compute-runtime/shared/source/os_interface/os_time.cpp

146 lines
5.3 KiB
C++

/*
* Copyright (C) 2020-2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/os_interface/os_time.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/helpers/constants.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/hw_info.h"
#include <mutex>
namespace NEO {
double OSTime::getDeviceTimerResolution() {
return CommonConstants::defaultProfilingTimerResolution;
};
TimeQueryStatus DeviceTime::getGpuCpuTimeImpl(TimeStampData *pGpuCpuTime, OSTime *osTime) {
pGpuCpuTime->cpuTimeinNS = 0;
pGpuCpuTime->gpuTimeStamp = 0;
return TimeQueryStatus::success;
}
double DeviceTime::getDynamicDeviceTimerResolution() const {
return OSTime::getDeviceTimerResolution();
}
uint64_t DeviceTime::getDynamicDeviceTimerClock() const {
return static_cast<uint64_t>(1000000000.0 / OSTime::getDeviceTimerResolution());
}
void DeviceTime::setDeviceTimerResolution() {
deviceTimerResolution = getDynamicDeviceTimerResolution();
if (debugManager.flags.OverrideProfilingTimerResolution.get() != -1) {
deviceTimerResolution = static_cast<double>(debugManager.flags.OverrideProfilingTimerResolution.get());
}
}
bool DeviceTime::isTimestampsRefreshEnabled() const {
bool timestampsRefreshEnabled = true;
if (debugManager.flags.EnableReusingGpuTimestamps.get() != -1) {
timestampsRefreshEnabled = debugManager.flags.EnableReusingGpuTimestamps.get();
}
return timestampsRefreshEnabled;
}
/**
* @brief If this method is called within interval, GPU timestamp
* will be calculated based on CPU timestamp and previous GPU ticks
* to reduce amount of internal KMD calls. Interval is selected
* adaptively, based on misalignment between calculated ticks and actual ticks.
*
* @return returns appropriate error if internal call to KMD failed. SUCCESS otherwise.
*/
TimeQueryStatus DeviceTime::getGpuCpuTimestamps(TimeStampData *timeStamp, OSTime *osTime, bool forceKmdCall) {
uint64_t cpuTimeinNS;
osTime->getCpuTime(&cpuTimeinNS);
auto cpuTimeDiffInNS = cpuTimeinNS - fetchedTimestamps.cpuTimeinNS;
if (forceKmdCall || cpuTimeDiffInNS >= timestampRefreshTimeoutNS) {
refreshTimestamps = true;
}
bool reusingTimestampsEnabled = isTimestampsRefreshEnabled();
if (!reusingTimestampsEnabled || refreshTimestamps) {
TimeQueryStatus retVal = getGpuCpuTimeImpl(timeStamp, osTime);
if (retVal != TimeQueryStatus::success) {
return retVal;
}
if (!reusingTimestampsEnabled) {
return TimeQueryStatus::success;
}
if (initialGpuTimeStamp) {
UNRECOVERABLE_IF(deviceTimerResolution == 0);
auto calculatedTimestamp = fetchedTimestamps.gpuTimeStamp + static_cast<uint64_t>(cpuTimeDiffInNS / deviceTimerResolution);
auto diff = abs(static_cast<int64_t>(timeStamp->gpuTimeStamp - calculatedTimestamp));
auto elapsedTicks = timeStamp->gpuTimeStamp - fetchedTimestamps.gpuTimeStamp;
int64_t adaptValue = static_cast<int64_t>(diff * deviceTimerResolution);
adaptValue = std::min(adaptValue, static_cast<int64_t>(timestampRefreshMinTimeoutNS));
if (diff * 1.0f / elapsedTicks > 0.05) {
adaptValue = adaptValue * (-1);
}
timestampRefreshTimeoutNS += adaptValue;
timestampRefreshTimeoutNS = std::max(timestampRefreshMinTimeoutNS, std::min(timestampRefreshMaxTimeoutNS, timestampRefreshTimeoutNS));
}
fetchedTimestamps = *timeStamp;
refreshTimestamps = false;
} else {
timeStamp->cpuTimeinNS = cpuTimeinNS;
UNRECOVERABLE_IF(deviceTimerResolution == 0);
timeStamp->gpuTimeStamp = fetchedTimestamps.gpuTimeStamp + static_cast<uint64_t>(cpuTimeDiffInNS / deviceTimerResolution);
}
return TimeQueryStatus::success;
}
TimeQueryStatus DeviceTime::getGpuCpuTime(TimeStampData *pGpuCpuTime, OSTime *osTime, bool forceKmdCall) {
TimeQueryStatus retVal = getGpuCpuTimestamps(pGpuCpuTime, osTime, forceKmdCall);
if (retVal != TimeQueryStatus::success) {
return retVal;
}
auto maxGpuTimeStampValue = osTime->getMaxGpuTimeStamp();
static std::mutex gpuTimeStampOverflowCounterMutex;
std::lock_guard<std::mutex> lock(gpuTimeStampOverflowCounterMutex);
pGpuCpuTime->gpuTimeStamp &= (maxGpuTimeStampValue - 1);
if (!initialGpuTimeStamp) {
initialGpuTimeStamp = pGpuCpuTime->gpuTimeStamp;
waitingForGpuTimeStampOverflow = true;
} else {
if (waitingForGpuTimeStampOverflow && pGpuCpuTime->gpuTimeStamp < *initialGpuTimeStamp) {
gpuTimeStampOverflowCounter++;
waitingForGpuTimeStampOverflow = false;
}
if (!waitingForGpuTimeStampOverflow && pGpuCpuTime->gpuTimeStamp > *initialGpuTimeStamp) {
waitingForGpuTimeStampOverflow = true;
}
pGpuCpuTime->gpuTimeStamp += gpuTimeStampOverflowCounter * maxGpuTimeStampValue;
}
return retVal;
}
bool OSTime::getCpuTime(uint64_t *timeStamp) {
*timeStamp = 0;
return true;
}
double OSTime::getHostTimerResolution() const {
return 0;
}
uint64_t OSTime::getCpuRawTimestamp() {
return 0;
}
OSTime::OSTime(std::unique_ptr<DeviceTime> deviceTime) {
this->deviceTime = std::move(deviceTime);
}
} // namespace NEO