compute-runtime/shared/test/common/helpers/memory_management.cpp

404 lines
13 KiB
C++

/*
* Copyright (C) 2018-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/test/common/helpers/memory_management.h"
#include "gtest/gtest.h"
#include <atomic>
#include <cassert>
#include <cinttypes>
#include <cstdlib>
#include <cstring>
#include <exception>
#include <iostream>
#include <new>
#if defined(__linux__)
#include <cstdio>
#include <dlfcn.h>
#include <execinfo.h>
#elif defined(_WIN32)
#include <windows.h>
#include <DbgHelp.h>
#endif
namespace MemoryManagement {
size_t failingAllocation = -1;
std::atomic<size_t> numAllocations(0);
std::atomic<size_t> indexAllocation(0);
std::atomic<size_t> indexDeallocation(0);
bool logTraces = false;
bool fastLeakDetectionEnabled = false;
AllocationEvent eventsAllocated[maxEvents];
AllocationEvent eventsDeallocated[maxEvents];
void *fastEventsAllocated[maxEvents];
void *fastEventsDeallocated[maxEvents];
std::atomic<int> fastEventsAllocatedCount(0);
std::atomic<int> fastEventsDeallocatedCount(0);
std::atomic<int> fastLeaksDetectionMode(LeakDetectionMode::STANDARD);
size_t breakOnAllocationEvent = -1;
size_t breakOnDeallocationEvent = -1;
bool detailedAllocationLoggingActive = false;
// limit size of single allocation in ULT
const size_t maxAllowedAllocationSize = 128 * 1024 * 1024 + 4096;
static void onAllocationEvent() {
/*
//switch to true to turn on dillignet breakpoint setting place
bool setBreakPointHereForLeaks = false;
if (setBreakPointHereForLeaks) {
if (breakOnAllocationEvent == indexAllocation.load()) {
//set breakpoint on line below
setBreakPointHereForLeaks = false;
}
}*/
}
static void onDeallocationEvent(void *) {
/*
//switch to true to turn on dillignet breakpoint setting place
bool setBreakPointHereForLeaks = false;
if (setBreakPointHereForLeaks) {
if (breakOnDeallocationEvent == indexDeallocation.load()) {
//set breakpoint on line below
setBreakPointHereForLeaks = false;
}
}*/
}
void (*deleteCallback)(void *) = onDeallocationEvent;
template <AllocationEvent::EventType typeValid, AllocationEvent::EventType typeFail>
static void *allocate(size_t size) {
onAllocationEvent();
if (size > maxAllowedAllocationSize) {
return nullptr;
}
if (!fastLeakDetectionEnabled) {
return malloc(size);
}
void *p;
if (detailedAllocationLoggingActive) {
auto indexAllocation = MemoryManagement::indexAllocation.fetch_add(1);
indexAllocation %= maxEvents;
auto &eventAllocation = eventsAllocated[indexAllocation];
eventAllocation.size = size;
while ((p = malloc(size)) == nullptr) {
eventAllocation.address = p;
eventAllocation.event = typeFail;
throw std::bad_alloc();
}
eventAllocation.address = p;
eventAllocation.event = typeValid;
#if defined(__linux__)
eventAllocation.frames = logTraces ? backtrace(eventAllocation.callstack, AllocationEvent::CallStackSize) : 0;
#elif defined(_WIN32)
eventAllocation.frames = logTraces ? CaptureStackBackTrace(0, AllocationEvent::CallStackSize, eventAllocation.callstack, NULL) : 0;
#else
eventAllocation.frames = 0;
#endif
eventAllocation.fastLeakDetectionEnabled = fastLeakDetectionEnabled;
numAllocations++;
} else {
p = malloc(size);
}
if (fastLeakDetectionEnabled && p && fastLeaksDetectionMode == LeakDetectionMode::STANDARD) {
auto currentIndex = fastEventsAllocatedCount++;
fastEventsAllocated[currentIndex] = p;
assert(currentIndex <= fastEvents);
}
return p;
}
template <AllocationEvent::EventType typeValid, AllocationEvent::EventType typeFail>
static void *allocate(size_t size, const std::nothrow_t &) {
onAllocationEvent();
if (size > maxAllowedAllocationSize) {
return nullptr;
}
if (!fastLeakDetectionEnabled) {
return malloc(size);
}
void *p;
if (detailedAllocationLoggingActive) {
auto indexAllocation = MemoryManagement::indexAllocation.fetch_add(1);
indexAllocation %= maxEvents;
p = indexAllocation == failingAllocation
? nullptr
: malloc(size);
auto &eventAllocation = eventsAllocated[indexAllocation];
eventAllocation.event = p
? typeValid
: typeFail;
eventAllocation.address = p;
eventAllocation.size = size;
#if defined(__linux__)
eventAllocation.frames = logTraces ? backtrace(eventAllocation.callstack, AllocationEvent::CallStackSize) : 0;
#elif defined(_WIN32)
eventAllocation.frames = logTraces ? CaptureStackBackTrace(0, AllocationEvent::CallStackSize, eventAllocation.callstack, NULL) : 0;
#else
eventAllocation.frames = 0;
#endif
eventAllocation.fastLeakDetectionEnabled = fastLeakDetectionEnabled;
numAllocations += p ? 1 : 0;
} else {
p = malloc(size);
}
if (fastLeakDetectionEnabled && p && fastLeaksDetectionMode == LeakDetectionMode::STANDARD) {
auto currentIndex = fastEventsAllocatedCount++;
fastEventsAllocated[currentIndex] = p;
assert(currentIndex <= fastEvents);
}
return p;
}
template <AllocationEvent::EventType typeValid>
static void deallocate(void *p) {
deleteCallback(p);
if (!fastLeakDetectionEnabled) {
free(p);
return;
}
if (p) {
if (detailedAllocationLoggingActive) {
auto indexDeallocation = MemoryManagement::indexDeallocation.fetch_add(1);
indexDeallocation %= maxEvents;
--numAllocations;
auto &eventDeallocation = eventsDeallocated[indexDeallocation];
eventDeallocation.event = typeValid;
eventDeallocation.address = p;
eventDeallocation.size = -1;
#if defined(__linux__)
eventDeallocation.frames = logTraces ? backtrace(eventDeallocation.callstack, AllocationEvent::CallStackSize) : 0;
#elif defined(_WIN32)
eventDeallocation.frames = logTraces ? CaptureStackBackTrace(0, AllocationEvent::CallStackSize, eventDeallocation.callstack, NULL) : 0;
#else
eventDeallocation.frames = 0;
#endif
eventDeallocation.fastLeakDetectionEnabled = fastLeakDetectionEnabled;
}
if (fastLeakDetectionEnabled && p && fastLeaksDetectionMode == LeakDetectionMode::STANDARD) {
auto currentIndex = fastEventsDeallocatedCount++;
fastEventsDeallocated[currentIndex] = p;
assert(currentIndex <= fastEvents);
}
free(p);
}
}
int detectLeaks() {
int indexLeak = -1;
for (int allocationIndex = 0u; allocationIndex < fastEventsAllocatedCount; allocationIndex++) {
auto &eventAllocation = fastEventsAllocated[allocationIndex];
int deallocationIndex = 0u;
for (; deallocationIndex < fastEventsDeallocatedCount; deallocationIndex++) {
if (fastEventsDeallocated[deallocationIndex] == nullptr) {
continue;
}
if (fastEventsDeallocated[deallocationIndex] == eventAllocation) {
fastEventsDeallocated[deallocationIndex] = nullptr;
break;
}
}
if (deallocationIndex == fastEventsDeallocatedCount) {
indexLeak = allocationIndex;
break;
}
}
return indexLeak;
}
size_t enumerateLeak(size_t indexAllocationTop, size_t indexDeallocationTop, bool lookFromBack, bool requireCallStack) {
using MemoryManagement::AllocationEvent;
using MemoryManagement::eventsAllocated;
using MemoryManagement::eventsDeallocated;
static auto start = MemoryManagement::invalidLeakIndex;
auto newIndex = start == MemoryManagement::invalidLeakIndex ? 0 : start;
bool potentialLeak = false;
auto potentialLeakIndex = newIndex;
for (; newIndex < indexAllocationTop; ++newIndex) {
auto currentIndex = lookFromBack ? indexAllocationTop - newIndex - 1 : newIndex;
auto &eventAllocation = eventsAllocated[currentIndex];
if (requireCallStack && eventAllocation.frames == 0) {
continue;
}
if (eventAllocation.event != AllocationEvent::EVENT_UNKNOWN) {
// Should be some sort of allocation
size_t deleteIndex = 0;
for (; deleteIndex < indexDeallocationTop; ++deleteIndex) {
auto &eventDeallocation = eventsDeallocated[deleteIndex];
if (eventDeallocation.address == eventAllocation.address &&
eventDeallocation.event != AllocationEvent::EVENT_UNKNOWN) {
//this memory was once freed, now it is allocated but not freed
if (requireCallStack && eventDeallocation.frames == 0) {
potentialLeak = true;
potentialLeakIndex = currentIndex;
continue;
}
// Clear the NEW and DELETE event.
eventAllocation.event = AllocationEvent::EVENT_UNKNOWN;
eventDeallocation.event = AllocationEvent::EVENT_UNKNOWN;
potentialLeak = false;
// Found a corresponding match
break;
}
}
if (potentialLeak) {
return potentialLeakIndex;
}
if (deleteIndex == indexDeallocationTop) {
start = newIndex + 1;
return currentIndex;
}
}
}
start = MemoryManagement::invalidLeakIndex;
return start;
}
std::string printCallStack(const MemoryManagement::AllocationEvent &event) {
std::string result = "";
printf("printCallStack.%d\n", event.frames);
if (!MemoryManagement::captureCallStacks) {
printf("for detailed stack information turn on captureCallStacks in memory_management.h\n");
}
if (event.frames > 0) {
#if defined(__linux__)
char **bt = backtrace_symbols(event.callstack, event.frames);
char *demangled;
int status;
char output[1024];
Dl_info info;
result += "\n";
for (int i = 0; i < event.frames; ++i) {
dladdr(event.callstack[i], &info);
if (info.dli_sname) {
demangled = nullptr;
status = -1;
if (info.dli_sname[0] == '_') {
demangled = abi::__cxa_demangle(info.dli_sname, nullptr, 0, &status);
}
snprintf(output, sizeof(output), "%-3d %*p %s + %zd\n",
(event.frames - i - 1), (int)(sizeof(void *) + 2), event.callstack[i],
status == 0 ? demangled : info.dli_sname == 0 ? bt[i]
: info.dli_sname,
(char *)event.callstack[i] - (char *)info.dli_saddr);
free(demangled);
} else {
snprintf(output, sizeof(output), "%-3d %*p %s\n",
(event.frames - i - 1), (int)(sizeof(void *) + 2), event.callstack[i], bt[i]);
}
result += std::string(output);
}
result += "\n";
free(bt);
#elif defined(_WIN32)
SYMBOL_INFO *symbol;
HANDLE process;
process = GetCurrentProcess();
SymInitialize(process, NULL, TRUE);
symbol = (SYMBOL_INFO *)calloc(sizeof(SYMBOL_INFO) + 256 * sizeof(char), 1);
symbol->MaxNameLen = 255;
symbol->SizeOfStruct = sizeof(SYMBOL_INFO);
for (int i = 0; i < event.frames; i++) {
SymFromAddr(process, (DWORD64)(event.callstack[i]), 0, symbol);
printf("%i: %s - 0x%0" PRIx64 "\n", event.frames - i - 1, symbol->Name, symbol->Address);
}
free(symbol);
#endif
}
return result;
}
} // namespace MemoryManagement
using MemoryManagement::allocate;
using MemoryManagement::AllocationEvent;
using MemoryManagement::deallocate;
#if defined(_WIN32)
#pragma warning(disable : 4290)
#endif
void *operator new(size_t size) {
return allocate<AllocationEvent::EVENT_NEW, AllocationEvent::EVENT_NEW_FAIL>(size);
}
void *operator new(size_t size, const std::nothrow_t &) noexcept {
return allocate<AllocationEvent::EVENT_NEW_NOTHROW, AllocationEvent::EVENT_NEW_NOTHROW_FAIL>(size, std::nothrow);
}
void *operator new[](size_t size) {
return allocate<AllocationEvent::EVENT_NEW_ARRAY, AllocationEvent::EVENT_NEW_ARRAY_FAIL>(size);
}
void *operator new[](size_t size, const std::nothrow_t &t) noexcept {
return allocate<AllocationEvent::EVENT_NEW_ARRAY_NOTHROW, AllocationEvent::EVENT_NEW_ARRAY_NOTHROW_FAIL>(size, std::nothrow);
}
void operator delete(void *p) noexcept {
deallocate<AllocationEvent::EVENT_DELETE>(p);
}
void operator delete[](void *p) noexcept {
deallocate<AllocationEvent::EVENT_DELETE_ARRAY>(p);
}
void operator delete(void *p, size_t size) noexcept {
deallocate<AllocationEvent::EVENT_DELETE>(p);
}
void operator delete[](void *p, size_t size) noexcept {
deallocate<AllocationEvent::EVENT_DELETE_ARRAY>(p);
}