compute-runtime/unit_tests/kernel/kernel_immediate_arg_tests.cpp

334 lines
16 KiB
C++

/*
* Copyright (C) 2017-2018 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "CL/cl.h"
#include "runtime/kernel/kernel.h"
#include "unit_tests/fixtures/device_fixture.h"
#include "test.h"
#include "unit_tests/mocks/mock_context.h"
#include "unit_tests/mocks/mock_kernel.h"
#include "unit_tests/mocks/mock_program.h"
#include "gtest/gtest.h"
using namespace OCLRT;
template <typename T>
class KernelArgImmediateTest : public Test<DeviceFixture> {
public:
KernelArgImmediateTest() {
}
protected:
void SetUp() override {
DeviceFixture::SetUp();
memset(pCrossThreadData, 0xfe, sizeof(pCrossThreadData));
program = std::make_unique<MockProgram>(*pDevice->getExecutionEnvironment());
// define kernel info
pKernelInfo = std::make_unique<KernelInfo>();
// setup kernel arg offsets
KernelArgPatchInfo kernelArgPatchInfo;
pKernelInfo->kernelArgInfo.resize(4);
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[2].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[1].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].crossthreadOffset = 0x38;
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].crossthreadOffset = 0x28;
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[0].crossthreadOffset = 0x20;
pKernelInfo->kernelArgInfo[2].kernelArgPatchInfoVector[0].crossthreadOffset = 0x30;
pKernelInfo->kernelArgInfo[1].kernelArgPatchInfoVector[0].crossthreadOffset = 0x40;
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset = 0x50;
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].size = sizeof(T);
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].size = sizeof(T);
pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[0].size = sizeof(T);
pKernelInfo->kernelArgInfo[2].kernelArgPatchInfoVector[0].size = sizeof(T);
pKernelInfo->kernelArgInfo[1].kernelArgPatchInfoVector[0].size = sizeof(T);
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].size = sizeof(T);
program = std::make_unique<MockProgram>(*pDevice->getExecutionEnvironment());
pKernel = new MockKernel(program.get(), *pKernelInfo, *pDevice);
ASSERT_EQ(CL_SUCCESS, pKernel->initialize());
pKernel->setCrossThreadData(pCrossThreadData, sizeof(pCrossThreadData));
pKernel->setKernelArgHandler(0, &Kernel::setArgImmediate);
pKernel->setKernelArgHandler(1, &Kernel::setArgImmediate);
pKernel->setKernelArgHandler(2, &Kernel::setArgImmediate);
pKernel->setKernelArgHandler(3, &Kernel::setArgImmediate);
}
void TearDown() override {
delete pKernel;
DeviceFixture::TearDown();
}
cl_int retVal = CL_SUCCESS;
std::unique_ptr<MockProgram> program;
MockKernel *pKernel = nullptr;
std::unique_ptr<KernelInfo> pKernelInfo;
char pCrossThreadData[0x60];
};
typedef ::testing::Types<
char,
float,
int,
short,
long,
unsigned char,
unsigned int,
unsigned short,
unsigned long>
KernelArgImmediateTypes;
TYPED_TEST_CASE(KernelArgImmediateTest, KernelArgImmediateTypes);
TYPED_TEST(KernelArgImmediateTest, SetKernelArg) {
auto val = (TypeParam)0xaaaaaaaaULL;
auto pVal = &val;
this->pKernel->setArg(0, sizeof(TypeParam), pVal);
auto pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
}
TYPED_TEST(KernelArgImmediateTest, SetKernelArgWithInvalidIndex) {
auto val = (TypeParam)0U;
auto pVal = &val;
auto ret = this->pKernel->setArg((uint32_t)-1, sizeof(TypeParam), pVal);
EXPECT_EQ(ret, CL_INVALID_ARG_INDEX);
}
TYPED_TEST(KernelArgImmediateTest, setKernelArgMultipleArguments) {
auto val = (TypeParam)0xaaaaaaaaULL;
auto pVal = &val;
this->pKernel->setArg(0, sizeof(TypeParam), pVal);
auto pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
val = (TypeParam)0xbbbbbbbbULL;
this->pKernel->setArg(1, sizeof(TypeParam), &val);
pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[1].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
val = (TypeParam)0xccccccccULL;
this->pKernel->setArg(2, sizeof(TypeParam), &val);
pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[2].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
}
TYPED_TEST(KernelArgImmediateTest, setKernelArgOverwritesCrossThreadData) {
TypeParam val = (TypeParam)0xaaaaaaaaULL;
TypeParam *pVal = &val;
this->pKernel->setArg(0, sizeof(TypeParam), pVal);
TypeParam *pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
val = (TypeParam)0xbbbbbbbbULL;
this->pKernel->setArg(1, sizeof(TypeParam), &val);
pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[1].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
val = (TypeParam)0xccccccccULL;
this->pKernel->setArg(0, sizeof(TypeParam), &val);
pKernelArg = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(val, *pKernelArg);
}
TYPED_TEST(KernelArgImmediateTest, setSingleKernelArgMultipleStructElements) {
struct ImmediateStruct {
TypeParam a;
unsigned char unused[3]; // want to force a gap, ideally unpadded
TypeParam b;
} immediateStruct;
immediateStruct.a = (TypeParam)0xaaaaaaaaULL;
immediateStruct.b = (TypeParam)0xbbbbbbbbULL;
immediateStruct.unused[0] = 0xfe;
immediateStruct.unused[1] = 0xfe;
immediateStruct.unused[2] = 0xfe;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[0].sourceOffset = offsetof(struct ImmediateStruct, a);
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].sourceOffset = offsetof(struct ImmediateStruct, b);
this->pKernel->setArg(3, sizeof(immediateStruct), &immediateStruct);
auto pCrossthreadA = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[0].crossthreadOffset);
EXPECT_EQ(immediateStruct.a, *pCrossthreadA);
auto pCrossthreadB = (TypeParam *)(this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].crossthreadOffset);
EXPECT_EQ(immediateStruct.b, *pCrossthreadB);
}
TYPED_TEST(KernelArgImmediateTest, givenTooLargePatchSizeWhenSettingArgThenDontReadMemoryBeyondLimit) {
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset;
const auto memoryBeyondLimitAddress = destinationMemoryAddress + sizeof(TypeParam);
const auto memoryBeyondLimitBefore = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].size = sizeof(TypeParam) + 1;
auto retVal = this->pKernel->setArg(0, sizeof(TypeParam), &memory[0]);
const auto memoryBeyondLimitAfter = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
EXPECT_EQ(memoryBeyondLimitBefore, memoryBeyondLimitAfter);
EXPECT_EQ(memory[0], *reinterpret_cast<TypeParam *>(destinationMemoryAddress));
EXPECT_EQ(CL_SUCCESS, retVal);
}
TYPED_TEST(KernelArgImmediateTest, givenNotTooLargePatchSizeWhenSettingArgThenDontReadMemoryBeyondLimit) {
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset;
const auto memoryBeyondLimitAddress = destinationMemoryAddress + sizeof(TypeParam);
const auto memoryBeyondLimitBefore = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
this->pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].size = sizeof(TypeParam);
auto retVal = this->pKernel->setArg(0, sizeof(TypeParam), &memory[0]);
const auto memoryBeyondLimitAfter = *reinterpret_cast<TypeParam *>(memoryBeyondLimitAddress);
EXPECT_EQ(memoryBeyondLimitBefore, memoryBeyondLimitAfter);
EXPECT_EQ(memory[0], *reinterpret_cast<TypeParam *>(destinationMemoryAddress));
EXPECT_EQ(CL_SUCCESS, retVal);
}
TYPED_TEST(KernelArgImmediateTest, givenMulitplePatchesAndFirstPatchSizeTooLargeWhenSettingArgThenDontReadMemoryBeyondLimit) {
if (sizeof(TypeParam) == 1)
return; // multiple patch chars don't make sense
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress1 = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].crossthreadOffset;
const auto destinationMemoryAddress2 = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].crossthreadOffset;
const auto memoryBeyondLimitAddress1 = destinationMemoryAddress1 + sizeof(TypeParam);
const auto memoryBeyondLimitAddress2 = destinationMemoryAddress2 + sizeof(TypeParam) / 2;
const std::vector<unsigned char> memoryBeyondLimitBefore1(memoryBeyondLimitAddress1, memoryBeyondLimitAddress1 + sizeof(TypeParam));
const std::vector<unsigned char> memoryBeyondLimitBefore2(memoryBeyondLimitAddress2, memoryBeyondLimitAddress2 + sizeof(TypeParam) / 2);
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].sourceOffset = 0;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].sourceOffset = sizeof(TypeParam) / 2;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].size = sizeof(TypeParam);
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].size = sizeof(TypeParam) / 2;
auto retVal = this->pKernel->setArg(3, sizeof(TypeParam), &memory[0]);
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore1.data(), memoryBeyondLimitAddress1, sizeof(TypeParam)));
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore2.data(), memoryBeyondLimitAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress1, sizeof(TypeParam)));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(CL_SUCCESS, retVal);
}
TYPED_TEST(KernelArgImmediateTest, givenMulitplePatchesAndSecondPatchSizeTooLargeWhenSettingArgThenDontReadMemoryBeyondLimit) {
if (sizeof(TypeParam) == 1)
return; // multiple patch chars don't make sense
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress1 = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].crossthreadOffset;
const auto destinationMemoryAddress2 = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].crossthreadOffset;
const auto memoryBeyondLimitAddress1 = destinationMemoryAddress1 + sizeof(TypeParam) / 2;
const auto memoryBeyondLimitAddress2 = destinationMemoryAddress2 + sizeof(TypeParam) / 2;
const std::vector<unsigned char> memoryBeyondLimitBefore1(memoryBeyondLimitAddress1, memoryBeyondLimitAddress1 + sizeof(TypeParam) / 2);
const std::vector<unsigned char> memoryBeyondLimitBefore2(memoryBeyondLimitAddress2, memoryBeyondLimitAddress2 + sizeof(TypeParam) / 2);
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[0].size = 0;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].sourceOffset = 0;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].sourceOffset = sizeof(TypeParam) / 2;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].size = sizeof(TypeParam) / 2;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].size = sizeof(TypeParam);
auto retVal = this->pKernel->setArg(3, sizeof(TypeParam), &memory[0]);
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore1.data(), memoryBeyondLimitAddress1, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore2.data(), memoryBeyondLimitAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress1, sizeof(TypeParam) / 2));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress2, sizeof(TypeParam) / 2));
EXPECT_EQ(CL_SUCCESS, retVal);
}
TYPED_TEST(KernelArgImmediateTest, givenMultiplePatchesAndOneSourceOffsetBeyondArgumentWhenSettingArgThenDontCopyThisPatch) {
TypeParam memory[2];
std::memset(&memory[0], 0xaa, sizeof(TypeParam));
std::memset(&memory[1], 0xbb, sizeof(TypeParam));
const auto destinationMemoryAddress1 = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].crossthreadOffset;
const auto destinationMemoryAddress2 = this->pKernel->getCrossThreadData() +
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].crossthreadOffset;
const auto memoryBeyondLimitAddress1 = destinationMemoryAddress1 + sizeof(TypeParam);
const auto memoryBeyondLimitAddress2 = destinationMemoryAddress2;
const std::vector<unsigned char> memoryBeyondLimitBefore1(memoryBeyondLimitAddress1, memoryBeyondLimitAddress1 + sizeof(TypeParam));
const std::vector<unsigned char> memoryBeyondLimitBefore2(memoryBeyondLimitAddress2, memoryBeyondLimitAddress2 + sizeof(TypeParam));
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[0].size = 0;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].sourceOffset = 0;
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[1].size = sizeof(TypeParam);
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].sourceOffset = sizeof(TypeParam);
this->pKernelInfo->kernelArgInfo[3].kernelArgPatchInfoVector[2].size = 1;
auto retVal = this->pKernel->setArg(3, sizeof(TypeParam), &memory[0]);
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore1.data(), memoryBeyondLimitAddress1, memoryBeyondLimitBefore1.size()));
EXPECT_EQ(0, std::memcmp(memoryBeyondLimitBefore2.data(), memoryBeyondLimitAddress2, memoryBeyondLimitBefore2.size()));
EXPECT_EQ(0, std::memcmp(&memory[0], destinationMemoryAddress1, sizeof(TypeParam)));
EXPECT_EQ(CL_SUCCESS, retVal);
}