compute-runtime/opencl/test/unit_test/kernel/parent_kernel_tests.cpp

153 lines
5.6 KiB
C++

/*
* Copyright (C) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/test/common/mocks/mock_device.h"
#include "opencl/test/unit_test/fixtures/execution_model_kernel_fixture.h"
#include "opencl/test/unit_test/mocks/mock_kernel.h"
#include "opencl/test/unit_test/mocks/mock_program.h"
#include "test.h"
#include <memory>
using namespace NEO;
class MockKernelWithArgumentAccess : public Kernel {
public:
std::vector<SimpleKernelArgInfo> &getKernelArguments() {
return kernelArguments;
}
class ObjectCountsPublic : public Kernel::ObjectCounts {
};
MockKernelWithArgumentAccess(Program *programArg, KernelInfo &kernelInfoArg, ClDevice &clDeviceArg) : Kernel(programArg, kernelInfoArg, clDeviceArg, false) {
}
void getParentObjectCountsPublic(MockKernelWithArgumentAccess::ObjectCountsPublic &objectCount) {
getParentObjectCounts(objectCount);
}
};
TEST(ParentKernelTest, WhenArgsAddedThenObjectCountsAreIncremented) {
MockClDevice *device = new MockClDevice{new MockDevice};
MockProgram program(toClDeviceVector(*device));
KernelInfo info;
info.kernelDescriptor.kernelAttributes.flags.usesDeviceSideEnqueue = true;
MockKernelWithArgumentAccess kernel(&program, info, *device);
std::vector<Kernel::SimpleKernelArgInfo> &args = kernel.getKernelArguments();
Kernel::SimpleKernelArgInfo argInfo;
argInfo.type = Kernel::kernelArgType::SAMPLER_OBJ;
args.push_back(argInfo);
argInfo.type = Kernel::kernelArgType::IMAGE_OBJ;
args.push_back(argInfo);
MockKernelWithArgumentAccess::ObjectCountsPublic objectCounts;
kernel.getParentObjectCountsPublic(objectCounts);
EXPECT_EQ(1u, objectCounts.imageCount);
EXPECT_EQ(1u, objectCounts.samplerCount);
delete device;
}
TEST(ParentKernelTest, WhenPatchingBlocksSimdSizeThenPatchIsAppliedCorrectly) {
MockClDevice device{new MockDevice};
MockContext context(&device);
std::unique_ptr<MockParentKernel> parentKernel(MockParentKernel::create(context, true));
MockProgram *program = (MockProgram *)parentKernel->mockProgram;
parentKernel->patchBlocksSimdSize();
void *blockSimdSize = ptrOffset(parentKernel->getCrossThreadData(), parentKernel->getKernelInfo().childrenKernelsIdOffset[0].second);
uint32_t *simdSize = reinterpret_cast<uint32_t *>(blockSimdSize);
EXPECT_EQ(program->blockKernelManager->getBlockKernelInfo(0)->getMaxSimdSize(), *simdSize);
}
TEST(ParentKernelTest, GivenParentKernelWhenCheckingForDeviceEnqueueThenTrueIsReturned) {
MockClDevice device{new MockDevice};
MockContext context(&device);
std::unique_ptr<MockParentKernel> parentKernel(MockParentKernel::create(context));
EXPECT_TRUE(parentKernel->getKernelInfo().hasDeviceEnqueue());
}
TEST(ParentKernelTest, GivenNormalKernelWhenCheckingForDeviceEnqueueThenFalseIsReturned) {
MockClDevice device{new MockDevice};
MockKernelWithInternals kernel(device);
EXPECT_FALSE(kernel.kernelInfo.hasDeviceEnqueue());
}
TEST(ParentKernelTest, WhenInitializingParentKernelThenBlocksSimdSizeIsPatched) {
MockClDevice device{new MockDevice};
MockContext context(&device);
std::unique_ptr<MockParentKernel> parentKernel(MockParentKernel::create(context, true));
MockProgram *program = (MockProgram *)parentKernel->mockProgram;
parentKernel->initialize();
void *blockSimdSize = ptrOffset(parentKernel->getCrossThreadData(), parentKernel->getKernelInfo().childrenKernelsIdOffset[0].second);
uint32_t *simdSize = reinterpret_cast<uint32_t *>(blockSimdSize);
EXPECT_EQ(program->blockKernelManager->getBlockKernelInfo(0)->getMaxSimdSize(), *simdSize);
}
TEST(ParentKernelTest, WhenInitializingParentKernelThenPrivateMemoryForBlocksIsAllocated) {
MockClDevice device{new MockDevice};
MockContext context(&device);
std::unique_ptr<MockParentKernel> parentKernel(MockParentKernel::create(context, true));
MockProgram *program = (MockProgram *)parentKernel->mockProgram;
auto infoBlock = new MockKernelInfo();
infoBlock->kernelDescriptor.kernelAttributes.bufferAddressingMode = KernelDescriptor::Stateless;
uint32_t crossThreadOffsetBlock = 0;
infoBlock->setDeviceSideEnqueueDefaultQueueSurface(8, crossThreadOffsetBlock);
crossThreadOffsetBlock += 8;
infoBlock->setDeviceSideEnqueueEventPoolSurface(8, crossThreadOffsetBlock);
crossThreadOffsetBlock += 8;
infoBlock->setPrivateMemory(1000, false, 8, crossThreadOffsetBlock);
crossThreadOffsetBlock += 8;
infoBlock->setLocalIds({0, 0, 0});
infoBlock->kernelDescriptor.kernelAttributes.flags.usesDeviceSideEnqueue = true;
infoBlock->setDeviceSideEnqueueBlockInterfaceDescriptorOffset(0);
infoBlock->heapInfo.pDsh = (void *)new uint64_t[64];
infoBlock->heapInfo.DynamicStateHeapSize = 64 * sizeof(uint64_t);
infoBlock->setCrossThreadDataSize(crossThreadOffsetBlock);
infoBlock->crossThreadData = new char[crossThreadOffsetBlock];
program->blockKernelManager->addBlockKernelInfo(infoBlock);
parentKernel->initialize();
EXPECT_NE(nullptr, program->getBlockKernelManager()->getPrivateSurface(program->getBlockKernelManager()->getCount() - 1));
}
struct ParentKernelFromBinaryTest : public ExecutionModelKernelFixture {
void SetUp() override {
ExecutionModelKernelFixture::SetUp("simple_block_kernel", "simple_block_kernel");
}
};
TEST_F(ParentKernelFromBinaryTest, GivenParentKernelWhenGettingInstructionHeapSizeForExecutionModelThenSizeIsGreaterThanZero) {
EXPECT_TRUE(pKernel->isParentKernel);
EXPECT_LT(0u, pKernel->getInstructionHeapSizeForExecutionModel());
}