compute-runtime/level_zero/tools/source/sysman/pci/pci_imp.cpp

169 lines
6.1 KiB
C++

/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "pci_imp.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/string.h"
#include "shared/source/utilities/directory.h"
namespace L0 {
//
// While computing the PCIe bandwidth, also consider that due to 8b/10b encoding
// in PCIe gen1 and gen2 real bandwidth will be reduced by 20%,
// And in case of gen3 and above due to 128b/130b encoding real bandwidth is
// reduced by approx 1.54% as compared to theoretical bandwidth.
// In below method, get real PCIe speed in pcieSpeedWithEnc in Mega bits per second
// pcieSpeedWithEnc = maxLinkSpeedInGt * (Gigabit to Megabit) * Encoding =
// maxLinkSpeedInGt * 1000 * Encoding
//
int64_t convertPcieSpeedFromGTsToBs(double maxLinkSpeedInGt) {
double pcieSpeedWithEnc;
if ((maxLinkSpeedInGt == PciLinkSpeeds::Pci32_0GigatransfersPerSecond) || (maxLinkSpeedInGt == PciLinkSpeeds::Pci16_0GigatransfersPerSecond) || (maxLinkSpeedInGt == PciLinkSpeeds::Pci8_0GigatransfersPerSecond)) {
pcieSpeedWithEnc = maxLinkSpeedInGt * 1000 * 128 / 130;
} else if ((maxLinkSpeedInGt == PciLinkSpeeds::Pci5_0GigatransfersPerSecond) || (maxLinkSpeedInGt == PciLinkSpeeds::Pci2_5GigatransfersPerSecond)) {
pcieSpeedWithEnc = maxLinkSpeedInGt * 1000 * 8 / 10;
} else {
pcieSpeedWithEnc = 0;
}
//
// PCIE speed we got above is in Mega bits per second
// Convert that speed in bytes/second.
// Now, because 1Mb/s = (1000*1000)/8 bytes/second = 125000 bytes/second
//
pcieSpeedWithEnc = pcieSpeedWithEnc * 125000;
return static_cast<int64_t>(pcieSpeedWithEnc);
}
double convertPciGenToLinkSpeed(uint32_t gen) {
switch (gen) {
case PciGenerations::PciGen1: {
return PciLinkSpeeds::Pci2_5GigatransfersPerSecond;
} break;
case PciGenerations::PciGen2: {
return PciLinkSpeeds::Pci5_0GigatransfersPerSecond;
} break;
case PciGenerations::PciGen3: {
return PciLinkSpeeds::Pci8_0GigatransfersPerSecond;
} break;
case PciGenerations::PciGen4: {
return PciLinkSpeeds::Pci16_0GigatransfersPerSecond;
} break;
case PciGenerations::PciGen5: {
return PciLinkSpeeds::Pci32_0GigatransfersPerSecond;
} break;
default: {
return 0.0;
} break;
}
}
int32_t convertLinkSpeedToPciGen(double speed) {
if (speed == PciLinkSpeeds::Pci2_5GigatransfersPerSecond) {
return PciGenerations::PciGen1;
} else if (speed == PciLinkSpeeds::Pci5_0GigatransfersPerSecond) {
return PciGenerations::PciGen2;
} else if (speed == PciLinkSpeeds::Pci8_0GigatransfersPerSecond) {
return PciGenerations::PciGen3;
} else if (speed == PciLinkSpeeds::Pci16_0GigatransfersPerSecond) {
return PciGenerations::PciGen4;
} else if (speed == PciLinkSpeeds::Pci32_0GigatransfersPerSecond) {
return PciGenerations::PciGen5;
} else {
return -1;
}
}
ze_result_t PciImp::pciStaticProperties(zes_pci_properties_t *pProperties) {
initPci();
*pProperties = pciProperties;
return ZE_RESULT_SUCCESS;
}
ze_result_t PciImp::pciGetInitializedBars(uint32_t *pCount, zes_pci_bar_properties_t *pProperties) {
initPci();
uint32_t pciBarPropertiesSize = static_cast<uint32_t>(pciBarProperties.size());
uint32_t numToCopy = std::min(*pCount, pciBarPropertiesSize);
if (0 == *pCount || *pCount > pciBarPropertiesSize) {
*pCount = pciBarPropertiesSize;
}
if (nullptr != pProperties) {
for (uint32_t i = 0; i < numToCopy; i++) {
pProperties[i].base = pciBarProperties[i]->base;
pProperties[i].index = pciBarProperties[i]->index;
pProperties[i].size = pciBarProperties[i]->size;
pProperties[i].type = pciBarProperties[i]->type;
if (pProperties[i].pNext != nullptr) {
zes_pci_bar_properties_1_2_t *pBarPropsExt = static_cast<zes_pci_bar_properties_1_2_t *>(pProperties[i].pNext);
if (pBarPropsExt->stype == zes_structure_type_t::ZES_STRUCTURE_TYPE_PCI_BAR_PROPERTIES_1_2) {
// base, index, size and type are the same as the non 1.2 struct.
pBarPropsExt->base = pciBarProperties[i]->base;
pBarPropsExt->index = pciBarProperties[i]->index;
pBarPropsExt->size = pciBarProperties[i]->size;
pBarPropsExt->type = pciBarProperties[i]->type;
pBarPropsExt->resizableBarSupported = static_cast<ze_bool_t>(resizableBarSupported);
pBarPropsExt->resizableBarEnabled = static_cast<ze_bool_t>(pOsPci->resizableBarEnabled(pBarPropsExt->index));
}
}
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t PciImp::pciGetState(zes_pci_state_t *pState) {
initPci();
return pOsPci->getState(pState);
}
void PciImp::pciGetStaticFields() {
pOsPci->getProperties(&pciProperties);
resizableBarSupported = pOsPci->resizableBarSupported();
std::string bdf;
pOsPci->getPciBdf(pciProperties);
int32_t maxLinkWidth = -1;
int64_t maxBandWidth = -1;
double maxLinkSpeed = 0;
pOsPci->getMaxLinkCaps(maxLinkSpeed, maxLinkWidth);
maxBandWidth = maxLinkWidth * convertPcieSpeedFromGTsToBs(maxLinkSpeed);
if (maxBandWidth == 0) {
pciProperties.maxSpeed.maxBandwidth = -1;
} else {
pciProperties.maxSpeed.maxBandwidth = maxBandWidth;
}
pciProperties.maxSpeed.width = maxLinkWidth;
pciProperties.maxSpeed.gen = convertLinkSpeedToPciGen(maxLinkSpeed);
pOsPci->initializeBarProperties(pciBarProperties);
}
void PciImp::initPci() {
std::call_once(initPciOnce, [this]() {
this->init();
});
}
void PciImp::init() {
if (pOsPci == nullptr) {
pOsPci = OsPci::create(pOsSysman);
}
UNRECOVERABLE_IF(nullptr == pOsPci);
pciGetStaticFields();
}
PciImp::~PciImp() {
for (zes_pci_bar_properties_t *pProperties : pciBarProperties) {
delete pProperties;
pProperties = nullptr;
}
if (nullptr != pOsPci) {
delete pOsPci;
pOsPci = nullptr;
}
}
} // namespace L0