKernel->getCrossThreadData());
auto imgWidthOffset = ptrOffset(crossThreadData, 0x4);
EXPECT_EQ(imageWidth, *imgWidthOffset);
auto imgHeightOffset = ptrOffset(crossThreadData, 0xc);
EXPECT_EQ(imageHeight, *imgHeightOffset);
auto dummyOffset = ptrOffset(crossThreadData, 0x20);
EXPECT_EQ(0x12344321u, *dummyOffset);
auto imgDepthOffset = ptrOffset(crossThreadData, 0x30);
EXPECT_EQ(imageDepth, *imgDepthOffset);
EXPECT_EQ(objectId, *crossThreadData);
}
TEST_F(KernelImageArgTest, givenKernelWithValidOffsetNumMipLevelsWhenImageArgIsSetThenCrossthreadDataIsProperlyPatched) {
MockImageBase image;
image.imageDesc.num_mip_levels = 7U;
cl_mem imageObj = &image;
pKernel->setArg(0, sizeof(imageObj), &imageObj);
auto crossThreadData = reinterpret_cast<uint32_t *>(pKernel->getCrossThreadData());
auto patchedNumMipLevels = ptrOffset(crossThreadData, offsetNumMipLevelsImage0);
EXPECT_EQ(7U, *patchedNumMipLevels);
}
TEST_F(KernelImageArgTest, givenImageWithNumSamplesWhenSetArgIsCalledThenPatchNumSamplesInfo) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.num_samples = 16;
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
auto sampleImg = Image::create(context.get(), 0, surfaceFormat, &imgDesc, nullptr, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
cl_mem memObj = sampleImg;
pKernel->setArg(0, sizeof(memObj), &memObj);
auto crossThreadData = reinterpret_cast<uint32_t *>(pKernel->getCrossThreadData());
auto patchedNumSamples = ptrOffset(crossThreadData, 0x3c);
EXPECT_EQ(16u, *patchedNumSamples);
sampleImg->release();
}
TEST_F(KernelImageArgTest, givenImageWithWriteOnlyAccessAndReadOnlyArgWhenCheckCorrectImageAccessQualifierIsCalledThenRetValNotValid) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
cl_mem_flags flags = CL_MEM_WRITE_ONLY;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
std::unique_ptr<Image> img(Image::create(context.get(), flags, surfaceFormat, &imgDesc, nullptr, retVal));
pKernelInfo->kernelArgInfo[0].accessQualifier = CL_KERNEL_ARG_ACCESS_READ_ONLY;
cl_mem memObj = img.get();
retVal = pKernel->checkCorrectImageAccessQualifier(0, sizeof(memObj), &memObj);
EXPECT_EQ(retVal, CL_INVALID_ARG_VALUE);
retVal = clSetKernelArg(
pKernel.get(),
0,
sizeof(memObj),
&memObj);
EXPECT_EQ(retVal, CL_INVALID_ARG_VALUE);
retVal = clSetKernelArg(
pKernel.get(),
0,
sizeof(memObj),
&memObj);
EXPECT_EQ(retVal, CL_INVALID_ARG_VALUE);
retVal = clSetKernelArg(
pKernel.get(),
1000,
sizeof(memObj),
&memObj);
EXPECT_EQ(retVal, CL_INVALID_ARG_INDEX);
}
TEST_F(KernelImageArgTest, givenImageWithReadOnlyAccessAndWriteOnlyArgWhenCheckCorrectImageAccessQualifierIsCalledThenReturnsInvalidArgValue) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
std::unique_ptr<Image> img(Image::create(context.get(), flags, surfaceFormat, &imgDesc, nullptr, retVal));
pKernelInfo->kernelArgInfo[0].accessQualifier = CL_KERNEL_ARG_ACCESS_WRITE_ONLY;
cl_mem memObj = img.get();
retVal = pKernel->checkCorrectImageAccessQualifier(0, sizeof(memObj), &memObj);
EXPECT_EQ(retVal, CL_INVALID_ARG_VALUE);
Image *image = NULL;
memObj = image;
retVal = pKernel->checkCorrectImageAccessQualifier(0, sizeof(memObj), &memObj);
EXPECT_EQ(retVal, CL_INVALID_ARG_VALUE);
}
TEST_F(KernelImageArgTest, givenImageWithReadOnlyAccessAndReadOnlyArgWhenCheckCorrectImageAccessQualifierIsCalledThenRetValNotValid) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
cl_mem_flags flags = CL_MEM_READ_ONLY;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
std::unique_ptr<Image> img(Image::create(context.get(), flags, surfaceFormat, &imgDesc, nullptr, retVal));
pKernelInfo->kernelArgInfo[0].accessQualifier = CL_KERNEL_ARG_ACCESS_READ_ONLY;
cl_mem memObj = img.get();
retVal = pKernel->checkCorrectImageAccessQualifier(0, sizeof(memObj), &memObj);
EXPECT_EQ(retVal, CL_SUCCESS);
}
TEST_F(KernelImageArgTest, givenImageWithWriteOnlyAccessAndWriteOnlyArgWhenCheckCorrectImageAccessQualifierIsCalledThenRetValNotValid) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
cl_mem_flags flags = CL_MEM_WRITE_ONLY;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
std::unique_ptr<Image> img(Image::create(context.get(), flags, surfaceFormat, &imgDesc, nullptr, retVal));
pKernelInfo->kernelArgInfo[0].accessQualifier = CL_KERNEL_ARG_ACCESS_WRITE_ONLY;
cl_mem memObj = img.get();
retVal = pKernel->checkCorrectImageAccessQualifier(0, sizeof(memObj), &memObj);
EXPECT_EQ(retVal, CL_SUCCESS);
}
HWTEST_F(KernelImageArgTest, givenImgWithMcsAllocWhenMakeResidentThenMakeMcsAllocationResident) {
int32_t execStamp = 0;
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
auto img = Image::create(context.get(), 0, surfaceFormat, &imgDesc, nullptr, retVal);
EXPECT_EQ(CL_SUCCESS, retVal);
auto mcsAlloc = context->getMemoryManager()->allocateGraphicsMemory(4096);
img->setMcsAllocation(mcsAlloc);
cl_mem memObj = img;
pKernel->setArg(0, sizeof(memObj), &memObj);
std::unique_ptr<OsAgnosticMemoryManager> memoryManager(new OsAgnosticMemoryManager());
std::unique_ptr<MockCsr<FamilyType>> csr(new MockCsr<FamilyType>(execStamp));
csr->setMemoryManager(memoryManager.get());
pKernel->makeResident(*csr.get());
EXPECT_TRUE(csr->isMadeResident(mcsAlloc));
csr->makeSurfacePackNonResident(nullptr, false);
EXPECT_TRUE(csr->isMadeNonResident(mcsAlloc));
delete img;
}
TEST_F(KernelImageArgTest, givenKernelWithSettedArgWhenUnSetCalledThenArgIsUnsetAndArgCountIsDecreased) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
cl_mem_flags flags = CL_MEM_WRITE_ONLY;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
std::unique_ptr<Image> img(Image::create(context.get(), flags, surfaceFormat, &imgDesc, nullptr, retVal));
cl_mem memObj = img.get();
retVal = pKernel->setArg(0, sizeof(memObj), &memObj);
EXPECT_EQ(1u, pKernel->getPatchedArgumentsNum());
EXPECT_TRUE(pKernel->getKernelArguments()[0].isPatched);
pKernel->unsetArg(0);
EXPECT_EQ(0u, pKernel->getPatchedArgumentsNum());
EXPECT_FALSE(pKernel->getKernelArguments()[0].isPatched);
}
TEST_F(KernelImageArgTest, givenNullKernelWhenClSetKernelArgCalledThenInvalidKernelCodeReturned) {
cl_mem memObj = NULL;
retVal = clSetKernelArg(
NULL,
1000,
sizeof(memObj),
&memObj);
EXPECT_EQ(retVal, CL_INVALID_KERNEL);
}
class MockSharingHandler : public SharingHandler {
public:
void synchronizeObject(UpdateData *updateData) override {
updateData->synchronizationStatus = ACQUIRE_SUCCESFUL;
}
};
TEST_F(KernelImageArgTest, givenKernelWithSharedImageWhenSetArgCalledThenUsingSharedObjArgsShouldBeTrue) {
cl_image_format imgFormat = {CL_RGBA, CL_UNORM_INT8};
cl_image_desc imgDesc = {};
imgDesc.image_type = CL_MEM_OBJECT_IMAGE2D;
cl_mem_flags flags = CL_MEM_WRITE_ONLY;
imgDesc.image_width = 5;
imgDesc.image_height = 5;
auto surfaceFormat = Image::getSurfaceFormatFromTable(0, &imgFormat);
std::unique_ptr<Image> img(Image::create(context.get(), flags, surfaceFormat, &imgDesc, nullptr, retVal));
cl_mem memObj = img.get();
MockSharingHandler *mockSharingHandler = new MockSharingHandler;
img->setSharingHandler(mockSharingHandler);
retVal = pKernel->setArg(0, sizeof(memObj), &memObj);
EXPECT_EQ(CL_SUCCESS, retVal);
EXPECT_EQ(1u, pKernel->getPatchedArgumentsNum());
EXPECT_TRUE(pKernel->getKernelArguments()[0].isPatched);
EXPECT_TRUE(pKernel->isUsingSharedObjArgs());
}